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A numerical investigation is made to determine the occurrence of the multiple solutions of MHD Casson fluid in a porous channel.
Governing partial differential equation of the proposed problem converted into nonlinear ordinary differential equations by using
similarity transformation. Numerical technique known as shooting method is used to investigate the existence of the multiple
solutions for the variations of different parameters. Effects of physical parameters on velocity profile, temperature, concentration,
and skin friction are presented in pictorial and tabulation representation.

1. Introduction

The fluid flow in a channel has abundant practical applica-
tions in industry from mathematical and engineering point
of view [1-5]. In particular, those fluids in which the shear
stresses are not linear proportional to the velocity gradient
are characterized as non-Newtonian fluids which are of
much interest among the researchers. Among the non-
Newtonian fluids, Casson fluid has attracted more attention
of researchers due to its applications in the fields of metal-
lurgy, food processing, drilling operations, and bioengineer-
ing operations [6, 7]. Some more applications of Casson fluid
can be seen in the manufacturing of pharmaceutical products,
coal in water, china clay, paints, synthetic lubricants, and
biological fluids such as synovial fluids, sewage sludge, jelly,
tomato sauce, honey, soup, and blood due to its contents such
as plasma, fibrinogen, and protein [8].

Due to the novel application of MHD mixed convection
flow in porous medium, in the field of industrial engineering,
many researchers are attracted towards it. Design of MHD
power generators, nuclear waste processing, and distribution
of chemical waste control are some most conspicuous appli-
cations among all. The problem of laminar fully developed
mixed convection flow in a channel was followed back to
1960 by Tao [9]. Recently, Fersadou et al. [10] investigated
the problem of MHD mixed convection flow of nanofluid
in a vertical porous channel numerically. Problem of mixed

convection MHD flow of an Al,O; water nanofluid in a
channel with asymmetric heated walls was examined by
Chen et al. [11]. Khan et al. [12] investigated numerically
the problem of Blasius and Sakiadis flows of Casson fluid
with viscous dissipation and convective boundary conditions.
Umavathi and Sultana [13] talked about the mixed convective
hydromagnetic flow of micropolar fluid in a vertical channel
with related boundary states of third kind. Si et al. [14] utilized
homotopy analysis method (HAM) to acquire the arrange-
ment of the problem of micropolar fluid in a channel with
heat and mass exchange impacts. The channel is thought to
be permeable with extending/contracting dividers. Prakash
and Muthtamilselvan [15] executed Crank-Nicolson limited
contrast plan to take care of numerical issue of mixed con-
vective MHD stream of micropolar fluid between two vertical
permeable dividers with proper limit states of third kind.
Recently, Raza et al. [16] examined the rotational effects of
channel on the problem of nanofluid with shrinking channel
walls.

The Casson constitutive equation was derived by Casson
[17] which shows that the rate of strain and stress relationship
is nonlinear. Flow of Casson fluid between two rotating
cylinders is studied by Eldabe and Salwa [18]. Attia and Sayed-
Ahmed [19] considered the Couette flow of electrically con-
ducting Casson fluid between parallel plates. Effect of mass
transfer on MHD flow of Casson fluid was discussed analyt-
ically by Shehzad et al. [20]. Taylor’s series was employed in


http://dx.doi.org/10.1155/2016/7535793

order to solve nonlinear differential equations. Explicit finite
difference method of unsteady Casson fluid flow through
parallel plates was investigated by Afikuzzaman et al. [21].
Recently, Reddy et al. [22] discussed the effects of Joule
heating and Hall effects on free convection in an electrically
conducting Casson fluid in a vertical channel in the presence
of viscous dissipation. Analytical solutions were found with
the help of homotopy analysis method (HAM) and compared
with Adomian Decomposition Method (ADM). Walawander
et al. [23], Batra and Jena [24], Sayed Ahmed and Attia [25],
Kataria and Patel [26], and Das et al. [27] have reported the
flow of Casson fluid under different flow regimes. None of
the investigations cited above dealt with multiple solutions of
Casson fluid in a channel.

Motivated by the above-cited investigations, the aim of
the present study is to investigate the multiple solutions of
mixed convection flow of Casson fluid in a porous channel
under the influence of the magnetic field. The effects of
different parameters such as Reynold number R, magnetic
field M, Casson parameter 3, and bouncy parameter A on
velocity and temperature profiles are discussed graphically
and also in tabulation representation.

2. Formulation of the Problem

Consider the steady, incompressible MHD flow of Casson
fluid in a channel. The x-axis is along the centerline of the
channel, parallel to the channel surfaces and the y-axis is
perpendicular to it. Lower wall of the channel is located at
y = —H and upper wall is at y = H. The fluid is injected
into the channel and extracted out at a uniform velocity V
(V > 0 suction and V' < 0 injection) from upper wall and
lower wall, respectively. A uniform magnetic field of strength
B, is applied perpendicular to the velocity field. The induced
magnetic field is negligible as compared with the imposed
field.

The constitutive equation for Casson fluid can be written
as [17]

Ty
2( pg + \/T_rr e > T,
Tij = T, ®
2({pup+ —— |e m<m,

\ 27T,

where pg is the plastic dynamic viscosity of the non-
Newtonian fluid, T, is the yield stress of the fluid, 7 is the
product of the component of deformation rate with itself,
and 7z, is critical value of 77 based on non-Newtonian model.
Under these assumptions the governing equations for MHD
boundary layer flow of Casson fluid are expressed as the

following equations:

a—M+Q—0 (2)
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ox dy  pox Bloy* p (3

+g(Br (T-T,) + B (C-C,)),

Journal of Applied Mathematics

2
u@+vﬁz—la—})+v<l+l>ﬂ, (4)
ox 0y  poy B/ ox?

of T k 0T
U— +v— = (5)

o "o oG o

2

ua—c + va—c = Da—C -x,C, (6)

ox Oy oy?
where p is density, ¢ is dynamic viscosity, » is kinematic vis-
cosity, o is electrical conductivity, 5 is Casson fluid parameter,
T is temperature of the fluid, k is thermal conductivity, «, is
reaction rate, D is mass diffusion, and C is the concentration
field.
Along with boundary conditions,

u=0,
v
V="
T=T,
C=0GC,
at y = H,
ou_ 7)
dy
v=0,
T=T,
C=¢C
at y = 0.
Introducing stream function such that u = oy/dy, v =

—0y/0x and eliminating pressure term from (3) and (4) by
introducing vorticity w, we get
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FIGURE I: Skin friction — f'' (1) against the values of Reynold number
R.

Then governing nonlinear momentum and energy equations
of the proposed problem can be written as

(1+5) 7" -ae s R (s " - 15")

+/\(6' +N¢') =0,

(10)
0" —Prfo' =0,
(p" - Scyp - Scf(p' =0.
Boundary conditions (7) reduce into
1
f’ (1) =0,
6(1) =0,
P (1) =0, (ll)
f” 0) =0,
f (O) =0,
6(0)=1,
¢(0)=1.

Here, R = VH/v is Reynolds number (R > 0 for suction R <
0 and for injection), M> = oB*H”/u is Hartman number,
A = Gr,/R* is the thermal buoyancy parameter, Gr, =
VH*gB(T, — T,)/xv’ is Grashof number, N = B.(C, -
C,)/(T, — T,) is concentration buoyancy parameter, Pr =
pCpHV [k is Prantl number, Sc = HV/D is Smith number,
and y =k, H/v is chemical reaction rate.

3. Numerical Solution of the Problem via
Shooting Method

We employ shooting method in order to find the numerical
solution of the proposed problem. For this we have to reduce
the governing boundary value problem (10) into initial value

problem by assuming x, = 7, x, = f,x;3 = f,x, = f',
xs = ", x¢ = 0, x, = ¢'; then the following system is
obtained

!
X
!
X
!
X3
!
Xy
!
X5
!
X6
!
7 (12)
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a+p) (M2x4 = R(x3%4 — x,%5) = A (g + Nx7))

Prx,x4

Scyp + Scx,x;

with initial condition

xp (1) 1
%, (1) >
x3 (1) 0
x4 (1) = « . (13)
x5 (1) o,
x (1) o
x7 (1) oy

Here, oy, ay, &5, a4 are missing initial conditions. In a shoot-
ing method, the missing (unspecified) initial condition at the
initial point of the interval is assumed, and the differential
equation is then integrated numerically as an initial valued
problem to the terminal point. The accuracy of the assumed
missing initial condition is then checked by comparing the
calculated value of the dependent variable at the terminal
point with its given value there. If a difference exists, another
value of the missing initial condition must be assumed and
the process is repeated. This process is continued until the
agreement between the calculated and the given condition at
the terminal point is within the specified degree of accuracy.
It is important to notice that we have to shoot the values
of o), «,, a3, . Since these values are not given in the
boundary condition (13), by trial and error, suitable guess
values are made and integration is carried out. The details
of shooting method with Maple implementation shoot have
been described by Meade et al. [28].

4. Results and Discussions

Present section is devoted to discuss the numerical results
of our finding both in tabulation and in graphical form.
Our main motive is to investigate the multiple solutions of
the proposed problem. We have prepared Figures 1-6 in
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order to evaluate the effects of different physical quantities
on the velocity, temperature, and mass fraction. The effects
include the existence of multiple solutions, Reynold number
R, magnetic field M, Casson parameter (3, Prandtl number Pr,
Smith number Sc, and chemical reaction rate y.

Based on the finding of multiple solutions it is concluded
that there is only one solution in the case of R < 0, 8 € (0, c0)
and § € (0,5), R € [0,00). However, there exist multiple
solutions for f € [5,00) and R € [31.07,00) for any value
of magnetic number M € [0,2.0]. So we can say that there

is a critical value of Casson number f3 and suction parameter
R such that ()i = 5 and (R) el = 31.07. So it can
be defended as there is no multiple solutions if 8 < (8)itical
and < (R)jtica- The said phenomena can be observed from
Figure 1. We plot the magnitude of the skin friction | f (1)
against the values of Reynold number R.

Effects of Reynold number R on velocity profile f'(#) for
non-buoyant flow case A = 0 are presented in Figure 2. It
is noticed that with enhanced values of Reynolds number R,
velocity profile f'(17) decreases near the center of the channel
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FIGURE 3: Effect of magnetic field M on velocity profile f' ().

for the first (1st) and third (3rd) solutions and increases near
the walls of the channel. However, totally reverse behavior

is observed for second (2nd) solution. Furthermore, triple
solutions exist only for R >

31.07. Effect of magnetic

field M on velocity profile f'(#) corresponding to forced
convection or non-buoyant flow case A

0 is shown in
Figure 3. It is concluded that velocity profile f'(y) for st

and 2nd solutions decreases near the center of the channel
n = 0 and increases near the channel walls. Since magnetic
field is applied perpendicular to the channel walls, effect of

magnetic field can be seen clearly near the channel walls

n = 1. Physically we can say that magnetic field enhances
the viscosity of the fluid due to the chain deformation of
the fluid particles. The chain-like structure retards the flow
and decelerates the motion. This results in the fact that the

fluid flow can be controlled by applying magnetic field which
results in many control based applications including MHD
power generation, casting of metals, blood flow in arteries,
and many, many more. Effect of Casson parameter 8 on
velocity profile f'(r) for the case of forced convection A =

0 is depicted in Figure 4. Velocity profile f'(y) decreases
gradually for the Ist and 3rd solutions near the center of
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the channel and increases near the channel wall # = 1.
However, velocity increases for the 2nd solution as the
enhancement of the Casson parameter f3 is taking place in the
neighborhood of # = 0. Furthermore, 8 — ©co corresponds
to the Newtonian fluid. This is because of the fact that fluid
is extracted from the walls of the channel with constant
velocity that decreases the viscosity of the fluid particles
which results in increase in the velocity near the wall of the

channel. Figure 5 presented the effect of Prandtl number Pr
on temperature profile (1) for non-buoyant A = 0 case.

It is concluded from these profiles that temperature profile
0(1) increases strictly monotonically as the Prandtl number
Pr increases for 1st and 2nd solutions. On the other hand,
temperature profile 6(1) decreases as the Prandtl number Pr

increases for 3rd solution. Effects of Smith number Sc on

concentration profile ¢(x) for A = 0 (non-buoyant case)

are plotted in Figure 6. Concentration profile ¢(1) decreases
by the increase of the strength of Smith number Sc for all
triple solutions. Physically it can be argued that an increase
in Smith number Sc prompts the increment in the quantity of
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solute atoms experiencing substance reaction coming about
the way that concentration of the fluid’s molecule diminishes
monotonically. In Figure 7, we plot 6' (1) against the values of
Reynold number R for the case of forced convection A = 0.
It is seen that Ist and 2nd solutions overlap each other as the
Reynold number R increases.

In Tables 1 and 2, we represented numerical values of
skin friction f”(1) and 0'(1) for the variations of different
physical parameters. Table 1 presented the numerical values
of skin friction f"'(1) for the variation of buoyancy parameter
AbyfixingR = 36,6 M = N = 05 8 = 5 Pr = 1,
Sc = 1, y = 1.2. Magnitude of the skin friction increases for

TaBLE 1: Skin friction for different values of buoyancy parameters
forR=36,M=N=05=5Pr=1,Sc=1,y=12.

1 Ist solution 2nd solution 3rd solution
1 1 ()
-0.50 —3.29405873 —14.78794525 —27.20927012
-0.25 —4.19831393 —14.22940191 —27.20983823
0 —5.21362887 —13.55733409 —27.21039669
0.25 —6.42985179 —12.68188468 —27.21094599
0.50 -8.22263120 —11.22740570 —27.21148660
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the 1st and 3rd solutions and decreases for 2nd solution in the
case of opposing flow A < 0. Furthermore, same behavior is
depicted for the case of assisting flow A > 0; therefore the
fluid velocity near the channel walls # = 1 increases. From
Table 2 it is concluded that magnitude of skin friction (1)
and 6'(1) increases and decreases, respectively, as Reynold
number increases for the case of assisting flow A > 0 only for
Ist and 3rd solutions by setting M = N = 0.5, Pr = 1, Sc = 2,
y = 1.2. Numerical values of skin friction f (1) increase for
Ist and 3rd solutions and decrease for 2nd solution by the
variation of Reynolds number for the case of opposing flow
A <ObysettingM =N =0.5,Pr=1,Sc=2,y=1.2.

5. Conclusion

Multiple solutions of MHD Casson fluid flow in a channel
with heat and mass transfer are analyzed. Here are some
important observations have been engendered in the light of
numerical investigation:

(i) There is only single solution for the case of injection
R < 0 for any value of Casson number 8 or Hartman
number M.

(ii) There exist multiple solutions only for € [5, c0) and
R € [31.07,00) for any value of magnetic number
M € [0,2.0].
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TABLE 2: Skin friction and temperature gradient for different values of Reynold number R.

R 1 1st solution 2nd solution 3rd solution 1st solution 2nd solution 3rd solution
() () () 6' (1) 6' (1) 6' (1)

31.07 —3.56529871 —16.7538394 —23.89501535 —-1.20630237 —1.12415316 —-1.04645775
35 -0.25 —4.06923819 —-14.50163765 —26.71544153 —-1.20492033 —1.14909835 -1.01703703
40 —4.70569981 —13.72648291 —28.87613992 —-1.20354537 -1.16169799 —0.99886321
31.07 —4.22815985 —16.33685245 —23.92995344 —1.20259758 —1.12723885 —1.045737

35 0 -5.00282319 —13.89608196 —26.71780315 —-1.20017552 —-1.15257708 —-1.01679981
40 —6.10401248 —12.73103850 —28.87353590 -1.19720323 -1.16644810 -0.99874016
31.07 —4.93400210 —15.87676698 —23.96319996 —-1.19862360 -1.13057525 —1.04504186
35 0.25 —6.08426152 —13.14036724 —26.72012735 —1.19463415 —-1.15685896 —-1.01656453
40 —8.28517017 —10.94971752 —28.87095120 -1.18721976 —1.17484905 —0.99861750
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FIGURE 7: Effect of Reynold number R on 0'(1).

(iii) Effect of Casson number 3 > 5 and Reynolds number
R > 31.06 on velocity profile f'(y) increases for 1st
and 3rd solutions near the channel wall 7 = 1.

(iv) Effect of Reynold number R on skin friction (1)
and 0'(1) is the same for assisting flow A > 0 and
opposing flow A < 0.
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