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This paper deals with the numerical solution of the random Cauchy one-dimensional heat model. We propose a random finite
difference numerical scheme to construct numerical approximations to the solution stochastic process. We establish sufficient
conditions in order to guarantee the consistency and stability of the proposed random numerical scheme. The theoretical results
are illustrated by means of an example where reliable approximations of the mean and standard deviation to the solution stochastic
process are given.

1. Introduction

The heat is the energy which flows from the higher to the
lower temperature and the transport coefficient depends
on the specific mode transfer. The transfer modes are the
diffusive transport of thermal energy (the conductionmode),
the exchange of heat between amoving fluid and an adjoining
wall (the convectionmode), and the radiationmodewhere all
bodies can emit thermal radiation [1, 2]. In a metal rod with
nonuniform temperature, heat is transferred from regions of
higher temperature to regions of lower temperature. Usually,
the physical principles for heat transfer are heat energy of a
body with uniform properties, Fourier’s law of heat transfer,
and conservation of energy [2–4].

When dealingwith a partial differential equation together
with the initial and boundary conditions, it is crucial to
obtain awell-posed problem.The extent of the spatial domain
is another division for the partial differential equation that
makes onemethodof solution preferable over another. Spatial
domain may be a finite interval or an infinite interval, such
as the whole real line. If the spatial domain is unbounded,
the boundary conditions are not an important issue and
in that case the problem is called initial value problem
(IVP). In mathematics, a pure IVP is usually referred to as

a Cauchy problem [3, 5]. This paper is concerned with the
study of random finite difference schemes (one of the most
widely used methods for engineering models) to the Cauchy
problem for the one-dimensional random heat equation with
unbounded spatial domain

𝑢𝑡 (𝑥, 𝑡) = 𝛽𝑢𝑥𝑥 (𝑥, 𝑡) , 𝑡 > 0, − ∞ < 𝑥 < ∞, (1)

with initial condition

𝑢 (𝑥, 0) = 𝑢0 (𝑥) . (2)

In this IVP (1)-(2), 𝑡 is the time variable, 𝑥 is the space coor-
dinate, 𝑢𝑡 and 𝑢𝑥𝑥 denote the first and the second derivatives
with respect to 𝑡 and 𝑥, respectively, and 𝛽 is a random
variable defined in a probability space (Ω,F,P). In addition,𝑢0(𝑥) is an initial deterministic data function. Expression
(1) is a random parabolic partial differential equation for
temperature 𝑢(𝑥, 𝑡) in a heat conducting insulated impurity
rod along the 𝑥-axis since the conductivity coefficient, 𝛽, is
assumed to be a random variable. The physical significance
of thermal diffusion coefficient is associated with the speed of
the flux of heat into thematerial when changes of temperature
take place over the time. The heating propagation rate is
proportional to the thermal diffusivity [6]. As it is stated in
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the thermodynamics’ laws, 𝛽 should be a function of two
independent and intensive dynamic properties (usually, tem-
perature and pressure) [7]. From the second thermodynamics
law, it is required that 𝛽 be positive. In this paper, we take 𝛽
as a random variable since the randomness of heat transfer
depends on the randomness of the conductivity coefficient.
The randomness of 𝛽 may be from the impurity material
properties used to make the rod.

Mathematical models described by means of partial
differential equations (PDEs) appear often in many areas of
science and engineering and also in medicine and finance,
for example, [8–10]. The heat equation has a great deal of
application in many branches of sciences, naturally in a
variety of models from chemistry, theoretical physics, and
others [1]. The Cauchy problem model (1)-(2) is set on an
unbounded space domain, so we do not need boundary con-
ditions explicitly.There are analytical and numericalmethods
for dealing with problem (1)-(2) in case the conductivity
diffusive coefficient is a constant or a deterministic function.

In the deterministic scenario, the heat equation on
unbounded domains has been studied by different authors
[11–13].This important Cauchy problem appears in areas such
as acoustic, electrodynamics, and fluid mechanics [12, 14, 15].
In the random context, the heat model has been studied
using analytical techniques based on random Fourier series
[16] or random Fourier integral transforms [17, 18]. In all
of these contributions uncertainty is considered throughout
a very general pattern and they are solved using the so-
called 𝐿𝑝-random calculus [19, 20]. The heat model has
also been treated considering that randomness is a white
noise (the derivative of the Brownian motion or Wiener
process). This approach requires the so-called Itô calculus
[21, 22]. Under this approach the uncertainty is assumed to
beGaussian.This is a nice statistical property that has enabled
the development of both analytic and numerical methods to
study the stochastic heat model [23].

In this paper, we propose a random finite numerical
scheme to approximate the solution s.p. of the Cauchy
problem (1)-(2) and we prove its consistency and stability in a
random sense that will be specified later. An important issue
regarding our study is that we permit that, apart from the
Gaussian distribution, r.v. 𝛽 that appears in the PDE (1) can
also have another quite general probability distributions.

This paper is organized as follows. In Section 2 firstly a
random numerical finite difference scheme for the Cauchy
problem (1)-(2) is proposed. Secondly, sufficient conditions
for the consistency and stability of the random numerical
scheme are given. Section 3 addresses the illustration of the
theoretical results established by means of an illustrative
example. Conclusions are drawn in Section 4.

2. Random Finite Difference Technique

This section is devoted to introducing the numerical tech-
nique that will be considered later in order to approximate
the solution s.p. to the random IVP (1)-(2). Firstly, it is con-
venient to introduce some notation that will be used through-
out our analysis. With this goal, let us consider a uniform
space grid Δ𝑥 and a uniform time grid Δ𝑡 which defines

a two-dimensional space-time mesh grid where the exact
solution s.p. to the random IVP (1)-(2), 𝑢(𝑥, 𝑡), will be
approximated. This approximation at the point (𝑥𝑘, 𝑡𝑛) =(𝑘Δx, 𝑛Δ𝑡) or the mesh grid point (𝑘, 𝑛), 𝑘 ∈ Z, 𝑛 ∈ N, will be
denoted by 𝑢𝑛𝑘; that is, 𝑢𝑛𝑘 ≈ 𝑢(𝑥𝑘, 𝑡𝑛).

Thenext step is to approximate the solution s.p. to the IVP
(1)-(2) on themesh grid using some kind of approximation of
the partial derivatives that appear in the formulation of that
problem. In this paper, the following time-forward and space-
centered discretization will be considered:

𝑢𝑡 (𝑘Δ𝑥, 𝑛Δ𝑥) ≈ 𝑢𝑛+1𝑘 − 𝑢𝑛𝑘Δ𝑡 ,
𝑢𝑥𝑥 (𝑘Δ𝑥, 𝑛Δ𝑥) ≈ 𝑢𝑛𝑘+1 − 2𝑢𝑛𝑘 + 𝑢𝑛𝑘−1(Δ𝑥)2 . (3)

Substituting the approximations (3) in (1)-(2), one obtains
the following random finite difference scheme (RFDS):

𝑢𝑛+1𝑘 = (1 − 2𝑟) 𝑢𝑛𝑘 + 𝑟𝑢𝑛𝑘+1 + 𝑟𝑢𝑛𝑘−1,
𝑢0𝑘 = 𝑢0 (𝑘Δ𝑥) , (4)

where

𝑟 = 𝛽 Δ𝑡(Δ𝑥)2 . (5)

As it is well known from the deterministic case, the
study of the consistency and stability is a main issue when
dealing with numerical schemes. This motivates the analysis
of consistency and stability of the random numerical scheme
(4)-(5) in a stochastic sense that will be specified later. Since
the approximations of the solution s.p. to the IVP (1)-(2)
will be constructed in the sense of fixed station for the time,
hereinafter we will work in the following Banach space(ℓ2(Ω), ‖ ⋅ ‖RV) [24] defined byℓ2 (Ω) = {k = (. . . , V−1, V0, V1, . . .) : ‖k‖RV < +∞} , (6)

‖k‖RV = (E[(sup
𝑘

V𝑘)2])
1/2 , (7)

where E[⋅] denotes the expectation operator. Notice that the
supremum in (7) is taken for every 𝑘 ∈ Z; however in order to
simplify the notation, henceforth we will omit the symbol Z.

2.1. Study of the Consistency of the Random Finite Difference
Numerical Scheme. According to the definition of the con-
sistency of a finite difference numerical scheme in the deter-
ministic case, below we extend this definition to the random
scenario taking into account the norm (7). For the sake of
completeness, we also introduce the definition of the order of
a RFDS as a natural generalization of the classical definition.

Definition 1. The random finite difference scheme

u𝑛+1 = 𝑄 (u𝑛) + Δ𝑡G𝑛, (8)
being

u𝑛 = (. . . , 𝑢𝑛−1, 𝑢𝑛0 , 𝑢𝑛1 , . . .)⊤ ,
G𝑛 = (. . . , 𝐺𝑛−1, 𝐺𝑛0 , 𝐺𝑛1 , . . .)⊤ , (9)
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is said to be mean square ‖ ⋅ ‖RV consistent with the random
partial differential equation (RPDE) L𝑢 = 𝐹, if the solution
stochastic process (s.p.) of the RPDE, 𝑢, satisfies

u𝑛+1 = 𝑄 (u𝑛) + Δ𝑡G𝑛 + Δ𝑡𝜏𝑛, (10)

𝜏𝑛RV Δ𝑥→0→
Δ𝑡→0

0, (11)

where the 𝑘th component of u𝑛 in (10) is

𝑢𝑛𝑘 = 𝑢 (𝑥𝑘, 𝑡𝑛) . (12)

Definition 2. In the context of Definition 1, the RFDS is said
to be of order (𝑝, 𝑞) if

𝜏𝑛RV = O ((Δ𝑡)𝑝) + O ((Δ𝑥)𝑞) . (13)

Next, we shall prove that the RFDS (4)-(5) is mean square‖ ⋅ ‖RV consistent with the random IVP (1)-(2).

Proposition 3. Let us consider the random IVP (1)-(2) and
assume that its solution s.p. 𝑢(𝑥, 𝑡) satisfies
𝑢𝑡𝑡 (𝑥, 𝑡) , 𝑢𝑥𝑥𝑥𝑥 (𝑥, 𝑡)

are uniformly bounded for every (𝑥, 𝑡) ,
𝑥 ∈ R, 𝑡 > 0.

(14)

Then, the RFDS (4)-(5) is mean square ‖ ⋅ ‖RV consistent.
Moreover, this scheme has order (𝑝, 𝑞) = (1, 2).
Proof. Let us denote 𝑢𝑛𝑘 as the exact value of the solution s.p.𝑢(𝑥, 𝑡) at the mesh grid point (𝑥𝑘, 𝑡𝑛). Based on expression
(10) of Definition 1 with G = 0 and expressions (4) and (5),
let us consider the Taylor expansion of the 𝑘th component of
u𝑛+1 − 𝑄(u𝑛), bearing in mind hypotheses (14) and

(u𝑛+1 − 𝑄 (u𝑛))
𝑘
= 𝑢𝑛+1𝑘 − (1 − 2𝑟) 𝑢𝑛𝑘 − 𝑟𝑢𝑛𝑘+1 − 𝑟𝑢𝑛𝑘−1

= 𝑢𝑛+1𝑘 − 𝑢𝑛𝑘 − 𝑟 {𝑢𝑛𝑘+1 − 2𝑢𝑛𝑘 + 𝑢𝑛𝑘−1} = [𝑢𝑛𝑘 + (𝑢𝑡)𝑛𝑘
⋅ Δ𝑡 + O ((Δ𝑡)2)] − 𝑢𝑛𝑘 − 𝑟{[𝑢𝑛𝑘 + (𝑢𝑥)𝑛𝑘 Δ𝑥
+ (𝑢𝑥𝑥)𝑛𝑘 (Δ𝑥)22 + (𝑢𝑥𝑥𝑥)𝑛𝑘 (Δ𝑥)36 + O ((Δ𝑥)4)]
− 2𝑢𝑛𝑘 + [𝑢𝑛𝑘 − (𝑢𝑥)𝑛𝑘 Δ𝑥 + (𝑢𝑥𝑥)𝑛𝑘 (Δ𝑥)22
− (𝑢𝑥𝑥𝑥)𝑛𝑘 (Δ𝑥)36 + O ((Δ𝑥)4)]} = {(𝑢𝑡)𝑛𝑘
− 𝛽 (𝑢𝑥𝑥)𝑛𝑘} Δ𝑡 + O ((Δ𝑡)2) + O (Δ𝑡 (Δ𝑥)2) .

(15)

Since 𝑢 is a solution of random IVP (1)-(2), one gets (𝑢𝑡)𝑛𝑘 −𝛽(𝑢𝑥𝑥)𝑛𝑘 = 0 and hence the first term of the right-hand side of
(15) vanishes. Then

Δ𝑡𝜏𝑛𝑘 = (u𝑛+1 − 𝑄 (u𝑛))
𝑘

= O ((Δ𝑡)2) + O (Δ𝑡 (Δ𝑥)2) ,
𝜏𝑛𝑘 = O (Δ𝑡) + O ((Δ𝑥)2) .

(16)

Now, taking into account (7) and (16) one gets

𝜏𝑛RV = (E[(sup
𝑘

𝜏𝑛𝑘 )2])
1/2
Δ𝑥→0→
Δ𝑡→0

0, (17)

and the order of the scheme is (𝑝, 𝑞) = (1, 2).
2.2. Study of the Stability of the Random Finite Difference
Numerical Scheme. Following the same idea we have used
for introducing the concept of random consistency, below
we extend the deterministic definition of stability of a finite
numerical scheme to the randomscenario using the norm (7).

Definition 4. The random finite difference scheme (8) is said
to bemean square ‖⋅‖RV stable if there exist positive constants𝜖, 𝛿 > 0, and nonnegative constants 𝜂, 𝜉 such that

u𝑛RV ≤ 𝜂𝑒𝜉𝑡 u0RV , (18)

for 0 ≤ 𝑡 ≤ (𝑛 + 1)Δ𝑡, 0 < Δ𝑥 ≤ 𝜖, and 0 < Δ𝑡 ≤ 𝛿.
Below, we establish conditions under which the RFDS (8)

is mean square ‖ ⋅ ‖RV stable.

Proposition 5. Let us consider the random IVP (1)-(2) where𝛽 is a positive and bounded r.v.,

0 < 𝛽 (𝜔) ≤ 𝛽1, 𝜔 ∈ Ω, 𝛽1 ∈ R. (19)

Then, under the condition

Δ𝑡 ≤ (Δ𝑥)22𝛽1 , (20)

the RFDS (4)-(5) is mean square ‖ ⋅ ‖RV stable.

Proof. Taking into account the definition of the norm (7), the
definition of mean square ‖ ⋅ ‖RV stability (see (18)), and the
RFDS (4)-(5), let us consider

(u𝑛+1RV)2 = E[(sup
𝑘

𝑢𝑛+1𝑘 )
2] = E[sup

𝑘

𝑢𝑛+1𝑘 2]
= E[sup

𝑘

(1 − 2𝑟) 𝑢𝑛𝑘 + 𝑟𝑢𝑛𝑘+1 + 𝑟𝑢𝑛𝑘−12]
≤ E[sup

𝑘

[(1 − 2𝑟) 𝑢𝑛𝑘 + 𝑟𝑢𝑛𝑘+1 + 𝑟𝑢𝑛𝑘−1]2]
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= E[sup
𝑘

[(1 − 2𝑟)2 𝑢𝑛𝑘2 + 𝑟2 𝑢𝑛𝑘+12 + 𝑟2 𝑢𝑛𝑘−12
+ 2𝑟 |1 − 2𝑟| 𝑢𝑛𝑘𝑢𝑛𝑘+1 + 2𝑟 |1 − 2𝑟| 𝑢𝑛𝑘𝑢𝑛𝑘−1
+ 2𝑟2 𝑢𝑛𝑘+1𝑢𝑛𝑘−1]] = E[(1 − 2𝑟)2 sup

𝑘

𝑢𝑛𝑘2 + 𝑟2
⋅ sup
𝑘

𝑢𝑛𝑘2 + 𝑟2sup
𝑘

𝑢𝑛𝑘2 + 2𝑟 |1 − 2𝑟| sup
𝑘

𝑢𝑛𝑘2
+ 2𝑟 |1 − 2𝑟| sup

𝑘

𝑢𝑛𝑘2 + 2𝑟2sup
𝑘

𝑢𝑛𝑘2] = E[[(1
− 2𝑟)2 + 𝑟2 + 𝑟2 + 2𝑟 |1 − 2𝑟| + 2𝑟 |1 − 2𝑟| + 2𝑟2]
⋅ sup
𝑘

𝑢𝑛𝑘2] = E[[(1 − 2𝑟)2 + 4𝑟2 + 4𝑟 |1 − 2𝑟|]
⋅ sup
𝑘

𝑢𝑛𝑘2] ,
(21)

wherewe have used that r.v. 𝑟 is positive because𝛽 is a positive
r.v. (see (5) and (19)).

Under hypotheses (19)-(20), we can assure that r.v. 𝑟 =𝑟(𝜔) satisfies
0 ≤ 𝑟 ≤ 12 , (22)

for all 𝜔 ∈ Ω; hence |1 − 2𝑟| = 1 − 2𝑟. Therefore

(1 − 2𝑟)2 + 4𝑟2 + 4𝑟 |1 − 2𝑟| = 1, (23)

for all 𝜔 ∈ Ω. Then applying recursively (21), one obtains

(u𝑛+1RV)2 ≤ E[sup
𝑘

𝑢𝑛𝑘2] = (u𝑛RV)2 ≤ ⋅ ⋅ ⋅
≤ (u0RV)2 ,

(24)

or equivalently u𝑛+1RV ≤ u0RV . (25)

To summarize, condition (18) holds for 𝜂 = 1 and 𝜉 = 0.
Remark 6. It is important to point out that the hypothesis of
boundedness on r.v. 𝛽 assumed in (19) in order to guarantee
the mean square ‖ ⋅ ‖RV stability of the RFDS (4)-(5) is not
restrictive from a practical standpoint. Indeed, the classical
Chebyshev inequality assures that any second-order random
variable, with mean 𝜇𝛽 and standard deviation 𝜎𝛽, can be
approximated by truncating adequately its domain. Using
this result it is easy to prove that the truncated interval[𝜇𝛽 − 10𝜎𝛽, 𝜇𝛽 + 10𝜎𝛽] contains 99% of the probability of 𝛽
regardless of the distribution of 𝛽. The larger the truncated
interval, the better the probabilistic approximation.Naturally,
the diameter of the truncation interval can be shortened if
the probability distribution of 𝛽 is known. For example, if𝛽 is an unbounded r.v. having a Gaussian distribution, 𝛽 ∼𝑁(𝜇𝛽; 𝜎𝛽), then the truncation over the domain [𝜇𝛽−3𝜎𝛽, 𝜇𝛽+3𝜎𝛽] contains 99.7% of the probability of 𝛽.

3. Numerical Example

This section is devoted to illustrating the theoretical results
previously established by means of a test example where reli-
able approximations for the mean and the standard deviation
(or equivalently the variance) of the solution s.p. of IVP (1)-
(2) are given. These approximations are constructed using
the RFDS (4)-(5). These approximations are compared with
the corresponding exact values since the example has been
chosen in such a way that both the mean and the standard
deviation of the solution s.p. are available.

Let us consider the random Cauchy problem (1)-(2)
where 𝛽 is a r.v. of parameters (𝑎; 𝑏) = (2; 3), 𝛽 ∼ Be(2; 3), and
the initial condition is 𝑢0(𝑥) = exp(−𝑥2). The exact solution
s.p. of (1)-(2) is given by

𝑢 (𝑥, 𝑡) = exp (−𝑥2/ (1 + 4𝛽𝑡))√1 + 4𝛽𝑡 . (26)

We will approximate the mean and standard deviation of
the solution s.p., 𝑢(𝑥, 𝑡), of the random Cauchy problem (1)-
(2) on the spatial domain −2 ≤ 𝑥 ≤ 2 using the RFDS (4)-(5).
In order to guarantee the mean square ‖ ⋅ ‖RV stability of this
scheme, first we fix the space stepΔ𝑥 andwe take𝛽1 = 1, since𝛽 ∼ Be(2; 3); then according to Proposition 5 (see condition
(20)), the time step Δ𝑡must be taken satisfying the following
condition:

Δ𝑡 ≤ (Δ𝑥)22 . (27)

In order to compute approximations of the mean and the
standard deviation of the solution s.p. 𝑢(𝑥, 𝑡) at the mesh grid
point (𝑥𝑘, 𝑡𝑛), we will apply recursively the numerical scheme
(4)-(5) and then we will take the expectation operator. The
numerical results will be compared with the ones obtained
from expression (26) using the following expression:

E [𝑢 (𝑥, 𝑡)] = ∫1
0

exp (−𝑥2/ (1 + 4𝛽𝑡))√1 + 4𝛽𝑡 𝑓𝛽 (𝛽) d𝛽, (28)

for the mean, and

𝜎 [𝑢 (𝑥, 𝑡)]
= √∫1
0

exp (−2𝑥2/ (1 + 4𝛽𝑡))1 + 4𝛽𝑡 𝑓𝛽 (𝛽) d𝛽 − (E [𝑢 (𝑥, 𝑡)])2, (29)

for the standard deviation, being

𝑓𝛽 (𝛽) = Γ (𝑎 + 𝑏)Γ (𝑎) Γ (𝑏)𝛽𝑎−1 (1 − 𝛽)𝑏−1 , 𝑎 = 2, 𝑏 = 3. (30)

In Figure 1 we show a comparison at the time instant𝑡 = 2/5 (time fixed station) of the expectation of the exact
solution s.p. and the approximations of the expectations using
the random numerical scheme (4)-(5) with different spatial
steps

Δ𝑥 = 116 , 18 , 14 . (31)



Abstract and Applied Analysis 5

Exact
Δt = 1/560, Δx = 1/16

Exact
Δt = 1/140, Δx = 1/8

Exact
Δt = 1/35, Δx = 1/4

0.2

0.4

0.6

0.8

E
[u

(x
,2

/5
)]

−1 1 2−2
x

−1 1 2−2
x

−1 1 2−2
x

0.2

0.4

0.6

0.8

E
[u

(x
,2

/5
)]

0.2

0.4

0.6

0.8

E
[u

(x
,2

/5
)]

Figure 1: Expectation of the exact solution s.p. and the approxima-
tions at the time instant 𝑡 = 2/5 for different values of Δ𝑥 and Δ𝑡
over the spatial domain −2 ≤ 𝑥 ≤ 2.

The time steps have been chosen as

Δ𝑡 = 1560 , 1140 , 135 , (32)

respectively, so that stability condition (27) is guaranteed.
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Figure 2: Standard deviation of the exact solution s.p. and the
approximations at the time instant 𝑡 = 2/5 for different values ofΔ𝑥 and Δ𝑡 over the spatial domain −2 ≤ 𝑥 ≤ 2.

An analogous comparison for the standard deviation at
the time instant 𝑡 = 2/5 is shown in Figure 2.

To complete the numerical analysis, in Figures 3 and 4
we have plotted the relative errors for the approximations of
the expectation and standard deviation for the spatial and
time steps previously chosen, respectively. From these plots
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Figure 3: Relative errors at the time instant 𝑡 = 2/5 for the
approximations of the expectation for different values of Δ𝑥 and Δ𝑡
over the spatial domain −2 ≤ 𝑥 ≤ 2.
we observe that as Δ𝑥 is divided by 2, the relative error is
approximately divided by 4. This confirms the convergence
of the random numerical scheme.

4. Conclusions

In this paper we have studied the randomized Cauchy heat
model by assuming that the diffusion coefficient is a random
variable and considering a deterministic initial condition
over an unbounded domain. Thus, boundary conditions
have not been required. We have proposed a random finite
difference scheme for solving this model. The mean square
consistency of the random finite difference scheme has been
studied. Sufficient conditions for the mean square stability of
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Figure 4: Relative errors at the time instant 𝑡 = 2/5 for the
approximations of the standard deviation for different values of Δ𝑥
and Δ𝑡 over the spatial domain −2 ≤ 𝑥 ≤ 2.
the random finite difference scheme have been provided.The
numerical experiments show that the proposed randomfinite
difference scheme gives reliable approximations for the mean
and the standard deviation of the solution stochastic process.
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