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We provide a short and simple proof of an uncertainty principle associated with the quaternion linear canonical transform (QLCT)
by considering the fundamental relationship between the QLCT and the quaternion Fourier transform (QFT). We show how this
relation allows us to derive the inverse transform and Parseval and Plancherel formulas associated with the QLCT. Some other
properties of the QLCT are also studied.

1. Introduction

It is well-known that the traditional linear canonical trans-
form (LCT) plays an important role in many fields of optics
and signal processing. It can be regarded as a generalization
of many mathematical transforms such as the Fourier trans-
form, Laplace transform, the fractional Fourier transform,
and the Fresnel transform. Many fundamental properties of
this extended transform are already known, including shift,
modulation, convolution, and correlation and uncertainty
principle, for example, in [1–6].

Recently, there are so many studies in the literature that
are concerned with the generalization of the LCT within
the context of quaternion algebra, which is the so-called
quaternion linear canonical transform (QLCT) (see, e.g., [7–
10]). They also established some important properties of
the QLCT such as inversion formula and the uncertainty
principle. An application of the QLCT to study of generalized
swept-frequency filters was presented in [11]. In this paper,
we will focus on the two-dimensional case and provide a
new proof of uncertainty principle associated with the QLCT,
the ones proposed in [8], the proof of which is much sim-
pler using the component-wise and directional uncertainty
principles for the QFT [12, 13]. Therefore, before proving
this main result, we first derive the fundamental relationship
between the QLCT and QFT. Using the relation, we obtain

useful properties of the QLCT such as inverse transform and
Parseval formula associated with the QLCT.

The quaternion algebra over R, denoted by H, is an
associative noncommutative four-dimensional algebra:

H = {𝑞 = 𝑞
0
+ i𝑞
1
+ j𝑞
2
+ k𝑞
3
; 𝑞
0
, 𝑞
1
, 𝑞
2
, 𝑞
3
∈ R} , (1)

which obeys the following multiplication rules:

ij = −ji = k,

jk = −kj = i,

ki = −ik = j,

i2 = j2 = k2 = ijk = −1.

(2)

For a quaternion 𝑞 = 𝑞
0
+ i𝑞
1
+ j𝑞
2
+ k𝑞
3
∈ H, 𝑞

0
is called

the scalar part of 𝑞 denoted by Sc(𝑞) and i𝑞
1
+ j𝑞
2
+ k𝑞
3

is called the vector (or pure) part of 𝑞. The vector part of
𝑞 is conventionally denoted by q. Let 𝑝, 𝑞 ∈ H and p, q
be their vector parts, respectively. Equation (2) yields the
quaternionic multiplication 𝑞𝑝 as

𝑞𝑝 = 𝑞
0
𝑝
0
− q ⋅ p + 𝑞

0
p + 𝑝
0
q + q × p, (3)

where q ⋅p = (𝑞
1
𝑝
1
+𝑞
2
𝑝
2
+𝑞
3
𝑝
3
) and q×p = i(𝑞

2
𝑝
3
−𝑞
3
𝑝
2
)+

j(𝑞
3
𝑝
1
− 𝑞
1
𝑝
3
) + k(𝑞

1
𝑝
2
− 𝑞
2
𝑝
1
).
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The quaternion conjugate of 𝑞, given by

𝑞 = 𝑞
0
− i𝑞
1
− j𝑞
2
− k𝑞
3
, 𝑞
0
, 𝑞
1
, 𝑞
2
, 𝑞
3
∈ R, (4)

is an anti-involution; that is,

𝑞 𝑝 = 𝑝 𝑞. (5)

From (4) we obtain the norm or modulus of 𝑞 ∈ H defined as

󵄨
󵄨
󵄨
󵄨

𝑞

󵄨
󵄨
󵄨
󵄨

= √𝑞𝑞 = √𝑞

2

0
+ 𝑞

2

1
+ 𝑞

2

2
+ 𝑞

2

3
. (6)

It is not difficult to see that
󵄨
󵄨
󵄨
󵄨

𝑞𝑝

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨

𝑞

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨

𝑝

󵄨
󵄨
󵄨
󵄨

, ∀𝑝, 𝑞 ∈ H. (7)

Furthermore, it is easily seen that
󵄨
󵄨
󵄨
󵄨

𝑝𝑞𝑟

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨

𝑟𝑞𝑝

󵄨
󵄨
󵄨
󵄨

, ∀𝑝, 𝑞, 𝑟 ∈ H. (8)

Using conjugate (4) and the modulus of 𝑞, we can define the
inverse of 𝑞 ∈ H \ {0} as

𝑞

−1
=

𝑞

󵄨
󵄨
󵄨
󵄨

𝑞

󵄨
󵄨
󵄨
󵄨

2
, (9)

which shows that H is a normed division algebra.
It is convenient to introduce an inner product for

quaternion-valued (in the rest of the paper, we will always
consider quaternion function) functions 𝑓, 𝑔 : R2 → H as

(𝑓, 𝑔) = ∫

R2
𝑓 (x) 𝑔 (x)𝑑x, 𝑑x = 𝑑𝑥

1
𝑑𝑥
2
, (10)

with symmetric real scalar part

⟨𝑓, 𝑔⟩ =

1

2

[(𝑓, 𝑔) + (𝑔, 𝑓)] = Sc∫
R2

𝑓 (x) 𝑔 (x) 𝑑x. (11)

In particular, for 𝑓 = 𝑔, we obtain the 𝐿

2
(R2;H)-norm:

󵄩
󵄩
󵄩
󵄩

𝑓

󵄩
󵄩
󵄩
󵄩

= √⟨𝑓, 𝑓⟩ = (∫

R2

󵄨
󵄨
󵄨
󵄨

𝑓 (x)󵄨󵄨󵄨
󵄨

2
𝑑

2x)
1/2

. (12)

2. Quaternion Linear Canonical Transform

In this section we begin by defining the two-sided QFT (for
simplicity of notation we write the QFT instead of the two-
sided QFT in the next section). We discus some properties,
which will be used to prove the uncertainty principle.

Definition 1. The QFT of 𝑓 ∈ 𝐿

1
(R2;H) is the transform

F
𝑞
{𝑓} : R2 → H given by the integral

F
𝑞
{𝑓} (𝜔) =

1

√
(2𝜋)

2

∫

R2
𝑒

−i𝜔
1
𝑥
1
𝑓 (x) 𝑒−j𝜔2𝑥2𝑑x, (13)

where x = 𝑥
1
e
1
+ 𝑥
2
e
2
, 𝜔 = 𝜔

1
e
1
+ 𝜔
2
e
2
, and the quaternion

exponential product 𝑒−i𝜔1𝑥1𝑒−j𝜔2𝑥2 is the quaternion Fourier
kernel. Here F

𝑞
is called the quaternion Fourier transform

operator.

Definition 2. If 𝑓 ∈ 𝐿

1
(R2;H) and F

𝑞
{𝑓} ∈ 𝐿

1
(R2;H), then

the inverse transform of the QFT is given by

𝑓 (x) = F
−1

𝑞
[F
𝑞
{𝑓}] (x)

=

1

√
(2𝜋)

2

∫

R2
𝑒

i𝜔
1
𝑥
1F
𝑞
{𝑓} (𝜔) 𝑒

j𝜔
2
𝑥
2
𝑑𝜔,

(14)

whereF−1
𝑞

is called the inverse QFT operator.

An important property of the QFT is stated in the fol-
lowing lemma, which is needed to prove Parseval formula of
the QLCT. For more details of the QFT, see [12–16].

Lemma 3 (QFT Parseval). The quaternion product of 𝑓, 𝑔 ∈

𝐿

1
(R2;H) ∩ 𝐿

2
(R2;H) and its QFT are related by

⟨𝑓, 𝑔⟩

𝐿
2
(R2 ;H)

= ⟨F
𝑞
{𝑓} ,F

𝑞
{𝑔}⟩

𝐿
2
(R2 ;H)

. (15)

In particular, with 𝑓 = 𝑔, we get the quaternion version of the
Plancherel formula; that is,

󵄩
󵄩
󵄩
󵄩

𝑓

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(R2 ;H)

=

󵄩
󵄩
󵄩
󵄩
󵄩

F
𝑞
{𝑓}

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(R2 ;H)

. (16)

Based on the definition of the QFT mentioned above, we
consider the two-sided QLCT which is defined as follows.

Definition 4 (QLCT). Let 𝐴
1

= (𝑎
1
, 𝑏
1
, 𝑐
1
, 𝑑
1
) and 𝐴

2
=

(𝑎
2
, 𝑏
2
, 𝑐
2
, 𝑑
2
) be two matrix parameters satisfying det(𝐴

𝑠
) =

𝑎
𝑠
𝑑
𝑠
− 𝑏
𝑠
𝑐
𝑠
= 1, 𝑠 = 1, 2. The QLCT of a quaternion signal

𝑓 ∈ 𝐿

1
(R2;H) is defined by

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

∫

R2
𝐾
𝐴
1

(𝑥
1
, 𝜔
1
) 𝑓 (x) 𝐾𝐴

2

(𝑥
2
, 𝜔
2
) 𝑑x, 𝑏

1
𝑏
2

̸= 0

√𝑑
1
𝑒

i(𝑐
1
𝑑
1
/2)𝜔
2

1
𝑓 (𝑑
1
𝜔
1
, 𝑥
2
)𝐾
𝐴
2

(𝑥
2
, 𝜔
2
) , 𝑏

1
= 0, 𝑏

2
̸= 0

√𝑑
2
𝑒

j(𝑐
2
𝑑
2
/2)𝜔
2

2
𝑓 (𝑥
1
, 𝑑
2
𝜔
2
)𝐾
𝐴
1

(𝑥
1
, 𝜔
1
) , 𝑏

1
̸= 0, 𝑏
2
= 0

√𝑑
1
𝑑
2
𝑒

i(𝑐
1
𝑑
1
/2)𝜔
2

1
𝑓 (𝑑
1
𝜔
1
, 𝑑
2
𝜔
2
) 𝑒

j(𝑐
2
𝑑
2
/2)𝜔
2

2
, 𝑏
1
= 𝑏
2
= 0,

(17)

where the kernel functions of the QLCT are given by,
respectively,

𝐾
𝐴
1

(𝑥
1
, 𝜔
1
)

=

1

√2𝜋𝑏
1

𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−(𝜋/2))

,

𝑏
1

̸= 0,

(18)

𝐾
𝐴
2

(𝑥
2
, 𝜔
2
)

=

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
−(𝜋/2))

,

𝑏
2

̸= 0.

(19)

From the definition of the QLCT, we can see easily that
when 𝑏

1
𝑏
2

= 0 and 𝑏
1

= 𝑏
2

= 0, the QLCT of a signal
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is essentially a quaternion chirp multiplication. Therefore, in
this work we always assume that 𝑏

1
𝑏
2

̸= 0. As a special case,
when 𝐴

1
= 𝐴
2
= (𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝑑
𝑖
) = (0, 1, −1, 0) for 𝑖 = 1, 2, LCT

definition (17) reduces to the QFT definition. That is,

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

= ∫

R2

𝑒

−i(𝜋/4)

√2𝜋

𝑓 (x) 𝑒−i𝜔1𝑥1 𝑒
−j(𝜋/4)

√2𝜋

𝑒

−j𝜔
2
𝑥
2
𝑑x

= 𝑒

−i(𝜋/4)
F
𝑞
{𝑓} (𝜔) 𝑒

−j(𝜋/4)
,

(20)

whereF
𝑞
{𝑓} is the QFT of 𝑓 given by (13).

We need the following important result (compare to [17,
18]), which will be useful in provingTheorem 15.

Theorem 5. The QLCT of a quaternion function 𝑓 ∈

𝐿

1
(R2;H) with matrix parameters 𝐴

1
= (𝑎
1
, 𝑏
1
, 𝑐
1
, 𝑑
1
) and

𝐴
2
= (𝑎
2
, 𝑏
2
, 𝑐
2
, 𝑑
2
) can be reduced to the QFT

F
𝑞
{𝑔
𝑓
} (𝜔) =

1

√
(2𝜋)

2

∫

R2
𝑒

−i𝑥
1
𝜔
1
𝑔
𝑓 (

x) 𝑒−j𝑥2𝜔2𝑑x, (21)

where

F
𝑞
{𝑔
𝑓
} (𝜔) =

̃F (b𝜔) ,

𝑔
𝑓 (

x) =

𝑒

−i(𝜋/4)

√𝑏
1

̃
𝑓 (x) 𝑒

−j(𝜋/4)

√𝑏
2

,

̃
𝑓 (x) = 𝑒

i(𝑎
1
/2𝑏
1
)𝑥
2

1
𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥

2

2
,

(22)

with

̃F (𝜔) =

1

√
(2𝜋)

2

∫

R2
𝑒

−i𝑥
1
(𝜔
1
/𝑏
1
)
𝑔
𝑓 (

x) 𝑒−j𝑥2(𝜔2/𝑏2)𝑑x,

̃F (𝜔) = 𝑒

−i(𝑑
1
/2𝑏
1
)𝜔
2

1
𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔) 𝑒
−j(𝑑
2
/2𝑏
2
)𝜔
2

2
.

(23)

Proof. Simple computations using Definition 4 show that

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔) =

1

√2𝜋𝑏
1

⋅ ∫

R2
𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−(𝜋/2))

𝑓 (x)

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
−(𝜋/2))

𝑑x

=

𝑒

−i(𝜋/4)

√2𝜋𝑏
1

𝑒

i(𝑑
1
/2𝑏
1
)𝜔
2

1
∫

R2
𝑒

−i𝑥
1
(𝜔
1
/𝑏
1
)
(𝑒

i(𝑎
1
/2𝑏
1
)𝑥
2

1
𝑓 (x)

⋅ 𝑒

j(𝑎
2
/2𝑏
2
)𝑥
2

2
)

𝑒

−j(𝜋/4)

√2𝜋𝑏
2
j
𝑒

−j𝑥
2
(𝜔
2
/𝑏
2
)
𝑒

j(𝑑
2
/2𝑏
2
)𝜔
2

2
𝑑x

=

𝑒

−i(𝜋/4)

√2𝜋𝑏
1

𝑒

i(𝑑
1
/2𝑏
1
)𝜔
2

1
∫

R2
𝑒

−i𝑥
1
(𝜔
1
/𝑏
1
)
̃
𝑓 (x)

⋅ 𝑒

−j𝑥
2
(𝜔
2
/𝑏
2
)
𝑑x 𝑒
−i(𝜋/4)

√2𝜋𝑏
2

𝑒

e−j(𝜋/4)(𝑑
2
/2𝑏
2
)𝜔
2

2
.

(24)

Then, multiplying both sides of (24) by 𝑒

−i(𝑑
1
/2𝑏
1
)𝜔
2

1
𝑒

−j(𝑑
2
/2𝑏
2
)𝜔
2

2

results in

𝑒

−i(𝑑
1
/2𝑏
1
)𝜔
2

1
𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔) 𝑒
−j(𝑑
2
/2𝑏
2
)𝜔
2

2
=

𝑒

−i(𝜋/4)

√2𝜋𝑏
1

⋅ ∫

R2
𝑒

−i𝑥
1
(𝜔
1
/𝑏
1
)
̃
𝑓 (x) 𝑒−j𝑥2(𝜔2/𝑏2)𝑑x 𝑒

−j(𝜋/4)

√2𝜋𝑏
2

=

1

√2𝜋

⋅ ∫

R2
𝑒

−i𝑥
1
(𝜔
1
/𝑏
1
) 𝑒
−i(𝜋/4)

√𝑏
1

̃
𝑓 (x) 𝑒

−i(𝜋/4)

√𝑏
2

𝑒

−j𝑥
2
(𝜔
2
/𝑏
2
)
𝑑x

⋅

1

√2𝜋

=

1

√
(2𝜋)

2

⋅ ∫

R2
𝑒

−i𝑥
1
(𝜔
1
/𝑏
1
)
𝑔
𝑓
(x) 𝑒−j𝑥2(𝜔2/𝑏2)𝑑x = F

𝑞
{𝑔
𝑓
}

⋅ (

𝜔

b
) .

(25)

This is the desired result.

Theorem 6. If 𝑓 ∈ 𝐿

1
(R2;H) and 𝐿

H
𝐴
1
,𝐴
2

{𝑓} ∈ 𝐿

1
(R2;H),

then the inverse transform of the QLCT can be derived from
that of the QFT.

Proof. Indeed, we have

𝑔
𝑓
(x) =

1

√
(2𝜋)

2

∫

R2
𝑒

i𝑥
1
𝜔
1F
𝑞
{𝑔
𝑓
} (𝜔) 𝑒

j𝑥
2
𝜔
2
𝑑𝜔

=

1

√
(2𝜋)

2

∫

R2
𝑒

i𝑥
1
𝜔
1̃F (b𝜔) 𝑒j𝑥2𝜔2𝑑𝜔

=

1

𝑏
1
𝑏
2
√
(2𝜋)

2

∫

R2
𝑒

i𝑥
1
(𝜔
1
/𝑏
1
)
̃F (𝜔) 𝑒

j𝑥
2
(𝜔
2
/𝑏
2
)
𝑑𝜔

=

1

𝑏
1
𝑏
2
√
(2𝜋)

2

∫

R2
𝑒

i𝑥
1
(𝜔
1
/𝑏
1
)
𝑒

−i(𝑑
1
/2𝑏
1
)𝜔
2

1
𝐿

H
𝐴
1
,𝐴
2

{𝑓}

⋅ (𝜔) 𝑒
−j(𝑑
2
/2𝑏
2
)𝜔
2

2
𝑒

j𝑥
2
(𝜔
2
/𝑏
2
)
𝑑𝜔.

(26)

It means that

𝑒

−i(𝜋/4)

√𝑏
1

𝑒

i(𝑎
1
/2𝑏
1
)𝑥
2

1
𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥

2

2
𝑒

−j(𝜋/4)

√𝑏
2

=

1

𝑏
1
𝑏
2
√
(2𝜋)

2

∫

R2
𝑒

i𝑥
1
(𝜔
1
/𝑏
1
)
𝑒

−i(𝑑
1
/2𝑏
1
)𝜔
2

1
𝐿

H
𝐴
1
,𝐴
2

{𝑓}

⋅ (𝜔) 𝑒
−j(𝑑
2
/2𝑏
2
)𝜔
2

2
𝑒

j𝑥
2
(𝜔
2
/𝑏
2
)
𝑑𝜔.

(27)
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Or, equivalently,

𝑓 (x)

= ∫

R2

1

√2𝜋𝑏
1

𝑒

−i(𝑎
1
/2𝑏
1
)𝑥
2

1
𝑒

i𝑥
1
(𝜔
1
/𝑏
1
)
𝑒

−i(𝑑
1
/2𝑏
1
)𝜔
2

1
𝑒

i(𝜋/4)
𝐿

H
𝐴
1
,𝐴
2

{𝑓}

⋅ (𝜔)

1

√2𝜋𝑏
2

𝑒

−j(𝑎
2
/2𝑏
2
)𝑥
2

2
𝑒

j𝑥
2
(𝜔
2
/𝑏
2
)
𝑒

−j(𝑑
2
/2𝑏
2
)𝜔
2

2
𝑒

−i(𝜋/4)
𝑑𝜔

= ∫

R2
𝐾
𝐴
1

(𝑥
1
, 𝜔
1
)𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔) 𝐾𝐴
2

(𝑥
2
, 𝜔
2
) 𝑑𝜔,

(28)

which is inverse transform of the QLCT. This proves the
theorem.

In following we give an alternative proof of Parseval
formula for the QLCT (cf. [8]).

Theorem 7 (QLCT Parseval). Two quaternion functions
𝑓, ℎ ∈ 𝐿

1
(R2;H) ∩ 𝐿

2
(R2;H) are related to their QLCT via

the Parseval formula, given as

⟨𝑓, ℎ⟩

𝐿
2
(R2 ;H)

= ⟨𝐿

H
𝐴
1
,𝐴
2

{𝑓} , 𝐿

H
𝐴
1
,𝐴
2

{ℎ}⟩

𝐿
2
(R2 ;H)

. (29)

For 𝑓 = ℎ, one has

󵄩
󵄩
󵄩
󵄩

𝑓

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(R2 ;H)

=

󵄩
󵄩
󵄩
󵄩
󵄩

𝐿

H
𝐴
1
,𝐴
2

{𝑓}

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(R2 ;H)

. (30)

Proof. From Parseval formula (15), it follows that

⟨𝑔
𝑓
, 𝑔
ℎ
⟩ = ⟨F

𝑞
{𝑔
𝑓
} ,F
𝑞
{𝑔
ℎ
}⟩

= Sc∫
R2

F
𝑞
{𝑔
𝑓
} (𝜔)F𝑞 {𝑔ℎ} (𝜔) 𝑑𝜔

=

1

󵄨
󵄨
󵄨
󵄨

𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

Sc∫
R2

F
𝑞
{𝑔
𝑓
} (

𝜔

b
)F
𝑞
{𝑔
ℎ
} (

𝜔

b
)𝑑𝜔.

(31)

Applying the cyclic multiplication symmetry, we get

⟨𝑔
𝑓
, 𝑔
ℎ
⟩ =

1

󵄨
󵄨
󵄨
󵄨

𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

Sc∫
R2

𝑒

−i(𝑑
1
/2𝑏
1
)𝜔
2

1
𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

⋅ 𝑒

−j(𝑑
2
/2𝑏
2
)𝜔
2

2
𝑒

−i(𝑑
1
/2𝑏
1
)𝜔
2

1𝐿
H
𝐴
1
,𝐴
2

{ℎ} (𝜔) 𝑒
−j(𝑑
2
/2𝑏
2
)𝜔
2

2𝑑𝜔

=

1

󵄨
󵄨
󵄨
󵄨

𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

Sc∫
R2

𝑒

−i(𝑑
1
/2𝑏
1
)𝜔
2

1
𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

⋅ 𝑒

−j(𝑑
2
/2𝑏
2
)𝜔
2

2
𝑒

−j(𝑑
2
/2𝑏
2
)𝜔
2

1
𝐿

H
𝐴
1
,𝐴
2

{ℎ} (𝜔)𝑒
−i(𝑑
1
/2𝑏
1
)𝜔
2

1
𝑑𝜔

=

1

󵄨
󵄨
󵄨
󵄨

𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

Sc∫
R2

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔) 𝐿
H
𝐴
1
,𝐴
2

{ℎ} (𝜔) 𝑑𝜔.

(32)

On the other hand,

⟨𝑔
𝑓
, 𝑔
ℎ
⟩ = Sc∫

R2
𝑔
𝑓 (

x) 𝑔ℎ (x) 𝑑x

= Sc∫
R2

𝑒

−i(𝜋/4)

√𝑏
1

̃
𝑓 (x)

⋅

𝑒

−j(𝜋/4)

√𝑏
2

𝑒

−i(𝜋/4)

√𝑏
1

̃
ℎ (x) 𝑒

−j(𝜋/4)

√𝑏
2

𝑑x

=

1

󵄨
󵄨
󵄨
󵄨

𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

Sc∫
R2

̃
𝑓 (x) ̃ℎ (x) 𝑑x

=

1

󵄨
󵄨
󵄨
󵄨

𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

Sc∫
R2

𝑒

i(𝑎
1
/2𝑏
1
)𝑥
2

1
𝑓 (x)

⋅ 𝑒

j(𝑎
2
/2𝑏
2
)𝑥
2

2
𝑒

i(𝑎
1
/2𝑏
1
)𝑥
2

1ℎ (x) 𝑒j(𝑎2/2𝑏2)𝑥22𝑑x

=

1

󵄨
󵄨
󵄨
󵄨

𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

Sc∫
R2

𝑓 (x) ℎ (x) 𝑑x.

(33)

The proof is complete.

It is interesting to describe the relationship between the
QLCT and QFT as shown in the following example.

Example 8. Let us now compute the QLCT of the two-
dimensional Gaussian function 𝑓(x) = 𝑒

−(𝑘
1
𝑥
2

1
+𝑘
2
𝑥
2

2
) with

𝑘
1
, 𝑘
2
> 0.

From the definition of QLCT (17), we easily obtain

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔) =

1

√2𝜋𝑏
1

⋅ ∫

R2
𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
𝜔+(𝑑
1
/𝑏
1
)𝜔
2
−(𝜋/2))

𝑓 (x)

⋅ 𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
𝜔+(𝑑
2
/𝑏
2
)𝜔
2
−(𝜋/2)) 1

√2𝜋𝑏
2

𝑑x

=

1

√2𝜋𝑏
1

⋅ ∫

R

𝑒

−𝑘
1
𝑥
2

1
𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
𝜔+(𝑑
1
/𝑏
1
)𝜔
2
−(𝜋/2))

𝑑𝑥
1

⋅

1

√2𝜋𝑏
2

⋅ ∫

R

𝑒

−𝑘
2
𝑥
2

2
𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2
−(𝜋/2))

𝑑𝑥
2

=

1

√2𝜋𝑏
1

⋅ 𝑒

i(1/2)(𝑑
1
/𝑏
1
)𝜔
2

∫

R

𝑒

−(1/2𝑏
1
)(2𝑘
1
𝑏
1
−i𝑎
1
)𝑥
2

1
𝑒

−i(𝜔/𝑏
1
)𝑥
1
𝑒

−i(𝜋/2)
𝑑𝑥
1

⋅

1

√2𝜋𝑏
2

⋅ 𝑒

j(1/2)(𝑑
2
/𝑏
2
)𝜔
2

∫

R

𝑒

−(1/2𝑏
2
)(2𝑘
2
𝑏
2
−j𝑎
2
)𝑥
2

2
𝑒

−j(𝜔/𝑏
2
)𝑥
2
𝑒

−j(𝜋/2)
𝑑𝑥
2
.

(34)
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Using the QFT of the Gaussian function,

F
𝑞
{𝑓} (𝜔) = ∫

R2
𝑒

−i𝜔
1
𝑥
1
𝑒

−(𝑘
1
𝑥
2

1
+𝑘
2
𝑥
2

2
)
𝑒

−j𝜔
2
𝑥
2
𝑑x

=

𝜋

√𝑘
1
𝑘
2

𝑒

−(𝜔
2

1
/4𝑘
1
+𝜔
2

2
/4𝑘
2
)
.

(35)

We immediately obtain

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔) =

1

√2𝜋𝑏
1
i

⋅ 𝑒

i(1/2)(𝑑
1
/𝑏
1
)𝜔
2

1
√

2𝜋𝑏
1

(2𝑘
1
𝑏
1
− i𝑎
1
)

𝑒

−𝜔
2

1
/2𝑏
1
(2𝑘
1
𝑏
1
−i𝑎
1
)

⋅

1

√2𝜋𝑏
1

⋅ 𝑒

j(1/2)(𝑑
2
/𝑏
2
)𝜔
2

2
√

2𝜋𝑏
2

(2𝑘
2
𝑏
2
− j𝑎
2
)

𝑒

−𝜔
2

2
/2𝑏
2
(2𝑘
2
𝑏
2
−j𝑎
2
)

=

1

√𝑎
1
+ 2𝑘
1
𝑏
1

𝑒

(𝜔
2

1
/2)((𝑐

1
+2𝑘
1
i𝑑
1
)/(2𝑘
1
𝑏
1
−i𝑎
1
))

⋅

1

√𝑎
2
+ 2𝑘
2
𝑏
2

𝑒

(𝜔
2

2
/2)((𝑐

2
+2𝑘
2
j𝑑
2
)/(2𝑘
2
𝑏
2
−j𝑎
2
))
.

(36)

3. Properties of the QLCT

In this section we present useful properties of the QLCT
in detail. We see that the results are generalizations of the
properties of the LCT [5, 19]. In [9], the authors derived the
asymptotic behavior of the QLCT. In the following, we shall
provide a different proof of the results using the QLCT kernel
properties.

3.1. Asymptotic Behavior of the QLCT. Like the classical
Fourier transform, the Riemann-Lebesgue lemma is also
valid for the QLCT, expressed as follows.

Theorem 9 (Riemann-Lebesgue lemma). Suppose that 𝑓 ∈

𝐿

1
(R2;H). Then

lim
|𝜔
1
|→∞

󵄨
󵄨
󵄨
󵄨
󵄨

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

= 0,

lim
|𝜔
2
|→∞

󵄨
󵄨
󵄨
󵄨
󵄨

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

= 0.

(37)

Proof. It is not difficult to see that

𝑒

−i(𝜔
1
𝑥
1
/𝑏
1
)
= −𝑒

−i(𝜔
1
/𝑏
1
)(𝑥
1
+𝑏
1
𝜋/𝜔
1
)
,

𝑒

−j(𝜔
2
𝑥
2
/𝑏
2
)
= −𝑒

−j(𝜔
2
/𝑏
2
)(𝑥
2
+𝑏
2
𝜋/𝜔
2
)
.

(38)

Now applying (38) gives

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔) = ∫

R2

1

√2𝜋𝑏
1

𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

𝑓 (x) 1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
−𝜋/2)

𝑑x

= −∫

R2

1

√2𝜋𝑏
1

𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)(𝑥
1
+𝑏
1
𝜋/𝜔
1
)𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

𝑓 (x) 1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
−𝜋/2)

𝑑x.
(39)

Therefore, by making the change of variable 𝑥
1
+ 𝑏
1
𝜋/𝜔
1
= 𝑡
1

in the above identity, we immediately obtain

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔) = −∫

R2

1

√2𝜋𝑏
1

𝑒

i(1/2)((𝑎
1
/𝑏
1
)(𝑡
1
−𝑏
1
𝜋/𝜔
1
)
2
−(2/𝑏
1
)𝑡
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

𝑓(𝑡
1
−

𝑏
1
𝜋

𝜔
1

, 𝑡
2
)

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑡
2

2
−(2/𝑏
1
)𝑡
2
𝜔
1
+(𝑑
1
/𝑏
2
)𝜔
2

2
−𝜋/2)

𝑑t = 1

2

[∫

R2

1

√2𝜋𝑏
1

𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑡
2

1
−(2/𝑏
1
)𝑡
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

𝑓 (t)

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑡
2

2
−(2/𝑏
2
)𝑡
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
−𝜋/2)

𝑑x

− ∫

R2

1

√2𝜋𝑏
1

𝑒

i(1/2)((𝑎
1
/𝑏
1
)(𝑡
1
−𝑏
1
𝜋/𝜔
1
)
2
−(2/𝑏
1
)𝑡
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

𝑓(𝑡
1
−

𝑏
1
𝜋

𝜔
1

, 𝑡
2
)

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑡
2

2
−(2/𝑏
2
)𝑡
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
−𝜋/2)

𝑑t]
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=

1

2

[∫

R2

1

√2𝜋𝑏
1

𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑡
2

1
−(2/𝑏
1
)𝑡
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

(𝑓 (t) − 𝑒

i(𝑎
1
/2𝑏
1
)(−2𝑡
1
𝑏
1
𝜋/𝜔
1
+(𝑏
1
𝜋/𝜔
1
)
2
)
𝑓(𝑡
1
−

𝑏
1
𝜋

𝜔
1

, 𝑡
2
))

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑡
2

2
−(2/𝑏
2
)𝑡
2
𝜔
2
+(𝑑
2s/𝑏2)𝜔

2

2
−𝜋/2)

𝑑t] .

(40)

This means that

lim
|𝜔
1
|→∞

󵄨
󵄨
󵄨
󵄨
󵄨

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

󵄨
󵄨
󵄨
󵄨

4𝜋𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

lim
|𝜔
1
|→∞

∫

R2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (t)

− 𝑒

i(𝑎
1
/2𝑏
1
)(−2𝑡
1
𝑏
1
𝜋/𝜔
1
+(𝑏
1
𝜋/𝜔
1
)
2
)
𝑓(𝑡
1
−

𝑏
1
𝜋

𝜔
1

, 𝑡
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑t

= 0.

(41)

Similarly we can prove

lim
|𝜔
2
|→∞

󵄨
󵄨
󵄨
󵄨
󵄨

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

= 0. (42)

Theorem 10 (continuity). If 𝑓 ∈ 𝐿

1
(R2;H), then

𝐿

H
𝐴
1
,𝐴
2

{𝑓}(𝜔) is continuous on R2.

Proof. Simple computations show that

󵄨
󵄨
󵄨
󵄨
󵄨

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔 + h) − 𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R2

1

√2𝜋𝑏
1

𝑒

i(1/2)((𝑎
1
/𝑏
1
)(𝑥
1
+ℎ
1
)
2
−(2/𝑏
1
)(𝑥
1
+ℎ
1
)𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

𝑓 (x)

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)(𝑥
2
+ℎ
2
)
2
−(2/𝑏
2
)(𝑥
2
+ℎ
2
)𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
−𝜋/2)

𝑑x −

1

√2𝜋𝑏
1

𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

𝑓 (x) 1

√2𝜋𝑏
2

⋅ 𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
−𝜋/2)

𝑑x
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

R2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

√2𝜋𝑏
1

⋅ 𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

(𝑒

i(1/2)((𝑎
1
/𝑏
1
)(2𝑥
1
ℎ
1
+ℎ
2

1
)−(2/𝑏

1
)𝜔
1
ℎ
1
)
𝑓 (x) 𝑒j(1/2)((𝑎2/𝑏2)(2𝑥2ℎ2+ℎ

2

2
)−(2/𝑏

2
)𝜔
2
ℎ
2
)
− 𝑓 (x))

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
−𝜋/2)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑x =

1

󵄨
󵄨
󵄨
󵄨

2𝜋𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

⋅ ∫

R2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑒

i(1/2)((𝑎
1
/𝑏
1
)(2𝑥
1
ℎ
1
+ℎ
2

1
)−(2/𝑏

1
)𝜔
1
ℎ
1
)
𝑓 (x) 𝑒j(1/2)((𝑎2/𝑏2)(2𝑥2ℎ2+ℎ

2

2
)−(2/𝑏

2
)𝜔
2
ℎ
2
)
− 𝑓 (x))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑x ≤

1

󵄨
󵄨
󵄨
󵄨

𝜋𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

∫

R2

󵄨
󵄨
󵄨
󵄨

𝑓 (x)󵄨󵄨󵄨
󵄨

𝑑x.

(43)

By the Lebesgue dominated convergence theorem, we may
conclude that

󵄨
󵄨
󵄨
󵄨
󵄨

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔 + h) − 𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

󳨀→ 0 (44)

when h → 0.This proves that 𝐿H
𝐴
1
,𝐴
2

{𝑓}(𝜔) is continuous on
R2. Again since (43) is independent of 𝜔, 𝐿H

𝐴
1
,𝐴
2

{𝑓}(𝜔) is, in
fact, uniformly continuous on R2.

3.2. Useful Properties of the QLCT. Due to the noncommuta-
tivity of the kernel of the QLCT, we only have a left linearity
property with specific constants

𝛼, 𝛽 ∈ {𝑞 | 𝑞 = 𝑞
0
+ i𝑞
1
, 𝑞
0
, 𝑞
1
∈ R} , (45)

which is

𝐿

H
𝐴
1
,𝐴
2

{𝛼𝑓 + 𝛽𝑔} (𝜔) = 𝛼𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

+ 𝛽𝐿

H
𝐴
1
,𝐴
2

{𝑔} (𝜔) ,

(46)

and a right linearity property with specific constants

𝛼

󸀠
, 𝛽

󸀠
∈ {𝑞 | 𝑞 = 𝑞

0
+ j𝑞
2
, 𝑞
0
, 𝑞
2
∈ R} . (47)

Theorem 11 (shift property). Given a quaternion function𝑓 ∈

𝐿

2
(R2;H), let 𝜏k𝑓(x) denote the shifted (translated) function

defined by 𝜏k𝑓(x) = 𝑓(x − k), where k ∈ R2. Then one gets

𝐿

H
𝐴
1
,𝐴
2

{𝜏k𝑓} (𝜔) = 𝑒

−i𝑎
1
𝑐
1
𝑘
2

1
/2+i𝑐
1
𝑘
1
𝜔
1
𝐿

H
𝐴
1
,𝐴
2

{𝑓}

⋅ (𝜔
1
− 𝑎
1
𝑘
1
, 𝜔
2
− 𝑎
2
𝑘
2
)

⋅ 𝑒

−j𝑎
2
𝑐
2
𝑘
2

2
/2+j𝑐
2
𝑘
2
𝜔
2
.

(48)
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Proof. Taking into account the definition of QLCT (17), we
get

𝐿

H
𝐴
1
,𝐴
2

{𝜏k𝑓} (𝜔) =

1

√2𝜋𝑏
1

⋅ ∫

R2
𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

𝑓 (x − k)

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
−𝜋/2)

𝑑x.

(49)

Bymaking the change of a variable x−k = m, we easily obtain

𝐿

H
𝐴
1
,𝐴
2

{𝜏k𝑓} (𝜔) = ∫

R2

1

√2𝜋𝑏
1

𝑒

i(1/2)((𝑎
1
/𝑏
1
)(𝑚
1
+𝑘
1
)
2
−(2/𝑏
1
)(𝑚
1
+𝑘
1
)𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

𝑓 (m)

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)(𝑚
2
+𝑘
2
)
2
−(2/𝑏
2
)(𝑚
2
+𝑘
2
)𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
−𝜋/2)

𝑑m =

1

√2𝜋𝑏
1

⋅ ∫

R2
𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑚
2

1
−(2/𝑏
1
)𝑚
1
(𝜔
1
−𝑘
1
𝑎
1
)+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

𝑒

i((1/2)(𝑎
1
/𝑏
1
)𝑘
2

1
)
𝑒

i(−(1/2)(2𝑘
1
𝜔
1
/𝑏
1
))
𝑓 (m)

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑚
2

2
−(2/𝑏
2
)𝑚
2
(𝜔
2
−𝑘
2
𝑎
2
)+(𝑑
2
/𝑏
2
)𝜔
2

2
−𝜋/2)

𝑒

j((1/2)(𝑎
2
/𝑏
2
)𝑘
2

2
)
𝑒

j(−(1/2)(2𝑘
2
𝜔
2
/𝑏
2
))
𝑑m.

(50)

Therefore, we further get

𝐿

H
𝐴
1
,𝐴
2

{𝜏k𝑓} (𝜔) =

1

√2𝜋𝑏
1

∫

R2
𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑚
2

1
−(2/𝑏
1
)𝑚
1
(𝜔
1
−𝑘
1
𝑎
1
)+(𝑑
1
/𝑏
1
)(𝜔
1
−𝑘
1
𝑎
1
+𝑘
1
𝑎
1
)
2
−𝜋/2)

𝑒

i((1/2)(𝑎
1
/𝑏
1
)𝑘
2

1
)
𝑒

i(−(1/2)(2𝑘
1
𝜔
1
/𝑏
1
))
𝑓 (m)

⋅ √2𝜋𝑏
2
𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑚
2

2
−(2/𝑏
2
)𝑚
2
(𝜔
2
−𝑘
2
𝑎
2
)+(𝑑
2
/𝑏
2
)(𝜔
2
−𝑘
2
𝑎
2
+𝑘
2
𝑎
2
)
2
−𝜋/2)

𝑒

j((1/2)(𝑎
1
/𝑏
1
)𝑘
2

1
)
𝑒

j(−(1/2)(2𝑘
2
𝜔
2
/𝑏
2
))
𝑑m

= 𝑒

i(1/2)(𝑑
1
/𝑏
1
)(2(𝜔
1
−𝑘
1
𝑎
1
)𝑘
1
𝑎
1
+(𝑘
1
𝑎
1
)
2
)
𝑒

i((1/2)(𝑎
1
/𝑏
1
)𝑘
2

1
)
𝑒

i(−(1/2)(2𝑘
1
𝜔
1
/𝑏
1
))
∫

R2

1

√2𝜋𝑏
1

𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑚
2

1
−(2/𝑏
1
)𝑚
1
(𝜔
1
−𝑘
1
𝑎
1
)+(𝑑
1
/𝑏
1
)(𝜔
1
−𝑘
1
𝑎
1
)
2
)
𝑓 (m)

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑚
2

2
−(2/𝑏
2
)𝑚
2
(𝜔
2
−𝑘
2
𝑎
2
)+(𝑑
2
/𝑏
2
)(𝜔
2
−𝑘
2
𝑎
2
)
2
)
𝑑m𝑒

j(1/2)(𝑑
2
/𝑏
2
)(2(𝜔
2
−𝑘
2
𝑎
2
)𝑘
2
𝑎
2
+(𝑘
2
𝑎
2
)
2
)
𝑒

j((1/2)(𝑎
2
/𝑏
2
)𝑘
2

2
)
𝑒

j(−(1/2)(2𝑘
2
𝜔
2
/𝑏
2
))
.

(51)

Applying the definition of the QLCT (17), the above
expression can be rewritten in the form

𝐿

H
𝐴
1
,𝐴
2

{𝜏k𝑓} (𝜔) = 𝑒

i(1/2)(𝑑
1
/𝑏
1
)(2(𝜔
1
−𝑘
1
𝑎
1
)𝑘
1
𝑎
1
+(𝑘
1
𝑎
1
)
2
)
𝑒

i((1/2)(𝑎
1
/𝑏
1
)𝑘
2

1
)
𝑒

i(−(1/2)(2𝑘
1
𝜔
1
/𝑏
1
))
𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔
1
− 𝑎
1
𝑘
1
, 𝜔
2
− 𝑎
2
𝑘
2
)

⋅ 𝑒

j(1/2)(𝑑
2
/𝑏
2
)(2(𝜔
1
−𝑘
2
𝑎
2
)𝑘
2
𝑎
2
+(𝑘
2
𝑎
2
)
2
)
𝑒

j((1/2)(𝑎
2
/𝑏
2
)𝑘
2

2
)
𝑒

j(−(1/2)(2𝑘
2
𝜔
2
/𝑏
2
))
.

(52)

We notice that

𝑒

i(1/2)(𝑑
1
/𝑏
1
)(2(𝜔
1
−𝑘
1
𝑎
1
)𝑘
1
𝑎
1
+(𝑘
1
𝑎
1
)
2
)
𝑒

i((1/2)(𝑎
1
/𝑏
1
)𝑘
2

1
)
𝑒

i(−(1/2)(2𝑘
1
𝜔
1
/𝑏
1
))

= 𝑒

i𝑘
1
𝜔
1
(𝑑
1
𝑎
1
/𝑏
1
−1/𝑏
1
)
𝑒

−i(1/2)𝑘2
1
𝑎
1
(𝑑
1
𝑎
1
/𝑏
1
−1/𝑏
1
)
,

𝑒

j(1/2)(𝑑
2
/𝑏
2
)(2(𝜔
2
−𝑘
2
𝑎
2
)𝑘
2
𝑎
2
+(𝑘
2
𝑎
2
)
2
)
𝑒

j((1/2)(𝑎
2
/𝑏
2
)𝑘
2

2
)
𝑒

j(−(1/2)(2𝑘
2
𝜔
2
/𝑏
2
))

= 𝑒

j𝑘
2
𝜔
2
(𝑑
2
𝑎
2
/𝑏
2
−1/𝑏
2
)
𝑒

−j(1/2)𝑘2
2
𝑎
2
(𝑑
2
𝑎
2
/𝑏
2
−1/𝑏
2
)
.

(53)

Because 𝑎
𝑖
𝑑
𝑖
− 𝑏
𝑖
𝑐
𝑖
= 1, then 𝑑

𝑖
𝑎
𝑖
/𝑏
𝑖
− 1/𝑏
𝑖
= 𝑐
𝑖
for 𝑖 = 1, 2. It

means that we get

𝑒

i(1/2)(𝑑
1
/𝑏
1
)(2(𝜔
1
−𝑘
1
𝑎
1
)𝑘
1
𝑎
1
+(𝑘
1
𝑎
1
)
2
)
𝑒

i((1/2)(𝑎
1
/𝑏
1
)𝑘
2

1
)
𝑒

i(−(1/2)(2𝑘
1
𝜔
1
/𝑏
1
))

= 𝑒

i𝑘
1
𝜔
1
𝑐
1
𝑒

−i(𝑎
1
𝑘
2

1
/2)𝑐
1
.

(54)
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By the above equalities, we finally arrive at

𝐿

H
𝐴
1
,𝐴
2

{𝜏k𝑓} (𝜔) = 𝑒

i𝑘
1
𝜔
1
𝑐
1
𝑒

−i(𝑎
1
𝑘
2

1
/2)𝑐
1
𝐿

H
𝐴
1
,𝐴
2

{𝑓}

⋅ (𝜔
1
− 𝑎
1
𝑘
1
, 𝜔
2
− 𝑎
2
𝑘
2
)

⋅ 𝑒

j𝑘
2
𝜔
2
𝑐
2
𝑒

−j(𝑎
2
𝑘
2

2
/2)𝑐
2
.

(55)

This completes the proof of theorem.

Next, we are concerned with the behavior of the QLCT
under modulation.

Theorem 12 (modulation property). LetM
𝜔
0

𝑓 bemodulation
operator defined by M

𝜔
0

𝑓(x) = 𝑒

i𝑥
1
𝑢
0
𝑓(x)𝑒j𝑥2V0 with 𝜔

0
=

𝑢
0
e
1
+ V
0
e
2
. Then

𝐿

H
𝐴
1
,𝐴
2

{M
𝜔
0

𝑓} (𝜔) = 𝐿

H
𝐴
1
,𝐴
2

{𝑒

i𝑥
1
𝑢
0
𝑓 (x) 𝑒j𝑥2V0} (𝜔)

= 𝑒

−i𝑏
1
𝑑
1
𝑢
2

0
/2+i𝑑

1
𝑢
0
𝜔
1
𝐿

H
𝐴
1
,𝐴
2

{𝑓}

⋅ (𝜔
1
− 𝑢
0
𝑏
1
, 𝜔
2
− V
0
𝑏
2
) 𝑒

−j𝑏
2
𝑑
2
V2
0
/2+j𝑑

2
V
0
𝜔
2
.

(56)

Proof. From Definition 4, it follows that

𝐿

H
𝐴
1
,𝐴
2

{M
𝜔
0

𝑓} (𝜔)

= ∫

R2

1

√2𝜋𝑏
1

𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

𝑒

i𝑥
1
𝑢
0
𝑓 (x)

⋅ 𝑒

j𝑥
2
V
0

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
−𝜋/2)

𝑑x

=

1

√2𝜋𝑏
1

⋅ ∫

R2
𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
𝜔
1
+(𝑑
1
/𝑏
1
)𝜔
2

1
+2𝑢
0
𝑥
1
−𝜋/2)

𝑓 (x)

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏

2
)𝑥
2
𝜔
2
+(𝑑
2
/𝑏
2
)𝜔
2

2
+2V
0
𝑥
2
−𝜋/2)

𝑑x

=

1

√2𝜋𝑏
1

⋅ ∫

R2
𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
(𝜔
1
−𝑢
0
𝑏
1
)+(𝑑
1
/𝑏
1
)𝜔
2

1
−𝜋/2)

𝑓 (x)

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
(𝜔
2
−V
0
𝑏
2
)+(𝑑
2
/𝑏
2
)𝜔
2

2
−𝜋/2)

𝑑x.

(57)

Subsequent calculations reveal that

𝐿

H
𝐴
1
,𝐴
2

{M
𝜔
0

𝑓} (𝜔) =

1

√2𝜋𝑏
1

∫

R2
𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
(𝜔
1
−𝑢
0
𝑏
1
)+(𝑑
1
/𝑏
1
)((𝜔
1
−𝑢
0
𝑏
1
)+𝑢
0
𝑏
1
)
2
−𝜋/2)

𝑓 (x)

⋅

1

√2𝜋𝑏
2

𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
(𝜔
2
−V
0
𝑏
2
)+(𝑑
2
/𝑏
2
)((𝜔
2
−V
0
𝑏
2
)+V
0
𝑏
2
)
2
−𝜋/2)

𝑑x =

1

√2𝜋𝑏
1

⋅ ∫

R2
𝑒

i(1/2)((𝑎
1
/𝑏
1
)𝑥
2

1
−(2/𝑏
1
)𝑥
1
(𝜔
1
−𝑢
0
𝑏
1
)+(𝑑
1
/𝑏
1
)((𝜔
1
−𝑢
0
𝑏
1
)
2
+2(𝜔
1
−𝑢
0
𝑏
1
)𝑢
0
𝑏
1
+𝑢
2

0
𝑏
2

1
)−𝜋/2)

𝑓 (x) 1

√2𝜋𝑏
2

⋅ 𝑒

j(1/2)((𝑎
2
/𝑏
2
)𝑥
2

2
−(2/𝑏
2
)𝑥
2
(𝜔
2
−V
0
𝑏
2
)+(𝑑
2
/𝑏
2
)((𝜔
2
−V
0
𝑏
2
)
2
+2(𝜔
2
−V
0
𝑏
2
)V
0
𝑏
2
+V2
0
𝑏
2

2
)−𝜋/2)

𝑑x.

(58)

Hence,

𝐿

H
𝐴
1
,𝐴
2

{M
𝜔
0

𝑓} (𝜔) = 𝑒

i(𝜔
1
−𝑢
0
𝑏
1
)𝑢
0
𝑑
1
+i𝑑
1
𝑢
2

0
𝑏
1
/2
𝐿

H
𝐴
1
,𝐴
2

(𝜔
1

− 𝑢
0
𝑏
1
, 𝜔
2
− V
0
𝑏
2
) 𝑒

j(𝜔
2
−V
0
𝑏
2
)V
0
𝑑
2
+j𝑑
2
V2
0
𝑏
2
/2

= 𝑒

i𝜔
1
𝑢
0
𝑑
1
𝑒

−i((2𝑏
1
𝑑
1
𝑢
2

0
−𝑏
1
𝑑
1
𝑢
2

0
)/2)

𝐿

H
𝐴
1
,𝐴
2

(𝜔
1
− 𝑢
0
𝑏
1
, 𝜔
2

− V
0
𝑏
2
) 𝑒

j𝜔
2
V
0
𝑑
2
𝑒

−j((2𝑏
2
𝑑
2
V2
0
−𝑏
2
𝑑
2
V2
0
)/2)

= 𝑒

i𝜔
1
𝑢
0
𝑑
1
𝑒

−i(𝑏
1
𝑑
1
𝑢
2

0
/2)

𝐿

H
𝐴
1
,𝐴
2

(𝜔
1
− 𝑢
0
𝑏
1
, 𝜔
2
− V
0
𝑏
2
)

⋅ 𝑒

j𝜔
2
V
0
𝑑
2
𝑒

−j(𝑏
2
𝑑
2
V2
0
/2)

.

(59)

This is desired result.

Theorem 13 (time-frequency shift). If quaternion function
𝑓 ∈ 𝐿

2
(R2;H), then one gets

𝐿

H
𝐴
1
,𝐴
2

{M
𝜔
0

𝜏k𝑓} (𝜔) = 𝐿

H
𝐴
1
,𝐴
2

{𝑒

i𝑥
1
𝑢
0
𝑓 (x − k) 𝑒j𝑥2V0}

⋅ (𝜔)

= 𝑒

−i(𝑎
1
𝑐
1
𝑘
2

1
+𝑏
1
𝑑
1
𝑢
2

0
)/2+i(𝑐

1
𝑘
1
+𝑑
1
𝑢
0
)𝜔
1
−i𝑏
1
𝑐
1
𝑘
1
𝑢
0
𝐿

H
𝐴
1
,𝐴
2

{𝑓}

⋅ (𝜔
1
− 𝑎
1
𝑘
1
− 𝑢
0
𝑏
1
, 𝜔
2
− 𝑎
2
𝑘
2
− V
0
𝑏
2
)

⋅ 𝑒

−j(𝑎
2
𝑐
2
𝑘
2

2
+𝑏
2
𝑑
2
V2
0
)/2+j(𝑐

2
𝑘
2
+𝑑
2
V
0
)𝜔
2
−j𝑏
2
𝑐
2
𝑘
2
V
0
.

(60)

Proof. The proof directly follows from two previous theo-
rems.

The above properties of the QLCT are summarized in
Table 1.
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Table 1: Properties of the QLCT of 𝑓, 𝑔 ∈ 𝐿

2
(R2;H), where 𝛼, 𝛽, 𝛼

󸀠
, 𝛽

󸀠
∈ H are constants and 𝜔

0
= 𝑢
0
e
1
+ V
0
e
2
∈ R2.

Property Quaternion func. QLCT
Left linearity 𝛼𝑓 + 𝛽𝑔 𝛼𝐿

H
𝐴1 ,𝐴2

{𝑓} (𝜔) + 𝛽𝐿

H
𝐴1 ,𝐴2

{𝑔} (𝜔)

Right linearity 𝑓𝛼

󸀠
+ 𝑔𝛽

󸀠
𝐿

H
𝐴1 ,𝐴2

{𝑓} (𝜔) 𝛼
󸀠
+ 𝐿

H
𝐴1 ,𝐴2

{𝑔} (𝜔) 𝛽
󸀠

Shift 𝑓 (x − k) 𝑒

−i𝑎1𝑐1𝑘21/2+i𝑐1𝑘1𝜔1
𝐿

H
𝐴1 ,𝐴2

{𝑓} (𝜔
1
− 𝑎
1
𝑘
1
, 𝜔
2
− 𝑎
2
𝑘
2
) 𝑒

−j𝑎2𝑐2𝑘22/2+j𝑐2𝑘2𝜔2

Modulation 𝑒

i𝑥1𝑢0
𝑓 (x) 𝑒j𝑥2V0 𝑒

−i𝑏1𝑑1𝑢20/2+i𝑑1𝑢0𝜔1
𝐿

H
𝐴1 ,𝐴2

{𝑓} (𝜔
1
− 𝑢
0
𝑏
1
, 𝜔
2
− V
0
𝑏
2
) 𝑒

−j𝑏2𝑑2V20/2+j𝑑2V0𝜔2

Time-frequency 𝑒

i𝑥1𝑢0
𝑓 (x − k) 𝑒j𝑥2V0

𝑒

−i(𝑎1𝑐1𝑘21+𝑏1𝑑1𝑢
2

0
)/2+i(𝑐1𝑘1+𝑑1𝑢0)𝜔1−i𝑏1𝑐1𝑘1𝑢0

𝐿

H
𝐴1 ,𝐴2

{𝑓} (𝜔
1
− 𝑎
1
𝑘
1
− 𝑢
0
𝑏
1
, 𝜔
2
− 𝑎
2
𝑘
2
− V
0
𝑏
2
)

⋅𝑒

−j(𝑎2𝑐2𝑘22+𝑏2𝑑2V
2

0
)/2+j(𝑐2𝑘2+𝑑2V0)𝜔2−j𝑏2𝑐2𝑘2V0

Gaussian function 𝑒

−(𝑘1𝑥
2

1
+𝑘2𝑥
2

2
)

1

√𝑎
1
+ 2𝑘
1
𝑏
1
i
𝑒

(𝜔
2

1
/2)((𝑐1+2𝑘1i𝑑1)/(2𝑘1𝑏1−i𝑎1)) 1

√𝑎
2
+ 2𝑘
2
𝑏
2
j
𝑒

(𝜔
2

2
/2)((𝑐2+2𝑘2j𝑑2)/(2𝑘2𝑏2−j𝑎2))

4. Heisenberg Uncertainty Principle for QLCT

Theclassical uncertainty principle of harmonic analysis states
that a nontrivial function and its Fourier transform cannot be
sharply localized simultaneously. In quantummechanics, the
uncertainty principle asserts that one cannot at the same time
be certain of the position and of the velocity of an electron
(or any particle) [20]. Let us now give an alternative proof
of the Heisenberg type uncertainty principle for the QLCT,
which is recently studied in [8] (the uncertainty principle
of the QCT was proved using the exponential form of a
2D quaternion function and proposed proof of this paper
uses the relationship between the QFT andQLCT). However,
before proceeding with the statement of this main result, we
need to introduce the component-wise uncertainty principle
for the QFT as follows (see [12] for more details).

Theorem 14 (the QFT component-wise uncertainty princi-
ple). Suppose that 𝑓 ∈ 𝐿

1
(R2;H) ∩ 𝐿

2
(R2;H). If 𝜕𝑓/𝜕𝑥

𝑘
and

𝜔
𝑘
(𝜕𝑓/𝜕𝑥

𝑘
) ∈ 𝐿

2
(R2;H), then one has

∫

R2
𝑥

2

𝑘

󵄨
󵄨
󵄨
󵄨

𝑓 (x)󵄨󵄨󵄨
󵄨

2
𝑑x∫

R2
𝜔

2

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

F
𝑞
{𝑓} (𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜔

≥

1

4

(∫

R2

󵄨
󵄨
󵄨
󵄨

𝑓 (x)󵄨󵄨󵄨
󵄨

2
𝑑x)
2

, 𝑘 = 1, 2.

(61)

The generalization of the above uncertainty principle to
the the QLCT domain is given by the following theorem (for
more detailed information, see [8]).

Theorem 15 (the QLFT component-wise uncertainty prin-
ciple). Assume that 𝑓 ∈ 𝐿

1
(R2;H) ∩ 𝐿

2
(R2;H), 𝜕𝑓/𝜕𝑥

𝑘
∈

𝐿

2
(R2;H) and that 𝐿H

𝐴
1
,𝐴
2

{𝑓}, 𝜔
𝑘
𝐿

H
𝐴
1
,𝐴
2

{𝑓} ∈ 𝐿

2
(R2;H), 𝑘 =

1, 2. Then, the following inequality holds:

∫

R2
𝑥

2

𝑘

󵄨
󵄨
󵄨
󵄨

𝑓 (x)󵄨󵄨󵄨
󵄨

2
𝑑x∫

R2
𝜔

2

𝑙

󵄨
󵄨
󵄨
󵄨
󵄨

𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜔

≥

𝑏

2

𝑘

4

(∫

R2

󵄨
󵄨
󵄨
󵄨

𝑓 (x)󵄨󵄨󵄨
󵄨

2
𝑑x)
2

, 𝑘 = 1, 2.

(62)

Proof. Substituting the quaternion function 𝑓 by 𝑔
𝑓
defined

by (21) on both sides of (62), we easily obtain

∫

R2
𝑥

2

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

𝑔
𝑓
(x)󵄨󵄨󵄨

󵄨
󵄨

2

𝑑x∫

R2
𝜔

2

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

F
𝑞
{𝑔
𝑓
} (𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜔

≥

1

4

(∫

R2

󵄨
󵄨
󵄨
󵄨
󵄨

𝑔
𝑓 (

x)󵄨󵄨󵄨
󵄨
󵄨

2

𝑑x)
2

.

(63)

Now setting 𝜔 = 𝜔/b, we further have

∫

R2
𝑥

2

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒

−i(𝜋/4)

√𝑏
1

̃
𝑓 (x) 𝑒

−j(𝜋/4)

√𝑏
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑x

⋅ ∫

R2

𝜔

2

𝑘

𝑏

2

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

F
𝑞
{𝑔
𝑓
} (

𝜔

b
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑

𝜔

b

≥

1

4

(∫

R2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒

−i(𝜋/4)

√𝑏
1

̃
𝑓 (x) 𝑒

−i(𝜋/4)

√𝑏
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑x)
2

,

(64)

and thus

∫

R2

𝑥

2

𝑘

󵄨
󵄨
󵄨
󵄨

𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

2

󵄨
󵄨
󵄨
󵄨
󵄨

̃
𝑓 (x)󵄨󵄨󵄨

󵄨
󵄨

2

𝑑x∫

R2

𝜔

2

𝑘

𝑏

2

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

F
𝑞
{𝑔
𝑓
} (

𝜔

b
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜔

≥

1

4

󵄨
󵄨
󵄨
󵄨

𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

2
(∫

R2

󵄨
󵄨
󵄨
󵄨
󵄨

̃
𝑓 (x)󵄨󵄨󵄨

󵄨
󵄨

2

𝑑x)
2

.

(65)

Hence,

∫

R2

𝑥

2

𝑘

󵄨
󵄨
󵄨
󵄨

𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒

i(𝑎
1
/2𝑏
1
)𝑥
2

1
𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥

2

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑x

⋅ ∫

R2

𝜔

2

𝑘

𝑏

2

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

F
𝑞
{𝑔
𝑓
} (

𝜔

b
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜔

≥

1

4

󵄨
󵄨
󵄨
󵄨

𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

2
(∫

R2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒

i(𝑎
1
/2𝑏
1
)𝑥
2

1
𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥

2

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑x)
2

.

(66)
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By inserting (23) into (66), we immediately obtain

∫

R2

𝑥

2

𝑘

󵄨
󵄨
󵄨
󵄨

𝑏
1
𝑏
2

󵄨
󵄨
󵄨
󵄨

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒

i(𝑎
1
/2𝑏
1
)𝑥
2

1
𝑓 (x) 𝑒j(𝑎2/2𝑏2)𝑥

2

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑x

⋅ ∫

R2

𝜔

2

𝑘

𝑏

2

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒

−i(𝑑
1
/2𝑏
1
)𝜔
2

1
𝐿

H
𝐴
1
,𝐴
2

{𝑓} (𝜔)

⋅ 𝑒

−j(𝑑
2
/2𝑏
2
)𝜔
2

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜔

≥

1

4

󵄨
󵄨
󵄨
󵄨

𝑏
1
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2

2

󵄨
󵄨
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󵄨
󵄨
󵄨

2

𝑑x)
2
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Simplifying it gives

∫

R2
𝑥

2

𝑘

󵄨
󵄨
󵄨
󵄨

𝑓 (x)󵄨󵄨󵄨
󵄨

2
𝑑x∫

R2
𝜔

2

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

𝐿
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𝐴
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{𝑓} (𝜔)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜔

≥

𝑏

2

𝑘

4

(∫

R2

󵄨
󵄨
󵄨
󵄨

𝑓 (x)󵄨󵄨󵄨
󵄨

2
𝑑x)
2

.

(68)

This finishes the proof of theorem.

It is not difficult to check that directional uncertainty
principle for the QFT takes the following form (cf. [21, 22]).

Theorem 16. Suppose that 𝑓 ∈ 𝐿

1
(R2;H) ∩ 𝐿

2
(R2;H). If

𝜕𝑓/𝜕𝑥
𝑘
and 𝜔

𝑘
(𝜕𝑓/𝜕𝑥

𝑘
) ∈ 𝐿

2
(R2;H), then one has

∫
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󵄨
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󵄨

𝑓 (x)󵄨󵄨󵄨
󵄨

2
𝑑x)
2

.

(69)

Proceeding as in the proof of Theorem 15, we obtain the
QLCT directional uncertainty principle as follows.

Theorem 17. Suppose that 𝑓 ∈ 𝐿

1
(R2;H) ∩ 𝐿

2
(R2;H) and

𝐿

H
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2

{𝑓} and |𝜔|
2
𝐿

H
𝐴
1
,𝐴
2

{𝑓} ∈ 𝐿

2
(R2;H). Then the following

inequality is satisfied:
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(70)
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