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We develop error estimates of the semidiscrete and fully discrete formulations of a Fourier-Galerkin numerical scheme to approx-
imate solutions of a coupled nonlinear Schrödinger-Benjamin-Ono system that describes the motion of two fluids with different
densities under capillary-gravity waves in a deep water regime. The accuracy of the numerical solver is checked using some exact
travelling wave solutions of the system.

1. Introduction

In this paper we shall study numerically the nonlinear one-
dimensional system (named as the Schrödinger-Benjamin-
Ono system (SBO)):

𝑖𝜕𝑡𝑢 + 𝜕2𝑥𝑢 = 𝛼V𝑢,
𝜕𝑡V − 𝛾H𝜕2𝑥V = 𝛽 (|𝑢|2)

𝑥
, (1)

for 𝑥 ∈ (0, 𝐿), 𝑡 > 0 with periodic spatial boundary condi-
tions. This system describes the motion of two fluids with
different densities under capillary-gravity waves in a deep
water regime. In this physical phenomenon the long internal
wave is described by a wave equation with a dispersive term
represented by a nonlocal Hilbert operator, and the short
surface wave is described by a Schrödinger type equation.
This nonlinear coupled systemwas derived by Funakoshi and
Oikawa [1] in a regime such that the fluid depth of the lower
layer is sufficiently large, in comparison with the wavelength
of the internalwave.Here𝑢 = 𝑢(𝑥, 𝑡) : R×R → Cdenotes the
short wave term and V = V(𝑥, 𝑡) : R × R → R denotes
the long wave term. Furthermore, 𝛼, 𝛽 are positive constants,

𝛾 ∈ R, and H denotes the Hilbert transform defined
by

H𝑓 (𝑥) fl p.v. 1𝜋 ∫ 𝑓 (𝑦)𝑦 − 𝑥𝑑𝑦. (2)

The SBO system also appears in the sonic-Langmuir wave
interaction in plasma physics (Karpman [2]), in the capillary-
gravity interaction waves (Djordjevic and Redekoop [3],
Grimshaw [4]), and in the general theory of water-wave
interaction in a nonlinear medium (Benney [5, 6]).

An important property of system (1) due to nonlinearity
and dispersive effects is that it possesses the so-called travel-
ling wave solutions in the form

𝑢 (𝑥, 𝑡) = 𝑒𝑖𝑤𝑝𝑡𝑒𝑖𝑐(𝑥−𝑐𝑡)/2𝜙 (𝑥 − 𝑐𝑡) ,
V (𝑥, 𝑡) = 𝜓 (𝑥 − 𝑐𝑡) , (3)

with 𝑤𝑝, 𝑐 ∈ R and 𝜙, 𝜓 being periodic real-valued functions
or smooth functions such that, for each 𝑛 ∈ N, 𝜙(𝑛)(𝜉) → 0
and 𝜓(𝑛)(𝜉) → 0, as |𝜉| → ∞. In this last case, these solu-
tions are called solitary waves. Angulo and Montenegro [7]
have proved the existence of even solitary wave solutions
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using the concentration compactness method (Lions [8, 9])
and the theory of symmetric decreasing rearrangements.
The existence and stability of a new set of solitary waves were
presented in [10] for system (1) and a coupled Schrödinger-
KdV model. On the other hand, when |𝛾| ̸= 1, the
nonperiodic initial value problem corresponding to the SBO
system has been considered by Bekiranov et al. [11], who
proved a well-posedness theory in the Sobolev space𝐻𝑠C(R)×𝐻𝑠−1/2R (R), with 𝑠 ≥ 0. When |𝛾| = 1, Pecher [12] showed
the local well-posedness for 𝑠 > 0. More recently, Angulo
et al. [13] proved the global well-posedness for 𝑠 = 0 in
the case that |𝛾| ̸= 1. In the periodic setting, there are
only a few results known. For instance, assuming that |𝛾| ̸=0, 1, Angulo et al. [13] showed that system (1) is locally well
posed in the Sobolev space 𝐻𝑠(0, 2𝜋) × 𝐻𝑠−1/2(0, 2𝜋) for𝑠 ≥ 1/2.

In this paper, we shall develop a rigorous analysis of the
error of the semidiscrete and fully discrete formulations of
a Fourier-Galerkin scheme to approximate solutions of the
SBO system (1). The time-stepping method is implemented
by using a second-order implicit Crank-Nicholson strategy.
The rates of convergence of the semidiscrete and fully dis-
crete schemes are 𝑂(𝑁𝑠+2−𝑟) and 𝑂(𝑁𝑠+2−𝑟 + Δ𝑡2), respec-
tively, where 𝑟 > 𝑠 + 2 depends only on the smoothness of
the exact solution, Δ𝑡 is the time step, and 𝑁 is the number
of spatial Fourier modes. The strategy to obtain these rates of
convergence follows the one used by Muñoz Grajales [14, 15]
and Antonopoulos et al. [16, 17] and Pelloni and Dougalis
[18] for other dispersive systems. On the other hand, Rashid
and Akram [19] studied the error of an implicit spectral
scheme for the SBO system but only in the particular case
that 𝛾 = 0. Furthermore, Funakoshi and Oikawa [1] com-
puted numerically some approximations to travelling wave
solutions of the SBO system. However, an analysis of error of
a fully discrete spectral numerical scheme for the complete
SBO system has not been performed in previous works to
the best of the author’s knowledge. This is one motivation for
the present study. We point out that system (1) does not have
exact solutions in the general case that 𝛾 ̸= 0. Therefore, a
numerical strategy is very important in order to investigate
the properties of the solution space, such as existence of
periodic and nonperiodic travelling waves, orbital stability
under small initial disturbances, and interactions among
these solutions.

The accuracy and convergence rate of the Fourier-spectral
scheme proposed in this paper are illustrated by using a
family of exact solitary wave solutions of system (1) when𝛾 = 0. In order to apply this scheme in a nonperiodic setting,
we approximate the initial value problem for system (1) with𝑥 ∈ R, by the corresponding periodic Cauchy problem for𝑥 ∈ [0, 𝐿], with a large spatial period 𝐿. This type of approx-
imation can be justified by the decay of the solutions of the
unrestricted problem as |𝑥| → ∞.

This paper is organized as follows. In Section 2, we
introduce notation and functional spaces which will be used
in our work. In Section 3, the analytical properties and con-
vergence of the semidiscrete scheme to approximate solutions
of the SBO system are investigated. Section 4 deals with the

convergence of the fully discrete scheme that we propose for
solving the SBO system. Finally in Section 5, to validate
the theoretical results, some numerical experiments using a
family of analytical and approximate solutions of the SBO
system are performed.

2. Preliminaries

We set

𝐿2 (0, 𝐿) fl {𝑓 : [0, 𝐿] 󳨀→ C, 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩0
= [∫𝐿
0

󵄨󵄨󵄨󵄨𝑓 (𝑥)󵄨󵄨󵄨󵄨2 𝑑𝑥]1/2 < ∞} , (4)

with the inner product

⟨𝑓, 𝑔⟩ = ∫𝐿
0

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥. (5)

The space of all functions of class 𝐶𝑘 that are 𝐿-periodic
is denoted by 𝐶𝑘per(0, 𝐿), 𝑘 = 0, 1, 2, . . .. Further 𝐶per =𝐶0per(0, 𝐿) is the space of all continuous functions of period𝐿.

We will denote by P the space of all infinitely differen-
tiable functions that are 𝐿-periodic as well as all their deriva-
tives. We say that 𝑇 : P → C defines a periodic distribution,
that is, 𝑇 ∈ P󸀠, if 𝑇 is linear and there exists a sequence(Ψ𝑛)𝑛∈N ⊂ P such that

⟨𝑇, 𝜑⟩ = lim
𝑛→∞

∫𝐿
0

Ψ𝑛 (𝑥) 𝜑 (𝑥) 𝑑𝑥, ∀𝜑 ∈ P. (6)

Let 𝑠 ∈ R. The Sobolev space, denoted by 𝐻𝑠per = 𝐻𝑠per(0, 𝐿),
is defined as

𝐻𝑠per (0, 𝐿)
= {𝑓 ∈ P

󸀠 : 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2𝑠 = 𝐿∑
𝑛∈Z

(1 + 𝑘2)𝑠 󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝑛)󵄨󵄨󵄨󵄨󵄨2 < ∞} , (7)

where 𝑓̂ : Z → C represents the Fourier transform of𝑓 ∈ P󸀠

defined by

𝑓̂ (𝑛) = 1𝐿 ⟨𝑓, 𝑒−2𝜋𝑖𝑛𝑥/𝐿⟩ , 𝑛 ∈ Z. (8)

In case that 𝑓 ∈ 𝐶per, we can rewrite 𝑓̂(𝑛) as
𝑓̂ (𝑛) = 1𝐿 ∫𝐿

0
𝑓 (𝑥) 𝑒−2𝜋𝑖𝑛𝑥/𝐿𝑑𝑥, 𝑛 ∈ Z. (9)

It can be shown that, for all 𝑠 ∈ R,𝐻𝑠per is a Hilbert space with
respect to the inner product ⟨⋅, ⋅⟩𝑠 defined as follows:

⟨𝑓, 𝑔⟩𝑠 = 𝐿∑
𝑛∈Z

(1 + 𝑛2)𝑠 𝑓̂ (𝑛) 𝑔̂ (𝑛). (10)

In particular, when 𝑠 = 0, we get the Hilbert space denoted
by 𝐿2per = 𝐻0per. It is important to note that this space is
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isometrically isomorphic to 𝐿2(0, 𝐿). Further we recall that
Parseval’s identity holds; that is, for 𝑓 ∈ 𝐶per

∑
𝑛∈Z

󵄨󵄨󵄨󵄨󵄨𝑓̂ (𝑛)󵄨󵄨󵄨󵄨󵄨2 = 1𝐿 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩20 , (11)

or, equivalently,

⟨𝑓, 𝑔⟩ = 𝐿∑
𝑛∈Z

𝑓̂ (𝑛) 𝑔̂ (𝑛) = 𝐿 ⟨𝑓̂, 𝑔̂⟩ . (12)

Let 𝑁 be an even integer and consider the finite dimensional
space 𝑆𝑁 defined by

𝑆𝑁 = span{ 1√𝐿𝑒2𝜋𝑖𝑛𝑥/𝐿 : −𝑁2 ≤ 𝑛 ≤ 𝑁2 } . (13)

Remember that the family {(1/√𝐿)𝑒2𝜋𝑖𝑛𝑥/𝐿 : 𝑛 ∈ Z} is an
orthonormal and complete system in 𝐿2per(0, 𝐿). Let𝑃𝑁 be the
orthogonal projection 𝑃𝑁 : 𝐿2per(0, 𝐿) → 𝑆𝑁 on the space 𝑆𝑁:

𝑃𝑁𝑔 fl
𝑁/2∑
𝑛=−𝑁/2

𝑔̂𝑛𝜙𝑛, (14)

with 𝜙𝑛 (𝑥) = 𝑒2𝜋𝑖𝑛𝑥/𝐿,
𝑔̂𝑛 = 1𝐿 ∫𝐿

0
𝑔 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥. (15)

This operator has the following properties (see [20, 21]): For
any 𝑔 ∈ 𝐿2per(0, 𝐿),⟨𝑃𝑁𝑔 − 𝑔, 𝜙⟩ = 0, ∀𝜙 ∈ 𝑆𝑁. (16)
Furthermore, given integers 0 ≤ 𝑠 ≤ 𝛼, there exists a constant𝐶 independent of 𝑁 such that, for any 𝑔 ∈ 𝐻𝛼per(0, 𝐿),󵄩󵄩󵄩󵄩𝑃𝑁𝑔 − 𝑔󵄩󵄩󵄩󵄩𝑠 ≤ 𝐶𝑁𝑠−𝛼 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩𝛼 . (17)

In what follows, for a positive integer 𝑘, 𝐶𝑘([0, 𝑇], 𝑋)
denotes the space of 𝑘-times continuously differentiablemaps
from [0, 𝑇] onto a Banach space 𝑋.

3. The Semidiscrete Scheme

Let us consider the SBO system

𝑖𝜕𝑡𝑢 + 𝜕2𝑥𝑢 − 𝛼𝑢V = 0, 𝑥 ∈ (0, 𝐿) , 𝑡 > 0,
𝜕𝑡V − 𝛾H (𝜕2𝑥V) − 𝛽𝜕𝑥 (|𝑢|2) = 0, (18)

subject to the initial conditions 𝑢(𝑥, 0) = 𝑢0(𝑥), V(𝑥, 0) =
V0(𝑥) and 𝑢, V 𝐿-periodic complex valued functions in the
variable 𝑥.

The semidiscrete Fourier-Galerkin spectral scheme to
solve problem (18) is to find 𝑢𝑁, V𝑁 ∈ 𝐶([0, 𝑇], 𝑆𝑁) such that

⟨𝑖𝜕𝑡𝑢𝑁 + 𝜕2𝑥𝑢𝑁 − 𝛼𝑢𝑁V𝑁, 𝜙⟩ = 0,
⟨𝜕𝑡V𝑁 − 𝛾H𝜕2𝑥V𝑁 − 𝛽𝜕𝑥 (󵄨󵄨󵄨󵄨𝑢𝑁󵄨󵄨󵄨󵄨2) , 𝜓⟩ = 0,

𝑢𝑁 (0) = 𝑃𝑁 (𝑢0) ,
V𝑁 (0) = 𝑃𝑁 (V0) ,

(19)

for any 𝜙, 𝜓 ∈ 𝑆𝑁 and 0 ≤ 𝑡 ≤ 𝑇.

Theorem 1. Let 𝑠 ≥ 2 be an integer, and let 𝑢, V ∈ 𝐶1([0,𝑇],𝐻𝑟𝑝𝑒𝑟(0, 𝐿)) be the classical solution of problem (18) for some
integer 𝑟 > 𝑠+2. Let 𝑢𝑁, V𝑁 ∈ 𝐶1([0, 𝑇𝑁], 𝑆𝑁) be the solution of
the semidiscrete formulation (19) defined until some maximal
time 0 < 𝑇𝑁 < 𝑇. Then, for 𝑁 sufficiently large, 𝑢𝑁, V𝑁 can be
extended to the whole interval [0, 𝑇] and there exists a constant𝐶 > 0, independent of 𝑁, 𝑡, such that󵄩󵄩󵄩󵄩𝑢 (𝑡) − 𝑢𝑁 (𝑡)󵄩󵄩󵄩󵄩𝑠+1 + 󵄩󵄩󵄩󵄩V (𝑡) − V𝑁 (𝑡)󵄩󵄩󵄩󵄩𝑠 ≤ 𝐶𝑁𝑠+2−𝑟, (20)

for any 0 ≤ 𝑡 ≤ 𝑇.
Proof. Let

𝑒1 = 𝑢 − 𝑢𝑁 = (𝑢 − 𝑃𝑁𝑢) + (𝑃𝑁𝑢 − 𝑢𝑁) fl 𝜉1 + 𝜂1,
𝑒2 = V − V𝑁 = (V − 𝑃𝑁V) + (𝑃𝑁V − V𝑁) fl 𝜉2 + 𝜂2. (21)

Observe that by the fact that 𝑃𝑁 is an orthogonal projection
and if 𝑠 ∈ Z+ then 𝜕𝑠𝑥𝜙 ∈ 𝑆𝑁 for any 𝜙 ∈ 𝑆𝑁, and thus

⟨𝜉𝑙, 𝜙⟩𝑠 = 0, 𝜙 ∈ 𝑆𝑁, 𝑙 = 1, 2; (22)

that is,

⟨𝑢 − 𝑃𝑁𝑢, 𝜙⟩𝑠 = 0,
⟨V − 𝑃𝑁V, 𝜙⟩𝑠 = 0, (23)

for any 𝜙 ∈ 𝑆𝑁. Therefore, by virtue of (17)󵄩󵄩󵄩󵄩𝑒𝑙󵄩󵄩󵄩󵄩𝑠 ≤ 󵄩󵄩󵄩󵄩𝜉𝑙󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑙󵄩󵄩󵄩󵄩𝑠 ≤ 𝐶𝑁𝑠−𝑟 + 󵄩󵄩󵄩󵄩𝜂𝑙󵄩󵄩󵄩󵄩𝑠 , 𝑙 = 1, 2. (24)

Now, by combining the equations satisfied by the pairs (𝑢, V),(𝑢𝑁, V𝑁), we arrive at
⟨𝑖𝜕𝑡 (𝑢 − 𝑢𝑁) + 𝜕2𝑥 (𝑢 − 𝑢𝑁) , 𝜙⟩

𝑠

= 𝛼 ⟨V𝑢 − V𝑁𝑢𝑁, 𝜙⟩𝑠 ,
⟨𝜕𝑡 (V − V𝑁)𝑡 − 𝛾H𝜕2𝑥 (V − V𝑁) , 𝜓⟩

𝑠

= 𝛽⟨𝜕𝑥 (|𝑢|2 − 󵄨󵄨󵄨󵄨𝑢𝑁󵄨󵄨󵄨󵄨2) , 𝜓⟩
𝑠
.

(25)

As a consequence,

⟨𝑖𝜕𝑡𝑒1 + 𝜕2𝑥𝑒1, 𝜙⟩
𝑠
= 𝛼 ⟨V𝑢 − V𝑁𝑢𝑁, 𝜙⟩𝑠 , (26)

⟨𝜕𝑡𝑒2 − 𝛾H𝜕2𝑥𝑒2, 𝜓⟩
𝑠
= 𝛽⟨𝜕𝑥 (|𝑢|2 − 󵄨󵄨󵄨󵄨𝑢𝑁󵄨󵄨󵄨󵄨2) , 𝜓⟩

𝑠
. (27)

Letting 𝜙 = 𝜂1 in (26), we obtain

𝑖 ⟨𝜕𝑡𝑒1, 𝜂1⟩𝑠 + ⟨𝜕2𝑥𝑒1, 𝜂1⟩𝑠 = 𝛼 ⟨V𝑢 − V𝑁𝑢𝑁, 𝜂1⟩𝑠 . (28)

Since 𝑒1 = 𝜉1 + 𝜂1,
𝑖 ⟨𝜕𝑡𝜉1 + 𝜕𝑡𝜂1, 𝜂1⟩𝑠 + ⟨𝜕2𝑥𝜉1 + 𝜕2𝑥𝜂1, 𝜂1⟩𝑠

= 𝛼 ⟨V𝑢 − V𝑁𝑢𝑁, 𝜂1⟩𝑠 . (29)

Note that due to 𝜕𝑡𝜂1 ∈ 𝑆𝑁 thus ⟨𝜉1, 𝜕𝑡𝜂1⟩𝑠 = 0 and
𝜕𝑡 ⟨𝜉1, 𝜂1⟩𝑠 = ⟨𝜕𝑡𝜉1, 𝜂1⟩𝑠 + ⟨𝜉1, 𝜕𝑡𝜂1⟩𝑠 = 0. (30)
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As a consequence, ⟨𝜕𝑡𝜉1, 𝜂1⟩𝑠 = 0. Furthermore, since 𝜕2𝑥𝜂1 ∈𝑆𝑁 and using integration by parts, we have

⟨𝜕2𝑥𝜉1, 𝜂1⟩𝑠 = ⟨𝜉1, 𝜕2𝑥𝜂1⟩𝑠 = 0. (31)

Therefore,

𝑖 ⟨𝜕𝑡𝜂1, 𝜂1⟩𝑠 − 󵄩󵄩󵄩󵄩𝜕𝑥𝜂1󵄩󵄩󵄩󵄩2 = 𝛼 ⟨V𝑢 − V𝑁𝑢𝑁, 𝜂1⟩𝑠 ,𝑖2𝜕𝑡 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠 − 󵄩󵄩󵄩󵄩𝜕𝑥𝜂1󵄩󵄩󵄩󵄩2𝑠 = 𝛼 ⟨V𝑢 − V𝑁𝑢𝑁, 𝜂1⟩𝑠 . (32)

Now taking imaginary part

12𝜕𝑡 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠 = 𝛼 Im ⟨V𝑢 − V𝑁𝑢𝑁, 𝜂1⟩𝑠 . (33)

To bound the nonlinear terms, let us observe that󵄨󵄨󵄨󵄨𝛼 Im ⟨V𝑢 − V𝑁𝑢𝑁, 𝜂1⟩𝑠󵄨󵄨󵄨󵄨 ≤ |𝛼| 󵄨󵄨󵄨󵄨⟨V𝑢 − V𝑁𝑢𝑁, 𝜂1⟩𝑠󵄨󵄨󵄨󵄨
≤ |𝛼| 󵄩󵄩󵄩󵄩V𝑢 − V𝑁𝑢𝑁󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩𝑠
≤ 𝐶 (󵄩󵄩󵄩󵄩V𝑢 − V𝑁𝑢𝑁󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠) ,

(34)

and as the space 𝐻𝑠per is an algebra for 𝑠 > 1/2,󵄩󵄩󵄩󵄩V𝑢 − V𝑁𝑢𝑁󵄩󵄩󵄩󵄩𝑠 = 󵄩󵄩󵄩󵄩𝑢 (V − V𝑁) + V𝑁 (𝑢 − 𝑢𝑁)󵄩󵄩󵄩󵄩𝑠
≤ ‖𝑢‖𝑠 󵄩󵄩󵄩󵄩V − V𝑁

󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩V𝑁󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝑢 − 𝑢𝑁󵄩󵄩󵄩󵄩𝑠
≤ ‖𝑢‖𝑠 󵄩󵄩󵄩󵄩𝑒2󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩V𝑁󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝑒1󵄩󵄩󵄩󵄩𝑠 .

(35)

From hypothesis, 𝑢, V ∈ 𝐶([0, 𝑇],𝐻𝑟per(0, 𝐿)), with 𝑟 > 𝑠 +2, and thus there exists a positive constant 𝑀 > 0 such that

max
𝑡∈[0,𝑇]

(‖𝑢 (𝑡)‖𝑠 + ‖V (𝑡)‖𝑠) < 𝑀. (36)

Further suppose that 0 < 𝑇𝑁 < 𝑇 is the largest value such that

max
𝑡∈[0,𝑇𝑁]

(󵄩󵄩󵄩󵄩𝑢𝑁 (𝑡)󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩V𝑁 (𝑡)󵄩󵄩󵄩󵄩𝑠) < 2𝑀. (37)

Because of the embedding to 𝐻𝑠per ⊂ 𝐿∞, for 𝑠 > 1/2, we
obtain from (33) and inequality (34)

12𝜕𝑡 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠 ≤ 𝐶 (𝑁2(𝑠−𝑟) + 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠) . (38)

On the other hand, from (27),

⟨𝜕𝑡𝜉2 + 𝜕𝑡𝜂2, 𝜓⟩𝑠 = 𝛽⟨𝜕𝑥 (|𝑢|2 − 󵄨󵄨󵄨󵄨𝑢𝑁󵄨󵄨󵄨󵄨2) , 𝜓⟩
𝑠

+ 𝛾 ⟨H𝜕2𝑥𝜉2, 𝜓⟩
𝑠

+ 𝛾 ⟨H𝜕2𝑥𝜂2, 𝜓⟩
𝑠
.

(39)

Letting 𝜓 = 𝜂2,
⟨𝜕𝑡𝜉2, 𝜂2⟩𝑠 + ⟨𝜕𝑡𝜂2, 𝜂2⟩𝑠

= 𝛽⟨𝜕𝑥 (|𝑢|2 − 󵄨󵄨󵄨󵄨𝑢𝑁󵄨󵄨󵄨󵄨2) , 𝜂2⟩𝑠 + 𝛾 ⟨H𝜕2𝑥𝜉2, 𝜂2⟩𝑠
+ 𝛾 ⟨H𝜕2𝑥𝜂2, 𝜂2⟩𝑠 .

(40)

Then, following an analogous procedure as above, we can
obtain that

⟨𝜕𝑡𝜉2, 𝜂2⟩𝑠 = 0, (41)

and, taking into account the property of theHilbert transform
operator

⟨H𝜕2𝑥𝜂2, 𝜂2⟩𝑠 = 0, (42)

we get that

12𝜕𝑡 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠 = 𝛽⟨𝜕𝑥 (|𝑢|2 − 󵄨󵄨󵄨󵄨𝑢𝑁󵄨󵄨󵄨󵄨2) , 𝜂2⟩𝑠
+ 𝛾 ⟨H𝜕2𝑥𝜉2, 𝜂2⟩𝑠 .

(43)

Again, to bound the nonlinear terms, let us note that󵄨󵄨󵄨󵄨󵄨𝛽 ⟨𝜕𝑥 (|𝑢|2 − 󵄨󵄨󵄨󵄨𝑢𝑁󵄨󵄨󵄨󵄨2) , 𝜂2⟩𝑠󵄨󵄨󵄨󵄨󵄨
≤ 𝐶 (󵄩󵄩󵄩󵄩󵄩𝜕𝑥 (|𝑢|2 − 󵄨󵄨󵄨󵄨𝑢𝑁󵄨󵄨󵄨󵄨2)󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠) . (44)

But 󵄩󵄩󵄩󵄩󵄩𝜕𝑥 (|𝑢|2 − 󵄨󵄨󵄨󵄨𝑢𝑁󵄨󵄨󵄨󵄨2)󵄩󵄩󵄩󵄩󵄩𝑠 = 󵄩󵄩󵄩󵄩𝜕𝑥 (𝑢𝑢) − 𝜕𝑥 (𝑢𝑁𝑢𝑁)󵄩󵄩󵄩󵄩𝑠
≤ 𝐶 (‖𝑢‖𝑠 󵄩󵄩󵄩󵄩𝜕𝑥 (𝑢 − 𝑢𝑁)󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑥𝑢𝑁󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝑢 − 𝑢𝑁󵄩󵄩󵄩󵄩𝑠
+ 󵄩󵄩󵄩󵄩𝜕𝑥𝑢󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝑢 − 𝑢𝑁󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩𝑢𝑁󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝜕𝑥 (𝑢 − 𝑢𝑁)󵄩󵄩󵄩󵄩𝑠)
≤ 𝐶 (󵄩󵄩󵄩󵄩𝜕𝑥𝜉1󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂1󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩𝜉1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩𝑠)
≤ 𝐶 (𝑁𝑠+1−𝑟 + 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂1󵄩󵄩󵄩󵄩𝑠) .

(45)

Therefore, from (43) and ‖H𝜕2𝑥𝜉2‖𝑠 ≤ ‖𝜉2‖𝑠+2 ≤ 𝑁𝑠+2−𝑟, we
arrive at12𝜕𝑡 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠 ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜕𝑥 (|𝑢|2 − 󵄨󵄨󵄨󵄨𝑢𝑁󵄨󵄨󵄨󵄨2)󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠

+ 󵄩󵄩󵄩󵄩󵄩H𝜕2𝑥𝜉2󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠) ≤ 𝐶 (𝑁2(𝑠+1−𝑟) + 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠
+ 󵄩󵄩󵄩󵄩𝜕𝑥𝜂1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜉2󵄩󵄩󵄩󵄩2𝑠) ≤ 𝐶 (𝑁2(𝑠+1−𝑟) + 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠
+ 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠 + 𝑁2(𝑠+2−𝑟) + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂1󵄩󵄩󵄩󵄩2𝑠) ≤ 𝐶 (󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠
+ 𝑁2(𝑠+2−𝑟) + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂1󵄩󵄩󵄩󵄩2𝑠) .

(46)

Letting 𝜙 = 𝜕𝑡𝜂1 in (26), we have that

𝑖 ⟨𝜕𝑡𝑒1, 𝜕𝑡𝜂1⟩𝑠 + ⟨𝜕2𝑥𝑒1, 𝜕𝑡𝜂1⟩𝑠 − 𝛼 ⟨V𝑢 − V𝑁𝑢𝑁, 𝜕𝑡𝜂1⟩𝑠
= 0. (47)

Then we can replace 𝑒1 = 𝜉1 + 𝜂1 in the previous equation to
get

𝑖 ⟨𝜕𝑡𝜉1, 𝜕𝑡𝜂1⟩𝑠 + 𝑖 ⟨𝜕𝑡𝜂1, 𝜕𝑡𝜂1⟩𝑠 + ⟨𝜕2𝑥𝜉1, 𝜕𝑡𝜂1⟩𝑠
+ ⟨𝜕2𝑥𝜂1, 𝜕𝑡𝜂1⟩𝑠 − 𝛼 ⟨V𝑢 − V𝑁𝑢𝑁, 𝜕𝑡𝜂1⟩𝑠 = 0. (48)
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Therefore, since 𝜕𝑡𝜂1 ∈ 𝑆𝑁 and 𝑖⟨𝜕𝑡𝜉1, 𝜕𝑡𝜂1⟩𝑠 = 0 and using
integration by parts, it follows that

⟨𝜕2𝑥𝜉1, 𝜕𝑡𝜂1⟩s = ⟨𝜉1, 𝜕2𝑥𝜕𝑡𝜂1⟩𝑠 = 0,
⟨𝜕2𝑥𝜂1, 𝜕𝑡𝜂1⟩𝑠 = − ⟨𝜕𝑥𝜂1, 𝜕𝑥𝜕𝑡𝜂1⟩𝑠 . (49)

As a consequence, (48) implies that

𝑖 󵄩󵄩󵄩󵄩𝜕𝑡𝜂1󵄩󵄩󵄩󵄩2𝑠 − 12𝜕𝑡 󵄩󵄩󵄩󵄩𝜕𝑥𝜂1󵄩󵄩󵄩󵄩2𝑠 − 𝛼 ⟨V𝑢 − V𝑁𝑢𝑁, 𝜕𝑡𝜂1⟩𝑠 = 0. (50)

Taking imaginary part of the previous equation and using
Cauchy-Schwartz and Hölder inequalities,

󵄩󵄩󵄩󵄩𝜕𝑡𝜂1󵄩󵄩󵄩󵄩2𝑠 = 𝛼 Im (⟨V𝑢 − 𝑢𝑁V𝑁, 𝜕𝑡𝜂1⟩𝑠)
≤ 󵄩󵄩󵄩󵄩V𝑢 − V𝑁𝑢𝑁󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝜕𝑡𝜂1󵄩󵄩󵄩󵄩𝑠
≤ 𝛼( 14𝜖 󵄩󵄩󵄩󵄩V𝑢 − V𝑁𝑢𝑁󵄩󵄩󵄩󵄩2𝑠 + 𝜖 󵄩󵄩󵄩󵄩𝜕𝑡𝜂1󵄩󵄩󵄩󵄩2𝑠) ,

(51)

where 𝜖 > 0.The nonlinear terms in the right-hand side of the
last equation can be estimated as in (34), and then, choosing𝜖 > 0 small enough, we obtain the estimate

󵄩󵄩󵄩󵄩𝜕𝑡𝜂1󵄩󵄩󵄩󵄩2𝑠 ≤ 𝐶 (𝑁2(𝑠−𝑟) + 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠) . (52)

On the other hand, we can take real part of (50) to achieve

12𝜕𝑡 󵄩󵄩󵄩󵄩𝜕𝑥𝜂1󵄩󵄩󵄩󵄩2𝑠 = −𝛼 ⟨V𝑢 − V𝑁𝑢𝑁, 𝜕𝑡𝜂1⟩𝑠
≤ 𝐶 󵄩󵄩󵄩󵄩V𝑢 − V𝑁𝑢𝑁󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝜕𝑡𝜂1󵄩󵄩󵄩󵄩𝑠
≤ 𝐶 (󵄩󵄩󵄩󵄩V𝑢 − V𝑁𝑢𝑁󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑡𝜂1󵄩󵄩󵄩󵄩2𝑠)
≤ 𝐶 (𝑁2(𝑠−𝑟) + 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑡𝜂1󵄩󵄩󵄩󵄩2𝑠) .

(53)

Taking into account the previous results, we arrive at

𝜕𝑡 (󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠) ≤ 𝐶 (𝑁2(𝑠−𝑟) + 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠
+ 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑡𝜂1󵄩󵄩󵄩󵄩2𝑠 + 𝑁2(𝑠+2−𝑟) + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂1󵄩󵄩󵄩󵄩2𝑠)
≤ 𝐶 (𝑁2(𝑠+2−𝑟) + 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂1󵄩󵄩󵄩󵄩2𝑠) .

(54)

Thus, using Gronwall’s lemma,

󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩𝑠+1 + 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩𝑠 ≤ 𝐶𝑁𝑠+2−𝑟, (55)

for 0 ≤ 𝑡 ≤ 𝑇𝑁. Observe that, for any 0 ≤ 𝑡 ≤ 𝑇𝑁,
󵄩󵄩󵄩󵄩𝑢𝑁 (𝑡)󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩V𝑁 (𝑡)󵄩󵄩󵄩󵄩𝑠 = 󵄩󵄩󵄩󵄩𝑢𝑁 − 𝑃𝑁𝑢 + 𝑃𝑁𝑢 − 𝑢 + 𝑢󵄩󵄩󵄩󵄩𝑠

+ 󵄩󵄩󵄩󵄩V𝑁 − 𝑃𝑁V + 𝑃𝑁V − V + V󵄩󵄩󵄩󵄩𝑠
≤ 󵄩󵄩󵄩󵄩𝑢𝑁 − 𝑃𝑁𝑢󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩𝑃𝑁𝑢 − 𝑢󵄩󵄩󵄩󵄩𝑠

+ ‖𝑢‖𝑠 + 󵄩󵄩󵄩󵄩V𝑁 − 𝑃𝑁V󵄩󵄩󵄩󵄩𝑠
+ 󵄩󵄩󵄩󵄩𝑃𝑁V − V󵄩󵄩󵄩󵄩𝑠 + ‖V‖𝑠

≤ 󵄩󵄩󵄩󵄩𝜂1󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩𝜉1󵄩󵄩󵄩󵄩𝑠 + ‖𝑢‖𝑠 + 󵄩󵄩󵄩󵄩𝜂2󵄩󵄩󵄩󵄩𝑠
+ 󵄩󵄩󵄩󵄩𝜉2󵄩󵄩󵄩󵄩𝑠 + ‖V‖𝑠

≤ 𝐶 (𝑁𝑠+2−𝑟 + 𝑁𝑠−𝑟) + 𝑀
< 2𝑀,

(56)

for 𝑁 large enough and 𝑟 > 𝑠 + 2. This fact contradicts
the maximality of 𝑇𝑁. Thus the solutions 𝑢𝑁, V𝑁 of the
semidiscrete formulation can be extended for any 0 ≤ 𝑡 ≤ 𝑇,
and inequality (55) is satisfied for any 𝑡 ∈ [0, 𝑇]. Finally, from
(24) the result follows.

4. The Fully Discrete Scheme

The fully discrete Crank-Nicholson scheme to discretize sys-
tem (18) consists in finding a sequence {𝑢𝑛𝑁, V𝑛𝑁} of elements
of 𝑆𝑁 × 𝑆𝑁, such that, for all 𝑛 = 1, 2, . . . ,𝑀 − 1, we have

⟨𝑖(𝑢𝑛+1𝑁 − 𝑢𝑛𝑁Δ𝑡 ) + 𝜕2𝑥 (𝑢𝑛+1𝑁 + 𝑢𝑛𝑁2 )
− 𝛼(𝑢𝑛+1𝑁 + 𝑢𝑛𝑁2 )(V𝑛+1𝑁 + V𝑛𝑁2 ) , 𝜙⟩ = 0,

⟨V𝑛+1𝑁 − V𝑛𝑁Δ𝑡 − 𝛾H𝜕2𝑥 (V𝑛+1𝑁 + V𝑛𝑁2 )
− 𝛽𝜕𝑥(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢𝑛+1𝑁 + 𝑢𝑛𝑁2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2) ,𝜓⟩ = 0,

(57)

for all 𝜙, 𝜓 ∈ 𝑆𝑁 and subject to 𝑢0𝑁 = 𝑃𝑁(𝑢0), V0𝑁 = 𝑃𝑁(V0).
Here Δ𝑡 is a time step chosen together with a positive integer𝑀 such that 𝑀Δ𝑡 = 𝑇. Furthermore we define 𝑡𝑛 = 𝑛Δ𝑡,𝑛 = 0, 1, 2, . . . ,𝑀.

Theorem 2. Let 𝑠 ≥ 2 be an integer, and let (𝑢, V) ∈ 𝐶3([0,𝑇],𝐻𝑟𝑝𝑒𝑟(0, 𝐿)) be a classical solution of system (18) with 𝑟 >𝑠+2 integer. Let (𝑢𝑁, V𝑁) ∈ 𝐶1([0, 𝑇], 𝑆𝑁) be the solution of the
semidiscrete formulation (19) and let {(𝑢𝑛𝑁, V𝑛𝑁)} be the solution
of the fully discrete scheme (57) such that ‖𝑢𝑛𝑁‖𝑠 + ‖V𝑛𝑁‖𝑠 ≤ 𝐵,
for some sufficiently large constant 𝐵 > 0, independent of 𝑛,𝑁,
and Δ𝑡. If 𝑢0𝑁 = 𝑢𝑁(0), V0𝑁 = V𝑁(0), then, with the assumption
that 𝑢0, V0 ∈ 𝐻𝑟𝑝𝑒𝑟(0, 𝐿), there exists a constant 𝐶 independent
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of 𝑁 and Δ𝑡 such that if 𝑁 is large enough and Δ𝑡 sufficiently
small, we have that

max
0≤𝑛≤𝑀

{󵄩󵄩󵄩󵄩𝑢 (𝑡𝑛) − 𝑢𝑛𝑁󵄩󵄩󵄩󵄩𝑠+1 + 󵄩󵄩󵄩󵄩V (𝑡𝑛) − V𝑛𝑁
󵄩󵄩󵄩󵄩𝑠}

≤ 𝐶 (𝑁𝑠+2−𝑟 + Δ𝑡2) . (58)

Proof. For a function 𝑓, let us introduce the following nota-
tion:

𝑓𝑛𝑡 = 1Δ𝑡 (𝑓𝑛+1 − 𝑓𝑛) ,
𝑓̂𝑛 = 12 (𝑓𝑛+1 + 𝑓𝑛) , (59)

where 𝑓𝑛 fl 𝑓(𝑡𝑛). Thus the fully discrete formulation (57)
can be rewritten as

⟨𝑖𝑢𝑛𝑡 + 𝜕2𝑥𝑢̂𝑛𝑁 − 𝛼𝑢̂𝑛𝑁V̂𝑛𝑁, 𝜙⟩
𝑠
= 0,

⟨V𝑛𝑡 − 𝛾H𝜕2𝑥 (V̂𝑛𝑁) − 𝛽𝜕𝑥 󵄨󵄨󵄨󵄨𝑢̂𝑛𝑁󵄨󵄨󵄨󵄨2 , 𝜓⟩
𝑠
= 0,

𝑢0𝑁 = 𝑃𝑁 (𝑢0) ,
V0𝑁 = 𝑃𝑁 (V0) .

(60)

Observe that

⟨𝑢𝑛𝑡 , 2𝑢̂𝑛⟩𝑠 = 1Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2𝑠 − 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2𝑠) . (61)

We also introduce the notation

𝑒𝑛1 = 𝑢𝑛 − 𝑢𝑛𝑁 = (𝑢𝑛 − 𝑃𝑁𝑢𝑛) + (𝑃𝑁𝑢𝑛 − 𝑢𝑛𝑁)
fl 𝜉𝑛1 + 𝜂𝑛1 ,

𝑒𝑛2 = V𝑛 − V𝑛𝑁 = (V𝑛 − 𝑃𝑁V𝑛) + (𝑃𝑁V𝑛 − V𝑛𝑁)
fl 𝜉𝑛2 + 𝜂𝑛2 ,

(62)

where 𝑢𝑛 fl 𝑢(𝑡𝑛), V𝑛 fl V(𝑡𝑛). Observe that ⟨𝜉𝑛𝑙 , 𝜙⟩𝑠 = 0,𝑙 = 1, 2, for any 𝜙 ∈ 𝑆𝑁, and, furthermore,󵄩󵄩󵄩󵄩𝑒𝑛𝑙 󵄩󵄩󵄩󵄩𝑠 ≤ 󵄩󵄩󵄩󵄩𝜉𝑛𝑙 󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛𝑙 󵄩󵄩󵄩󵄩𝑠 ≤ 𝐶𝑁𝑠−𝑟 + 󵄩󵄩󵄩󵄩𝜂𝑛𝑙 󵄩󵄩󵄩󵄩𝑠 , 𝑙 = 1, 2. (63)

Combining the equations satisfied by (𝑢, V), (𝑢𝑁, V𝑁), one can
get

⟨𝑖𝑒𝑛1𝑡, 𝜙⟩𝑠 + ⟨𝜕2𝑥𝑒̂𝑛1, 𝜙⟩
𝑠

− 𝛼 ⟨𝑢̂𝑛V̂𝑛 − 𝑢̂𝑛𝑁V̂𝑛𝑁, 𝜙⟩𝑠 = ⟨𝜏𝑛1 , 𝜙⟩𝑠 , (64)

⟨𝑒𝑛2𝑡, 𝜓⟩𝑠 − 𝛾 ⟨H𝜕2𝑥𝑒̂𝑛2, 𝜓⟩
𝑠

− 𝛽⟨𝜕𝑥 (󵄨󵄨󵄨󵄨𝑢̂𝑛󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑢̂𝑛𝑁󵄨󵄨󵄨󵄨2) , 𝜓⟩
𝑠
= ⟨𝜏𝑛2 , 𝜓⟩𝑠 , (65)

where

𝜏𝑛1 fl 𝑖𝑢𝑛𝑡 − 𝑖𝜕𝑡𝑢𝑛 + 𝜕2𝑥𝑢̂𝑛 − 𝜕2𝑥𝑢𝑛 + 𝛼 (𝑢𝑛V𝑛 − 𝑢̂𝑛V̂𝑛) ,
𝜏𝑛2 fl V𝑛𝑡 − 𝜕𝑡V𝑛 − 𝛾H𝜕2𝑥V̂𝑛 + 𝛾H𝜕2𝑥V𝑛

+ 𝛽𝜕𝑥 (󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑢̂𝑛󵄨󵄨󵄨󵄨2) .
(66)

In order to estimate the quantities 𝜏𝑛1 , 𝜏𝑛2 , let us rewrite them
as

𝜏𝑛1 = 𝑖 (𝑢𝑛+1 − 𝑢𝑛Δ𝑡 ) − 𝑖𝜕𝑡𝑢 + 𝜕2𝑥 (𝑢𝑛+1 + 𝑢𝑛2 ) − 𝜕2𝑥𝑢𝑛

+ 𝛼𝑢𝑛V𝑛 − 𝛼(𝑢𝑛+1 + 𝑢𝑛2 )(V𝑛+1 + V𝑛2 ) ,
𝜏𝑛2 = V𝑛+1 − V𝑛Δ𝑡 − 𝜕𝑡V𝑛 − 𝛾H𝜕2𝑥 (V𝑛+1 + V𝑛2 )

+ 𝛾H𝜕2𝑥V𝑛 + 𝛽𝜕𝑥(󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢
𝑛+1 + 𝑢𝑛2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2) .

(67)

Therefore

𝜏𝑛1 = 𝑖(𝑢𝑛 + Δ𝑡𝜕𝑡𝑢𝑛 + (1/2) Δ𝑡2𝜕2𝑡 𝑢𝑛 − 𝑢𝑛 + 𝑂 (Δ𝑡3)Δ𝑡 )
− 𝑖𝜕𝑡𝑢
+ 𝜕2𝑥(𝑢𝑛 + Δ𝑡𝜕𝑡𝑢𝑛 + (1/2) Δ𝑡2𝜕2𝑡 𝑢𝑛 + 𝑢𝑛 + 𝑂 (Δ𝑡3)2 )
− 𝜕2𝑥𝑢𝑛 + 𝛼𝑢𝑛V𝑛
− 𝛼4 [(𝑢𝑛 + Δ𝑡𝜕𝑡𝑢𝑛 + (12) 𝜏2𝜕2𝑡 𝑢𝑛 + 𝑢𝑛 + 𝑂 (Δ𝑡3))
⋅ (V𝑛 + Δ𝑡𝜕𝑡V𝑛 + (12)Δ𝑡2𝜕2𝑡 V𝑛 + V𝑛 + 𝑂 (Δ𝑡3))] .

(68)

From this result, we can deduce that ‖𝜏𝑛1 ‖𝑠 ≤ 𝐶𝜏2. Analo-
gously,

𝜏𝑛2 = V𝑛 + Δ𝑡𝜕𝑡V𝑛 + (1/2) Δ𝑡2𝜕2𝑡 V𝑛 − V𝑛 + 𝑂 (Δ𝑡3)Δ𝑡 − 𝜕𝑡V𝑛
− 𝛾H𝜕2𝑥(V𝑛 + Δ𝑡𝜕𝑡V𝑛 + (1/2) Δ𝑡2𝜕2𝑡 V𝑛 + V𝑛 + 𝑂 (Δ𝑡3)2 )
+ 𝛾H𝜕2𝑥V𝑛
+ 𝛽𝜕𝑥(󵄨󵄨󵄨󵄨𝑢𝑛󵄨󵄨󵄨󵄨2 −

󵄨󵄨󵄨󵄨󵄨𝑢𝑛 + Δ𝑡𝜕𝑡𝑢𝑛 + 𝑢𝑛 + 𝑂 (Δ𝑡3)󵄨󵄨󵄨󵄨󵄨24 ) .

(69)

As a consequence, we also have that ‖𝜏𝑛2 ‖𝑠 ≤ 𝐶𝜏2.
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On the other hand, to estimate nonlinear terms, let us
observe that

󵄩󵄩󵄩󵄩𝑢̂𝑛V̂𝑛 − 𝑢̂𝑛𝑁V̂𝑛𝑁󵄩󵄩󵄩󵄩𝑠 ≤ 𝐶 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩󵄩V𝑛+1𝑁 󵄩󵄩󵄩󵄩󵄩𝑠
⋅ 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩V𝑛𝑁󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩𝑠
⋅ 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩󵄩V𝑛+1𝑁 󵄩󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩𝑢𝑛𝑁󵄩󵄩󵄩󵄩𝑠
⋅ 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩𝑠) ,

󵄩󵄩󵄩󵄩󵄩𝜕𝑥 (󵄨󵄨󵄨󵄨𝑢̂𝑛󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑢̂𝑁󵄨󵄨󵄨󵄨2)󵄩󵄩󵄩󵄩󵄩𝑠 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢
𝑛+1 + 𝑢𝑛2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

− 𝜕𝑥 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢𝑛+1𝑁 + 𝑢𝑛𝑁2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑠

= 14 󵄩󵄩󵄩󵄩󵄩󵄩𝜕𝑥 [(𝑢𝑛+1 + 𝑢𝑛) (𝜂𝑛+11 + 𝜂𝑛1)
+ (𝑢𝑛+1𝑁 + 𝑢𝑛𝑁) (𝜂𝑛+11 + 𝜂𝑛1)]󵄩󵄩󵄩󵄩󵄩󵄩𝑠
≤ 𝐶 (󵄩󵄩󵄩󵄩󵄩𝜕𝑥 (𝜂𝑛+11 + 𝜂𝑛1)󵄩󵄩󵄩󵄩󵄩𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 + 𝜂𝑛1󵄩󵄩󵄩󵄩󵄩𝑠) .

(70)

Now letting 𝜙 = 2𝜂̂𝑛1 in (64), one can get

⟨𝑖𝑒𝑛1𝑡, 2𝜂̂𝑛1⟩𝑠 + ⟨𝜕2𝑥𝑒̂𝑛1, 2𝜂̂𝑛1⟩𝑠 − 𝛼 ⟨𝑢̂𝑛V̂𝑛 − 𝑢̂𝑛𝑁V̂𝑛𝑁, 2𝜂̂𝑛1⟩𝑠
= ⟨𝜏𝑛1 , 2𝜂̂𝑛1⟩𝑠 . (71)

We recall that 𝑒𝑛1 = 𝜉𝑛1 + 𝜂𝑛1 . Therefore, (71) leads to

𝑖Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 − 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠)
= 12

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜕𝑥 (
𝜂𝑛+11 + 𝜂𝑛12 )󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑠

+ 𝛼 ⟨𝑢̂𝑛V̂𝑛 − 𝑢̂𝑛𝑁V̂𝑛𝑁, 2𝜂̂𝑛1⟩𝑠
+ ⟨𝜏𝑛1 , 2𝜂̂𝑛1⟩𝑠 .

(72)

Form hypothesis, 𝑢, V ∈ 𝐶([0, 𝑇],𝐻𝑟per). For this reason, there
exists a constant 𝐵 > 0 such that ‖𝑢(𝑡)‖𝑠 + ‖V(𝑡)‖𝑠 ≤ 𝐵, for all𝑡 ∈ [0, 𝑇].Then, by taking imaginary part of (72), one obtains

󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 − 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠
≤ 𝐶Δ𝑡 (󵄩󵄩󵄩󵄩𝑢̂𝑛V̂𝑛 − 𝑢̂𝑛𝑁V̂𝑛𝑁󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂̂𝑛1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜏𝑛1 󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂̂𝑛1󵄩󵄩󵄩󵄩2𝑠)
≤ 𝐶Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡4) .

(73)

Thus, we arrive at󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 (1 − 𝐶Δ𝑡)
≤ 𝐶Δ𝑡 (󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡4) + (1 + 𝐶Δ𝑡) 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 ,󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠
≤ 1 + 𝐶Δ𝑡1 − 𝐶Δ𝑡 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠

+ 𝐶Δ𝑡1 − 𝐶Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡4) .

(74)

As a consequence of this,󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 ≤ 𝐶 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + 𝐶Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠) + 𝐶Δ𝑡5. (75)

Then summing up the previous equation for 𝑛 = 0 to 𝑚 and
taking into account that 𝑛 = 𝑇/Δ𝑡, it follows that
𝑚∑
𝑛=0

󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 ≤ 𝐶 𝑚∑
𝑛=0

󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + 𝐶Δ𝑡 𝑚∑
𝑛=0

(󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠)
+ 𝐶Δ𝑡4. (76)

Therefore,

󵄩󵄩󵄩󵄩󵄩𝜂𝑚+11 󵄩󵄩󵄩󵄩󵄩2𝑠 ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜂01󵄩󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡𝑚+1∑
𝑛=0

󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡4) . (77)

Analogously, letting 𝜓 = 2𝜂̂𝑛2 in (65), one can get

⟨𝑒𝑛2𝑡, 2𝜂̂𝑛2⟩𝑠 − 𝛾 ⟨H𝜕2𝑥𝑒̂𝑛2, 2𝜂̂𝑛2⟩𝑠− 𝛽⟨𝜕𝑥 (󵄨󵄨󵄨󵄨𝑢̂𝑛󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑢̂𝑛𝑁󵄨󵄨󵄨󵄨2) , 2𝜂̂2⟩𝑠 = ⟨𝜏𝑛2 , 2𝜂̂𝑛2⟩𝑠 . (78)

We recall that 𝑒𝑛2 = 𝜉𝑛2 + 𝜂𝑛2 . Therefore, (78) leads to

1Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 − 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠)
= 𝛽⟨𝜕𝑥 (󵄨󵄨󵄨󵄨𝑢̂𝑛󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑢̂𝑛𝑁󵄨󵄨󵄨󵄨2) , 2𝜂̂𝑛2⟩𝑠 + ⟨𝜏𝑛2 , 2𝜂̂𝑛2⟩𝑠 . (79)

Then, by taking imaginary part of (79), one obtains󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 − 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 ≤ 𝐶Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝜕𝑥 (󵄨󵄨󵄨󵄨𝑢̂𝑛󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑢̂𝑛𝑁󵄨󵄨󵄨󵄨2)󵄩󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝜂̂𝑛2󵄩󵄩󵄩󵄩𝑠
+ 󵄩󵄩󵄩󵄩𝜏𝑛2 󵄩󵄩󵄩󵄩𝑠 󵄩󵄩󵄩󵄩𝜂̂𝑛2󵄩󵄩󵄩󵄩𝑠) ≤ 𝐶Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠
+ 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡4) .

(80)

Thus, we arrive at󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 (1 − 𝐶Δ𝑡) ≤ 𝐶Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠
+ 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡4) + (1 + 𝐶Δ𝑡) 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 ,

󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 ≤ 1 + 𝐶Δ𝑡1 − 𝐶Δ𝑡 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 + 𝐶Δ𝑡1 − 𝐶Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠
+ 󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡4) .

(81)
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As a consequence of this,

󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠
≤ 𝐶 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠

+ 𝐶Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠)
+ 𝐶Δ𝑡5.

(82)

Then, summing up the previous equation for 𝑛 = 0 to 𝑚, it
follows that
𝑚∑
𝑛=0

󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 ≤ 𝐶 𝑚∑
𝑛=0

󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠
+ 𝐶Δ𝑡 𝑚∑

𝑛=0

(󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠)
+ 𝐶Δ𝑡4.

(83)

Therefore,

󵄩󵄩󵄩󵄩󵄩𝜂𝑚+12 󵄩󵄩󵄩󵄩󵄩2𝑠
≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜂02󵄩󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡𝑚+1∑

𝑛=0

󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡𝑚+1∑
𝑛=0

󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡4) . (84)

In order to estimate the terms ‖𝜕𝑥𝜂𝑛1‖𝑠, let 𝜙 = 𝜂𝑛1𝑡 in (64) to
get

⟨𝑖𝑒𝑛1𝑡 + 𝜕2𝑥𝑒̂𝑛1 − 𝛼 (𝑢̂𝑛V̂𝑛 − 𝑢̂𝑛𝑁V̂𝑛𝑁) , 𝜂𝑛1𝑡⟩𝑠 = ⟨𝜏𝑛1 , 𝜂𝑛1𝑡⟩𝑠 . (85)

Taking imaginary part of the resulting equation, one deduces
that

󵄩󵄩󵄩󵄩𝜂𝑛1𝑡󵄩󵄩󵄩󵄩2𝑠 = 𝛼 Im ⟨𝑢̂𝑛V̂𝑛 − 𝑢̂𝑛𝑁V̂𝑛𝑁, 𝜂𝑛1𝑡⟩𝑠 + Im ⟨𝜏𝑛1 , 𝜂𝑛1𝑡⟩𝑠 . (86)

Therefore,

󵄩󵄩󵄩󵄩𝜂𝑛1𝑡󵄩󵄩󵄩󵄩2𝑠 ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠)
+ 𝐶Δ𝑡4. (87)

Letting 𝜓 = 2𝜂𝑛1𝑡 in (64),

⟨𝑖𝑒𝑛1𝑡, 2𝜂𝑛1𝑡⟩𝑠 + ⟨𝜕2𝑥𝑒̂𝑛1, 2𝜂𝑛1𝑡⟩𝑠
= 𝛼 ⟨𝑢̂𝑛V̂𝑛 − 𝑢̂𝑛𝑁V̂𝑛𝑁, 2𝜂𝑛1𝑡⟩𝑠 + ⟨𝜏𝑛1 , 2𝜂𝑛1𝑡⟩𝑠 , (88)

and thus, simplifying the equation above and taking real part
of the resulting equation, we obtain that

− 1Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 − 󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠)
= 2𝛼Re ⟨𝑢̂𝑛V̂𝑛 − 𝑢̂𝑛𝑁V̂𝑛𝑁, 𝜂𝑛1𝑡⟩𝑠 + 2Re ⟨𝜏𝑛1 , 𝜂𝑛1𝑡⟩𝑠 .

(89)

Therefore, using the estimate for ‖𝜂1𝑡‖𝑠 obtained above, one
realizes that

1Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 − 󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠)
≤ 𝐶 (󵄩󵄩󵄩󵄩𝜂1𝑛 + 1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛1𝑡󵄩󵄩󵄩󵄩2𝑠)

+ 𝐶Δ𝑡4
≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜂𝑛+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜂𝑛+12 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠) + 𝐶Δ𝑡4.

(90)

Summing up 𝑛 = 0, . . . , 𝑚, we arrive at

󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑚+11 󵄩󵄩󵄩󵄩󵄩2𝑠 ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂01󵄩󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡𝑚+1∑
𝑛=0

(󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠))
+ 𝐶Δ𝑡4.

(91)

We have from the previous results that

𝐸𝑚 fl 󵄩󵄩󵄩󵄩󵄩𝜂𝑚+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑚+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜂𝑚+12 󵄩󵄩󵄩󵄩󵄩2𝑠 = 󵄩󵄩󵄩󵄩󵄩𝜂𝑚+11 󵄩󵄩󵄩󵄩󵄩2𝑠+1
+ 󵄩󵄩󵄩󵄩󵄩𝜂𝑚+12 󵄩󵄩󵄩󵄩󵄩2𝑠 ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜂01󵄩󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡𝑚+1∑

𝑛=0

󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡4)
+ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜂02󵄩󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡𝑚+1∑

𝑛=0

󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡𝑚+1∑
𝑛=0

󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠
+ Δ𝑡4) + 𝐶(󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂01󵄩󵄩󵄩󵄩󵄩2𝑠 + Δ𝑡𝑚+1∑

𝑛=0

(󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠)
+ Δ𝑡4) ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜂01󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂01󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜂02󵄩󵄩󵄩󵄩󵄩2𝑠
+ Δ𝑡 𝑚∑
𝑛=0

(󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠) + Δ𝑡4)
+ 𝐶Δ𝑡 󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑚+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 𝐶Δ𝑡 󵄩󵄩󵄩󵄩󵄩𝜂𝑚+11 󵄩󵄩󵄩󵄩󵄩2𝑠 + 𝐶Δ𝑡 󵄩󵄩󵄩󵄩󵄩𝜂𝑚+12 󵄩󵄩󵄩󵄩󵄩2𝑠 .

(92)

We have that

𝐸𝑚 (1 − 𝐶Δ𝑡) ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜂01󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜕𝑥𝜂01󵄩󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩󵄩𝜂02󵄩󵄩󵄩󵄩󵄩2𝑠
+ Δ𝑡 𝑚∑
𝑛=0

[󵄩󵄩󵄩󵄩𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜂𝑛2󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝜕𝑥𝜂𝑛1󵄩󵄩󵄩󵄩2𝑠 ] + Δ𝑡4) ,
𝐸𝑚 ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝜂01󵄩󵄩󵄩󵄩󵄩2𝑠+1 + 󵄩󵄩󵄩󵄩󵄩𝜂02󵄩󵄩󵄩󵄩󵄩2𝑠) + 𝐶Δ𝑡4 + 𝐶Δ𝑡 𝑚∑

𝑛=1

𝐸𝑛−1.
(93)

Finally, since ‖𝜂01‖𝑠 = ‖𝜂02‖𝑠 = 0,
𝐸𝑚 ≤ 𝐶Δ𝑡4 + 𝐶Δ𝑡 𝑚∑

𝑛=1

𝐸𝑛−1, (94)

and the result follows from Gronwall’s lemma.
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5. Numerical Experiments

Thepurpose of this section is to present some numerical sim-
ulations using the numerical scheme described in the previ-
ous section. We point out that the technique and procedure
used here for the numerical simulations are similar to the
work by Muñoz Grajales in [15] about a Fourier-Galerkin
numerical scheme applied to a 1D Benney-Luke-Paumond
equation.

We recall that any function in 𝑆𝑁 can be written as

𝑢 = 𝑁/2∑
𝑗=−𝑁/2

𝑢̂𝑗𝜙𝑗, (95)

with

𝑢̂𝑗 = 1𝐿 ∫𝐿
0

𝑢 (𝑥) 𝜙𝑗 (𝑥) 𝑑𝑥. (96)

As a consequence, we have that scheme (57) can be written
equivalently as

𝑖 𝑢̂𝑛+1𝑗 − 𝑢̂𝑛𝑗Δ𝑡 = 𝑤2𝑗 (𝑢̂𝑛+1𝑗 + 𝑢̂𝑛𝑗2 )
+ 𝛼2 (𝑃𝑗 [𝑢(𝑛+1)V(𝑛+1)] + 𝑃𝑗 [𝑢(𝑛)V(𝑛)]) ,

V̂𝑛+1𝑗 − V̂𝑛𝑗Δ𝑡 = −𝛾𝑖𝑤𝑗 󵄨󵄨󵄨󵄨󵄨𝑤𝑗󵄨󵄨󵄨󵄨󵄨 ( V̂𝑛+1𝑗 + V̂𝑛𝑗2 )
+ 𝛽𝑖𝑤𝑗2 (𝑃𝑗 [󵄨󵄨󵄨󵄨󵄨𝑢(𝑛+1)󵄨󵄨󵄨󵄨󵄨2] + 𝑃𝑗 [󵄨󵄨󵄨󵄨󵄨𝑢(𝑛)󵄨󵄨󵄨󵄨󵄨2]) ,

(97)

subject to 𝑢̂0𝑗 = 𝑢̂0𝑗V̂0𝑗 = V̂0𝑗 and where

𝑤𝑗 = 2𝜋𝑗𝐿 , 𝑗 = −𝑁2 , . . . , 0, . . . , 𝑁2 , (98)

and 𝑃𝑗[⋅] denotes the operator
𝑃𝑗 [𝑔] = 1𝐿 ∫𝐿

0
𝑔 (𝑥) 𝑒−𝑖𝑤𝑗𝑥𝑑𝑥. (99)

Additionally, let 𝑢(𝑛), V(𝑛) be the approximations of the
unknowns 𝑢(𝑥, 𝑡), V(𝑥, 𝑡), respectively, at time 𝑡𝑛 = 𝑛Δ𝑡,
whereΔ𝑡 represents the time step of themethod and 𝑢̂𝑛𝑗 , V̂𝑛𝑗 are
the approximations to the Fourier transforms of the functions𝑢 and V, respectively, with respect to the variable 𝑥, evaluated
at the time 𝑛Δ𝑡.

Observe that, in the scheme given in (97), the unknowns𝑢̂𝑛+1𝑗 , V̂𝑛+1𝑗 and 𝑢(𝑛+1), V(𝑛+1) at 𝑡𝑛 = (𝑛+1)Δ𝑡must be computed
by iteration. To do this, we use the iterative process

𝑢̂𝑛+1,𝑘+1𝑗 = 𝑢̂𝑛𝑗 − Δ𝑡𝑖𝑤2𝑗 𝑢̂𝑛𝑗/2 − (Δ𝑡𝑖𝛼/2) (𝑃𝑗 [𝑢𝑛+1,𝑘V𝑛+1,𝑘] + 𝑃𝑗 [𝑢(𝑛)V(𝑛)])1 + Δ𝑡𝑖𝑤2𝑗/2 ,

V̂𝑛+1,𝑘+1𝑗 = V̂𝑛𝑗 − Δ𝑡𝛾𝑖𝑤𝑗 󵄨󵄨󵄨󵄨󵄨𝑤𝑗󵄨󵄨󵄨󵄨󵄨 V̂𝑛𝑗/2 + (Δ𝑡𝑖𝑤𝑗𝛽/2) (𝑃𝑗 [󵄨󵄨󵄨󵄨󵄨𝑢𝑛+1,𝑘󵄨󵄨󵄨󵄨󵄨2] + 𝑃𝑗 [󵄨󵄨󵄨󵄨󵄨𝑢(𝑛)󵄨󵄨󵄨󵄨󵄨2])1 + Δ𝑡𝑖𝛾𝑤2𝑗/2 , 𝑘 = 1, 2, . . . .
(100)

To compute the initial values 𝑢̂𝑛+1,0𝑗 , V̂𝑛+1,0𝑗 , 𝑢𝑛+1,0, and V𝑛+1,0

for this iteration, we use the explicit scheme

𝑖 𝑢̂𝑛+1,0𝑗 − 𝑢̂𝑛𝑗Δ𝑡 = 𝑤2𝑗 𝑢̂𝑛𝑗 + 𝛼𝑃𝑗 [𝑢(𝑛)V(𝑛)] ,
V̂𝑛+1,0𝑗 − V̂𝑛𝑗Δ𝑡 = −𝛾𝑖𝑤𝑗 󵄨󵄨󵄨󵄨󵄨𝑤𝑗󵄨󵄨󵄨󵄨󵄨 V̂𝑛𝑗 + 𝛽𝑖𝑤𝑗𝑃𝑗 [󵄨󵄨󵄨󵄨󵄨𝑢(𝑛)󵄨󵄨󵄨󵄨󵄨2] .

(101)

In all of the numerical experiments presented, we used
double precision in Matlab R2016b on a Mac platform. The
approximation of the Fourier-type integral appearing in the
definition of the operator𝑃𝑗[⋅] is performed through the well-
known Fast Fourier Transform (FFT) algorithm.

5.1. Convergence Rate in Space. To verify the numerical prop-
erties of the fully discrete scheme proposed in the present
paper, we use a technique similar to that in [15]. In particular,
we want to validate the spectral order of convergence in space
of the Crank-Nicholson Fourier-Galerkin numerical scheme

considered. In Figure 1, we present a simulationwhere a small
time step Δ𝑡 = 1𝑒 − 5 is fixed, 𝐿 = 20, and the number of
points in space is gradually increased. We use the analytical
travelling wave solution of the SBO system for 𝛾 = 0, given
by

𝑢 (𝑥, 𝑡) = 𝐴𝑒𝑖𝑤𝑝𝑡𝑒𝑖𝑐(𝑥−𝑐𝑡)/2 sech (𝐵 (𝑥 − 𝑐𝑡 − 𝑎0)) ,
V (𝑥, 𝑡) = −𝐴2𝛽𝑐 sech2 (𝐵 (𝑥 − 𝑐𝑡 − 𝑎0)) , (102)

where

𝐴 = √ 2𝑐𝛼𝛽 (𝑤𝑝 − 𝑐24 ),
𝐵 = √𝑤𝑝 − 𝑐24 ,

(103)
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with 𝛼 = 𝛽 = 1, 𝑐 = 0.5, 𝑤𝑝 = 1.5, and 𝑎0 = 10. We start with𝑁 = 26 and then 𝑁 is increased by 2 until we get 𝑁 = 29.
For every value of𝑁, we compute the numerical solution until
reaching the time 𝑡 = 1. From the results in Figure 1, we see
that the fully discrete method (57) has spectral accuracy in
space (as established in Theorem 2), and the error decreases
very rapidly approximately as 𝑁−6.07. We point out that this
decay rate is faster than that in pure finite differencemethods.

5.2. Convergence Rate in Time. In this section, we wish to
validate numerically the rate of convergence in time for the
numerical scheme (57). This numerical simulation is per-
formed using the solitary wave solution (102) with the same
model’s parameters as in the previous numerical experiment.
Furthermore, we set 𝑁 = 212 (Δ𝑥 = 𝐿/𝑁 ≈ 5𝑒 − 3) with
the objective that the error in space does not dominate the
total error. By starting with Δ𝑡 = 1/22 and decreasing the
time step by 1/2 until Δ𝑡 = 1/26, the numerical solution is
computed until reaching 𝑡 = 1. The results are presented in
Figure 2, from where we can observe that the error in time of
the numerical scheme is of order 2, in perfect agreement with
Theorem 2.

5.3. Numerical Results for the Full SBO System. Finally, we
illustrate the numerical scheme (57) in the case that 𝛾 = 1 ̸= 0,
where no analytical solution is available in the literature. We
use the approximation to a travelling wave solution of the
SBO system given by

𝑢 (𝑥, 𝑡) = 𝑒𝑖𝑤𝑝𝑡𝑒𝑖𝑐(𝑥−𝑐𝑡)/2𝜙 (𝑥 − 𝑐𝑡) ,
V (𝑥, 𝑡) = 𝜓 (𝑥 − 𝑐𝑡) , (104)

with 𝜙, 𝜓 being periodic real-valued functions computed
through a Newton-iterative procedure, together with a col-
location-Fourier method applied to the system

𝜙󸀠󸀠 + (−𝑤𝑝 + 𝑐24 )𝜙 = 𝛼𝜙𝜓,
−𝛾H (𝜓󸀠) − 𝑐𝜓 = 𝛽𝜙2,

(105)

for the parameters 𝛼 = 𝛽 = 𝛾 = 1, 𝑐 = 0.5, and 𝑤𝑝 = 1.5. In
Figure 3, we show the plot of the approximate functions 𝜙, 𝜓,
with period 𝐿 = 4𝜋/𝑐 obtained by using Newton’s procedure
mentioned above, with starting point

𝜙0 (𝑥) = 2 cos(2𝜋𝑥𝐿 ) ,
𝜓0 (𝑥) = cos(2𝜋𝑥𝐿 ) .

(106)

We run the numerical solver (57) using the approximate
travelling wave (104) at 𝑡 = 0 as initial data and numerical
parameters 𝑁 = 29, Δ𝑡 = 1𝑒 − 3, and 𝐿 = 4𝜋/𝑐 ≈ 25.13.
The result is presented in Figure 4. We observe that the
numerical and the expected profile coincide at 𝑡 = 5 with a
maximum error of 2𝑒 − 4, showing that the scheme proposed

1.9 2.0 2.1 2.2 2.3 2.41.8
−4

−3

−2

−1

0

Figure 1: Plot of the decimal logarithm of the maximum error
against log10𝑁. The time step is fixed at Δ𝑡 = 1𝑒 − 5. We see that
the plot is approximately a line with slope −6.07.
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−1.5

Figure 2: Plot of the decimal logarithm of the maximum error
against log10Δ𝑡. The number of points in space is fixed at 𝑁 = 212.
We see that the plot is approximately a line with slope 2.

captures the nonlinear and dispersive characteristics of the
solutions of the SBO system (1).Other numerical experiments
with travelling wave solutions of the full SBO system were
performed obtaining analogous results.

5.4. Checking Energy Conservation. It is easy to see that the
quantity

𝐸 (𝑡) = ∫𝐿
0

|𝑢 (𝑥, 𝑡)|2 𝑑𝑥 (107)

must be conserved in time for the function 𝑢(𝑥, 𝑡) in system
(1). In the numerical experiment presented in Figure 5, we
corroborate that the fully discrete scheme (57) further con-
serves approximately the discrete version of 𝐸(𝑡) given by

𝐶 (𝑡) = Δ𝑥𝑁−1∑
𝑘=0

|𝑢 (𝑘Δ𝑥, 𝑡)|2 . (108)

The initial conditions are given by

𝑢 (𝑥, 0) = V (𝑥, 0) = cos (𝜋𝑥) , (109)
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Figure 3: Approximations of the functions 𝜙, 𝜓 in the travelling wave solution (104).
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Figure 4: Evolution of a travelling wave solution of the SBO system at 𝑡 = 5. In solid line, |𝑢|, |V| computed with the numerical solver (57).
In pointed line, |𝑢|, |V| for the approximate travelling wave solution (104).

and the period is 𝐿 = 2.We set other numerical parameters as𝛼 = 𝛽 = 𝛾 = 1 and Δ𝑡 = 1𝑒−3, and the number of FFT points
is 𝑁 = 28. Other numerical simulations conducted using
the fully discrete scheme (57) with different initial conditions
showed similar results.

6. Conclusions

In this paper, we developed a rigorous analysis of the error of
the semidiscrete and fully discrete formulations of a Fourier-
Galerkin scheme to approximate solutions of the SBO system
(1). The time-stepping method was implemented by using a
second-order implicit Crank-Nicholson strategy. To the best
of our knowledge, a complete error analysis of a fully discrete

scheme for the SBO system in the general case 𝛾 ̸= 0 has
not been developed in previousworks.The resulting accuracy
and convergence rate 𝑂(𝑁𝑠+2−𝑟 + Δ𝑡2) (𝑟 > 𝑠 + 2) of the
numerical solver consideredwere illustrated by using a family
of exact solitary wave solutions of system (1) with 𝛾 = 0.
Numerical experiments with the complete SBO system with𝛾 ̸= 0 were also presented by using some approximations of
solitarywave solutions computed using aNewton-collocation
scheme combined with a collocation-Fourier method.
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Figure 5: In this numerical experiment we see that the quantity𝐶(𝑡)
is close to 1, as long as time evolves. This shows that the numerical
solver (57) conserves approximately the 𝐿2-norm of the function𝑢(𝑥, 𝑡) in system (1).
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