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A resolvent for a non-self-adjoint differential operator with a block-triangular operator potential, increasing at infinity, is
constructed. Sufficient conditions under which the spectrum is real and discrete are obtained.

1. Introduction

The theory of non-self-adjoint singular differential operators,
generated by scalar differential expressions, has been well
studied. An overview on the theory of non-self-adjoint
singular ordinary differential operators is provided in V. E.
Lyantse’s Appendix I to the monograph of Naimark [1]. In
this regard the papers ofNaimark [2], Lyantse [3],Marchenko
[4], Rofe-Beketov [5], Schwartz [6], and Kato [7] should
be noted. The questions regarding equations with non-
Hermitian matrix or operator coefficients have been studied
insufficiently. For a differential operator with a triangular
matrix potential decreasing at infinity, which has a bounded
firstmoment due to the inverse scattering problem, it is stated
in [8, 9] that the discrete spectrum of the operator consists
of a finite number of negative eigenvalues, and the essential
spectrum covers the positive semiaxis. The questions regard-
ing an operator with a block-triangular matrix potential that
increases at infinity are considered in [10, 11]. In the future,
by the author of this paper similar questions are considered
for equations with block-triangular operator coefficients. In
[11, 12] Green’s function of a non-self-adjoint operator is
constructed.

In this article we construct a resolvent for a non-self-
adjoint differential operator, using which the structure of the
operator spectrum is set.

2. Preliminary Notes

Let 𝐻𝑘, 𝑘 = 1, 2, . . . , 𝑟, be finite-dimensional or infinite-
dimensional separable Hilbert space with inner product (⋅, ⋅)
and norm | ⋅ |, dim𝐻𝑘 ≤ ∞. Denote H = 𝐻1 ⊕ 𝐻2 ⊕⋅ ⋅ ⋅ ⊕ 𝐻𝑟. Element ℎ ∈ H will be written in the form ℎ =
col (ℎ1, ℎ2, . . . , ℎ𝑟), where ℎ𝑘 ∈ 𝐻𝑘, 𝑘 = 1, 𝑟, 𝐼𝑘, 𝐼 are identity
operators in𝐻𝑘 andH accordingly.

We denote by 𝐿2(H, (0,∞)) the Hilbert space of vector-
valued functions 𝑦(𝑥) with values inH with inner product⟨𝑦, 𝑧⟩ = ∫∞

0

(𝑦 (𝑥) , 𝑧 (𝑥)) 𝑑𝑥 (1)

and the corresponding norm ‖ ⋅ ‖.
Consider the equation with block-triangular operator

potential 𝑙 [𝑦] = −𝑦󸀠󸀠 + 𝑉 (𝑥) 𝑦 = 𝜆𝑦, 0 ≤ 𝑥 < ∞, (2)
where 𝑉 (𝑥) = V (𝑥) ⋅ 𝐼 + 𝑈 (𝑥) ,

𝑈 (𝑥) = (𝑈11 (𝑥) 𝑈12 (𝑥) ⋅ ⋅ ⋅ 𝑈1𝑟 (𝑥)0 𝑈22 (𝑥) ⋅ ⋅ ⋅ 𝑈2𝑟 (𝑥)⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅ 𝑈𝑟𝑟 (𝑥)) , (3)
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2 Abstract and Applied Analysis

V(𝑥) is a real scalar function, and 0 < V(𝑥) → ∞ monotoni-
cally, as 𝑥 → ∞, and it has monotone absolutely continuous
derivative. Also, 𝑈(𝑥) is a relatively small perturbation; for
example, |𝑈(𝑥)| ⋅ V−1(𝑥) → 0 as 𝑥 → ∞ or |𝑈|V−1 ∈ 𝐿∞(R+).
The diagonal blocks𝑈𝑘𝑘(𝑥), 𝑘 = 1, 𝑟, are assumed as bounded
self-adjoint operators in𝐻𝑘, 𝑈𝑘𝑙 : 𝐻𝑙 → 𝐻𝑘.

In case where

V (𝑥) ≥ 𝐶𝑥2𝛼, 𝐶 > 0, 𝛼 > 1, (4)

we suppose that coefficients of (2) satisfy relations∫∞
0

|𝑈 (𝑡)| ⋅ V−1/2 (𝑡) 𝑑𝑡 < ∞,
∫∞
0

V󸀠2 (𝑡) ⋅ V−5/2 (𝑡) 𝑑𝑡 < ∞,
∫∞
0

V󸀠󸀠 (𝑡) ⋅ V−3/2 (𝑡) 𝑑𝑡 < ∞.
(5)

Let us consider the functions𝛾0 (𝑥) = 1
4√4V (𝑥) ⋅ exp(−∫𝑥0 √V (𝑢)𝑑𝑢) ,𝛾∞ (𝑥) = 1
4√4V (𝑥) ⋅ exp(∫𝑥0 √V (𝑢)𝑑𝑢) . (6)

It is easy to see that 𝛾0(𝑥) → 0, 𝛾∞(𝑥) → ∞ as 𝑥 → ∞.These
solutions constitute a fundamental system of solutions of the
scalar differential equation−𝑧󸀠󸀠 + (V (𝑥) + 𝑞 (𝑥)) 𝑧 = 0, (7)

where 𝑞(𝑥) is determined by a formula (cf. with the mono-
graph [13])

𝑞 (𝑥) = 516 (V󸀠 (𝑥)
V (𝑥) )2 − 14 V󸀠󸀠 (𝑥)V (𝑥) . (8)

In such a way for all 𝑥 ∈ [0,∞) one has𝑊(𝛾0, 𝛾∞) fl 𝛾0 (𝑥) ⋅ 𝛾󸀠∞ (𝑥) − 𝛾󸀠0 (𝑥) ⋅ 𝛾∞ (𝑥) = 1. (9)

In case of V(𝑥) = 𝑥2𝛼, 0 < 𝛼 ≤ 1, we suppose that the
coefficients of (2) satisfy the relation∫∞

𝑎

|𝑈 (𝑡)| ⋅ 𝑡−𝛼𝑑𝑡 < ∞, 𝑎 > 0. (10)

Now functions 𝛾0(𝑥, 𝜆) and 𝛾∞(𝑥, 𝜆) are defined as follows:𝛾0 (𝑥, 𝜆) = 1
4√4 (𝑥2𝛼 − 𝜆) ⋅ exp(−∫𝑥𝑎 √𝑢2𝛼 − 𝜆𝑑𝑢) ,𝛾∞ (𝑥, 𝜆) = 1
4√4 (𝑥2𝛼 − 𝜆) ⋅ exp(∫𝑥𝑎 √𝑢2𝛼 − 𝜆𝑑𝑢) . (11)

These functions also form a fundamental system of solutions
of the scalar differential equation, which is obtained by
replacing V(𝑥) with V(𝑥) − 𝜆 in formulas (7) and (8).

In [10] the asymptotic behavior of the functions 𝛾0(𝑥, 𝜆)
and 𝛾∞(𝑥, 𝜆)was established as𝑥 → ∞. If (𝛼+1)/2𝛼 = 𝑛 ∈ N,
that is, 𝛼 = 1/(2𝑛 − 1), then functions 𝛾0(𝑥, 𝜆) and 𝛾∞(𝑥, 𝜆)
as 𝑥 → ∞ will have the following asymptotic behavior:

𝛾0 (𝑥, 𝜆) = 𝑐 ⋅ exp(− 𝑥1+𝛼1 + 𝛼 + 𝜆2 ⋅ 𝑥1−𝛼1 − 𝛼
+ 𝑛−1∑
𝑘=2

1 ⋅ 3 ⋅ . . . ⋅ (2𝑘 − 3)𝑘! ⋅ (𝜆2)𝑘 ⋅ 𝑥1−(2𝑘−1)𝛼1 − (2𝑘 − 1) 𝛼)⋅ 𝑥((1⋅3⋅...⋅(2𝑛−3))/𝑛!)⋅(𝜆/2)𝑛−𝛼/2 ⋅ (1 + 𝑜 (1)) ,
𝛾∞ (𝑥, 𝜆) = 𝑐 ⋅ exp( 𝑥1+𝛼1 + 𝛼 − 𝜆2 ⋅ 𝑥1−𝛼1 − 𝛼

− 𝑛−1∑
𝑘=2

1 ⋅ 3 ⋅ . . . ⋅ (2𝑘 − 3)𝑘! ⋅ (𝜆2)𝑘 ⋅ 𝑥1−(2𝑘−1)𝛼1 − (2𝑘 − 1) 𝛼)⋅ 𝑥−(((1⋅3⋅...⋅(2𝑛−3))/𝑛!)⋅(𝜆/2)𝑛+𝛼/2) ⋅ (1 + 𝑜 (1)) .

(12)

In particular, with 𝛼 = 1 (𝑛 = 1) one has𝛾0 (𝑥, 𝜆) = 𝑐 ⋅ 𝑥(𝜆−1)/2 ⋅ exp(−𝑥22 ) (1 + 𝑜 (1)) ,𝛾∞ (𝑥, 𝜆) = 𝑐 ⋅ 𝑥−(𝜆+1)/2 ⋅ exp(𝑥22 ) (1 + 𝑜 (1)) . (13)

In the case (𝛼 + 1)/2𝛼 ∉ N, set 𝑛 = [(𝛼 + 1)/2𝛼] + 1, with [𝛽]
being the integral part of𝛽, to obtain the following asymptotic
behavior for 𝛾0(𝑥, 𝜆) and 𝛾∞(𝑥) at infinity:𝛾0 (𝑥, 𝜆) = 𝑐 ⋅ 𝑥−𝛼/2 exp(− 𝑥1+𝛼1 + 𝛼 + 𝜆2 ⋅ 𝑥1−𝛼1 − 𝛼

+ 𝑛−1∑
𝑘=2

1 ⋅ 3 ⋅ . . . ⋅ (2𝑘 − 3)𝑘! ⋅ (𝜆2)𝑘 ⋅ 𝑥1−(2𝑘−1)𝛼1 − (2𝑘 − 1) 𝛼)⋅ exp(−1 ⋅ 3 ⋅ . . . ⋅ (2𝑛 − 3)𝑛! ⋅ (𝜆2)𝑛 ⋅ 𝑥−𝛼𝛼 ) ⋅ (1+ 𝑜 (𝑥−𝛼)) ,
𝛾∞ (𝑥, 𝜆) = 𝑐 ⋅ 𝑥−𝛼/2 exp( 𝑥1+𝛼1 + 𝛼 − 𝜆2 ⋅ 𝑥1−𝛼1 − 𝛼

− 𝑛−1∑
𝑘=2

1 ⋅ 3 ⋅ . . . ⋅ (2𝑘 − 3)𝑘! ⋅ (𝜆2)𝑘 ⋅ 𝑥1−(2𝑘−1)𝛼1 − (2𝑘 − 1) 𝛼)⋅ exp(1 ⋅ 3 ⋅ . . . ⋅ (2𝑛 − 3)𝑛! ⋅ (𝜆2)𝑛 ⋅ 𝑥−𝛼𝛼 ) ⋅ (1+ 𝑜 (𝑥−𝛼)) .

(14)

In [10] for an equation with matrix coefficients, and in
the furtherance for equations with operator coefficients, the
following theorem is proved.



Abstract and Applied Analysis 3

Theorem 1. If for (2) conditions (4)-(5) are satisfied for 𝛼 > 1
or condition (10) for 0 < 𝛼 ≤ 1, then the equation has a unique
decreasing at infinity operator solution Φ(𝑥, 𝜆), satisfying the
conditions

lim
𝑥→∞

Φ (𝑥, 𝜆)𝛾0 (𝑥, 𝜆) = 𝐼,
lim
𝑥→∞

Φ󸀠 (𝑥, 𝜆)𝛾󸀠0 (𝑥, 𝜆) = 𝐼. (15)

Also, there exists increasing at infinity operator solutionΨ(𝑥, 𝜆), satisfying the conditions
lim
𝑥→∞

Ψ (𝑥, 𝜆)𝛾∞ (𝑥, 𝜆) = 𝐼,
lim
𝑥→∞

Ψ󸀠 (𝑥, 𝜆)𝛾󸀠∞ (𝑥, 𝜆) = 𝐼. (16)

Corollary 2. If 𝛼 = 1, that is, V(𝑥) = 𝑥2, then, under condition
(10), the solutions Φ(𝑥, 𝜆) and Ψ(𝑥, 𝜆) have common (known)
asymptotic behavior, as in the quality 𝛾0(𝑥, 𝜆) and 𝛾∞(𝑥, 𝜆) you
can take the following functions:𝛾0 (𝑥, 𝜆) = 𝑥(𝜆−1)/2 ⋅ exp(−𝑥22 ) ,𝛾∞ (𝑥, 𝜆) = 𝑥−(𝜆+1)/2 ⋅ exp(𝑥22 ) . (17)

3. Resolvent of the Non-Self-Adjoint Operator

Let the following boundary condition be given at 𝑥 = 0:
cos𝐴 ⋅ 𝑦󸀠 (0) − sin𝐴 ⋅ 𝑦 (0) = 0, (18)

where 𝐴 is block-triangular operator of the same structure
as the potential 𝑉(𝑥) (3) of the differential equation (2), and𝐴𝑘𝑘, 𝑘 = 1, 𝑟, are the bounded self-adjoint operators in 𝐻𝑘,
which satisfy the conditions−𝜋2 𝐼𝑘 ≪ 𝐴𝑘𝑘 ≤ 𝜋2 𝐼𝑘. (19)

Together with problem (2) and (18) we consider the separated
system𝑙𝑘 [𝑦𝑘] = −𝑦󸀠󸀠𝑘 + (V (𝑥) 𝐼𝑘 + 𝑈𝑘𝑘 (𝑥)) 𝑦𝑘 = 𝜆𝑦𝑘, 𝑘 = 1, 𝑟 (20)

with the boundary conditions

cos𝐴𝑘𝑘 ⋅ 𝑦󸀠𝑘 (0) − sin𝐴𝑘𝑘 ⋅ 𝑦𝑘 (0) = 0, 𝑘 = 1, 𝑟. (21)

Let 𝐿󸀠 denote the minimal differential operator generated
by differential expression 𝑙[𝑦] and the boundary condition
(18), and let 𝐿󸀠𝑘, 𝑘 = 1, 𝑟, denote the minimal differential
operator on 𝐿2(H, (0,∞)) generated by differential expres-
sion 𝑙𝑘[𝑦𝑘] and the boundary conditions (21). Taking into
account the conditions on coefficients, as well as sufficient

smallness of perturbations 𝑈𝑘𝑘(𝑥), and conditions (19), we
conclude that, for every symmetric operator 𝐿󸀠𝑘, 𝑘 = 1, 𝑟,
there is a case of limit point at infinity.Hence their self-adjoint
extensions 𝐿𝑘 are the closures of operators 𝐿󸀠𝑘, respectively.
The operators 𝐿𝑘 are semibounded below, and their spectra
are discrete.

Let 𝐿 denote the operator extensions 𝐿󸀠, by requiring that𝐿2(H, (0,∞)) be the domain of operator 𝐿.
The following theorem is proved in [10].

Theorem3. Suppose that for (2) conditions (4)-(5) are satisfied
for 𝛼 > 1 or condition (10) for 0 < 𝛼 ≤ 1. Then the discrete
spectrum of the operator 𝐿 is real and coincides with the union
of spectra of the self-adjoint operators 𝐿𝑘, 𝑘 = 1, 𝑟; that is,𝜎𝑑 (𝐿) = 𝑟⋃

𝑘=1

𝜎 (𝐿𝑘) . (22)

Comment 4. Note that this theorem contains a statement of
the discrete spectrum of the non-self-adjoint operator 𝐿 only
and no allegations of its continuous and residual spectrum.

Along with (2) we consider the equation𝑙1 [𝑦] = −𝑦󸀠󸀠 + 𝑉∗ (𝑥) 𝑦 = 𝜆𝑦 (23)

(𝑉∗(𝑥) is adjoint to the operator𝑉(𝑥)). If the spaceH is finite-
dimensional, then (23) can be rewritten as𝑙̃ [𝑦̃] = −𝑦̃󸀠󸀠 + 𝑦̃𝑉 (𝑥) = 𝜆𝑦̃, (24)

where 𝑦̃ = (𝑦̃1 𝑦̃2 . . . 𝑦̃𝑟) and the equation is called the left.
For operator functions 𝑌(𝑥, 𝜆), 𝑍(𝑥, 𝜆) ∈ 𝐵(H) let𝑊{𝑍∗, 𝑌} = 𝑍∗󸀠 (𝑥, 𝜆) 𝑌 (𝑥, 𝜆)− 𝑍∗ (𝑥, 𝜆) 𝑌󸀠 (𝑥, 𝜆) . (25)

If 𝑌(𝑥, 𝜆) is operator solution of (2) and 𝑍(𝑥, 𝜆) is operator
solution of (23), the Wronskian does not depend on 𝑥.

Nowwe denote𝑌(𝑥, 𝜆) and𝑌1(𝑥, 𝜆) as the solutions of (2)
and (23), respectively, satisfying the initial conditions𝑌 (0, 𝜆) = cos𝐴,𝑌󸀠 (0, 𝜆) = sin𝐴,𝑌1 (0, 𝜆) = (cos𝐴)∗ ,𝑌󸀠1 (0, 𝜆) = (sin𝐴)∗ , 𝜆 ∈ C.

(26)

Because the operator function 𝑌∗1 (𝑥, 𝜆) satisfies equation−𝑌∗󸀠󸀠1 (𝑥, 𝜆) + 𝑌∗1 (𝑥, 𝜆) ⋅ 𝑉 (𝑥) = 𝜆𝑌∗1 (𝑥, 𝜆) , (27)

the operator function 𝑌̃(𝑥, 𝜆) š 𝑌∗1 (𝑥, 𝜆) is a solution to the
left of the equation−𝑌̃󸀠󸀠 (𝑥, 𝜆) + 𝑌̃ (𝑥, 𝜆) ⋅ 𝑉 (𝑥) = 𝜆𝑌̃ (𝑥, 𝜆) (28)

and satisfies the initial conditions 𝑌̃(0, 𝜆) = cos𝐴, 𝑌̃󸀠(0, 𝜆) =
sin𝐴, 𝜆 ∈ C.
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Operator solutions of (23) decreasing and increasing
at infinity will be denoted by Φ1(𝑥, 𝜆), Ψ1(𝑥, 𝜆), and the
corresponding solutions of (28) are denoted by Φ̃(𝑥, 𝜆) andΨ̃(𝑥, 𝜆). The system operator solutions 𝑌(𝑥, 𝜆), Φ̃(𝑥, 𝜆) ∈𝐵(H) of (2) and (28), respectively, will take the form of
Wronskian𝑊{Φ̃, 𝑌} = Φ̃󸀠(𝑥, 𝜆)𝑌(𝑥, 𝜆) − Φ̃(𝑥, 𝜆)𝑌󸀠(𝑥, 𝜆).

Let us designate𝐺 (𝑥, 𝑡, 𝜆)
= {{{𝑌 (𝑥, 𝜆) (𝑊{Φ̃, 𝑌})−1 Φ̃ (𝑡, 𝜆) 0 ≤ 𝑥 ≤ 𝑡−Φ (𝑥, 𝜆) (𝑊{𝑌̃, Φ})−1 𝑌̃ (𝑡, 𝜆) 𝑥 ≥ 𝑡. (29)

It is proved in [12] that the operator function 𝐺(𝑥, 𝑡, 𝜆)
is Green’s function of the differential operator 𝐿; that is, it
possesses all the classical properties of Green’s function. In
particular, for a fixed 𝑡 the function 𝐺(𝑥, 𝑡, 𝜆) of the variable𝑥 is an operator solution of (2) on each of the intervals [0, 𝑡),(𝑡,∞), and it satisfies the boundary condition (18), and at a
fixed 𝑥, the function 𝐺(𝑥, 𝑡, 𝜆) satisfies (28) in the variable𝑡 on each of the intervals [0, 𝑥), (𝑥,∞), and it satisfies the
boundary condition (cos𝐴)∗ ⋅ 𝑦󸀠(0) − (sin𝐴)∗ ⋅ 𝑦(0) = 0.

By definition (28), function 𝐺(𝑥, 𝑡, 𝜆) is meromorphic by
parameter 𝜆with the poles coinciding with the eigenvalues of
the operator 𝐿.

We consider the operator 𝑅𝜆 defined in 𝐿2(H, (0,∞)) by
the relation(𝑅𝜆𝑓) (𝑥) = ∫∞

0

𝐺 (𝑥, 𝑡, 𝜆) 𝑓 (𝑡) 𝑑𝑡
= −∫𝑥
0

Φ (𝑥, 𝜆) (𝑊{𝑌̃, Φ})−1 𝑌̃ (𝑡, 𝜆) 𝑓 (𝑡) 𝑑𝑡
+ ∫∞
𝑥

𝑌 (𝑥, 𝜆) (𝑊{Φ̃, 𝑌})−1 Φ̃ (𝑡, 𝜆) 𝑓 (𝑡) 𝑑𝑡.
(30)

Theorem 5. The operator 𝑅𝜆 is the resolvent of the operator 𝐿.
4. Proof of Theorem 5

One can directly verify that, for any function 𝑓(𝑥) ∈𝐿2(H, (0,∞)), the vector-function 𝑦(𝑥, 𝜆) = (𝑅𝜆𝑓)(𝑥) is a
solution of the equation 𝑙[𝑦] − 𝜆𝑦 = 𝑓 whenever 𝜆 ∉ 𝜎(𝐿).
We will prove that 𝑦(𝑥, 𝜆) ∈ 𝐿2(H, (0,∞)).

Since operator solutions Φ(𝑥, 𝜆) and Ψ(𝑥, 𝜆) form a
fundamental system of solutions of (2), the operator solution𝑌(𝑥, 𝜆) of (2) satisfying the initial conditions (26) can be
written as𝑌(𝑥, 𝜆) = Φ(𝑥, 𝜆)𝐴(𝜆)+Ψ(𝑥, 𝜆)𝐵(𝜆), where𝐴(𝜆) =𝑊{Ψ̃, 𝑌}, 𝐵(𝜆) = −𝑊{Φ̃, 𝑌}; that is,𝑌 (𝑥, 𝜆) = Φ (𝑥, 𝜆)𝑊{Ψ̃, 𝑌} − Ψ (𝑥, 𝜆)𝑊{Φ̃, 𝑌} . (31)

Similarly, the operator solution 𝑌̃(𝑥, 𝜆) of (28) can be
represented in the following form:𝑌̃ (𝑥, 𝜆) = 𝑊{𝑌̃, Φ} Ψ̃ (𝑥, 𝜆) − 𝑊{𝑌̃, Ψ} Φ̃ (𝑥, 𝜆) . (32)

By using formulas (31) and (32), we can rewrite relation (30)
as follows:(𝑅𝜆𝑓) (𝑥)= −∫𝑎

0

Φ (𝑥, 𝜆) (𝑊{𝑌̃, Φ})−1 𝑌̃ (𝑡, 𝜆) 𝑓 (𝑡) 𝑑𝑡+ 𝜒1 (𝑥, 𝜆) − 𝜒2 (𝑥, 𝜆) + 𝜒3 (𝑥, 𝜆) − 𝜒4 (𝑥, 𝜆) , (33)

where 𝑎 > 0 and𝜒1 (𝑥, 𝜆) = Φ (𝑥, 𝜆) (𝑊{𝑌̃, Φ})−1𝑊{𝑌̃, Ψ}⋅ ∫𝑥
𝑎

Φ̃ (𝑡, 𝜆) 𝑓 (𝑡) 𝑑𝑡,
𝜒2 (𝑥, 𝜆) = Φ (𝑥, 𝜆) ∫𝑥

𝑎

Ψ̃ (𝑡, 𝜆) 𝑓 (𝑡) 𝑑𝑡,
𝜒3 (𝑥, 𝜆) = Φ (𝑥, 𝜆)𝑊{Ψ̃, 𝑌} (𝑊{Φ̃, 𝑌})−1⋅ ∫∞
𝑥

Φ̃ (𝑡, 𝜆) 𝑓 (𝑡) 𝑑𝑡,
𝜒4 (𝑥, 𝜆) = Ψ (𝑥, 𝜆) ∫∞

𝑥

Φ̃ (𝑡, 𝜆) 𝑓 (𝑡) 𝑑𝑡.
(34)

Let us show that each of these vector-functions 𝜒1(𝑥, 𝜆),𝜒2(𝑥, 𝜆), 𝜒3(𝑥, 𝜆), and 𝜒4(𝑥, 𝜆) belongs to 𝐿2(H, (0,∞)).
Since the operator solution Φ(𝑥, 𝜆) decays fairly quickly as𝑥 → ∞, then |Φ(𝑥, 𝜆)| ∈ 𝐿2(0,∞). It follows that󵄨󵄨󵄨󵄨𝜒1 (𝑥, 𝜆)󵄨󵄨󵄨󵄨 ≤ 𝑐 (𝜆) ⋅ |Φ (𝑥, 𝜆)| ⋅ ∫𝑥

𝑎

󵄨󵄨󵄨󵄨󵄨Φ̃ (𝑡, 𝜆)󵄨󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡
≤ 𝑐 (𝜆) ⋅ |Φ (𝑥, 𝜆)| ⋅ (∫𝑥

𝑎

󵄨󵄨󵄨󵄨󵄨Φ̃ (𝑡, 𝜆)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡)1/2
⋅ (∫𝑥
𝑎

󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡)1/2
< 𝑐 (𝜆) ⋅ |Φ (𝑥, 𝜆)| ⋅ (∫∞

𝑎

󵄨󵄨󵄨󵄨󵄨Φ̃ (𝑡, 𝜆)󵄨󵄨󵄨󵄨󵄨 𝑑𝑡)1/2
⋅ (∫∞
𝑎

󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡)1/2 ≤ 𝑐1 (𝜆) ⋅ |Φ (𝑥, 𝜆)| ,
(35)

and therefore 𝜒1(𝑥, 𝜆) ∈ 𝐿2(H, (0,∞)). Similarly we get that𝜒3(𝑥, 𝜆) ∈ 𝐿2(H, (0,∞)). First we prove the assertion for
the function 𝜒2(𝑥, 𝜆), when 𝛼 > 1 and the coefficients of (2)
satisfy the conditions (4)-(5). In this case, we have󵄨󵄨󵄨󵄨𝜒2 (𝑥, 𝜆)󵄨󵄨󵄨󵄨 ≤ |Φ (𝑥, 𝜆)| ∫𝑥

𝑎

󵄨󵄨󵄨󵄨󵄨Ψ̃ (𝑡, 𝜆)󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡. (36)

By virtue of the asymptotic formulas for the operator solu-
tionsΦ(𝑥, 𝜆) and Ψ(𝑥, 𝜆) we obtain that󵄨󵄨󵄨󵄨𝜒2 (𝑥, 𝜆)󵄨󵄨󵄨󵄨 ≤ 𝑐1 (𝜆) 𝛾0 (𝑥, 𝜆) ∫𝑥

𝑎

𝛾∞ (𝑡, 𝜆) 󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡. (37)
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Let us rewrite this relation in the following form:󵄨󵄨󵄨󵄨𝜒2 (𝑥, 𝜆)󵄨󵄨󵄨󵄨≤ 𝑐1 (𝜆) 𝛾0 (𝑥, 𝜆) 𝛾∞ (𝑥, 𝜆) ∫𝑥
𝑎

𝛾∞ (𝑡, 𝜆)𝛾∞ (𝑥, 𝜆) 󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡. (38)

By using the definition of the functions 𝛾0(𝑥, 𝜆) and 𝛾∞(𝑥, 𝜆)
(see (6)) and by applying the Cauchy- Bunyakovsky inequal-
ity we obtain

󵄨󵄨󵄨󵄨𝜒2 (𝑥, 𝜆)󵄨󵄨󵄨󵄨 ≤ 12𝑐1 (𝜆) 1√V (𝑥) (∫𝑥𝑎 √ V (𝑥)
V (𝑡)

⋅ exp(−2∫𝑥
𝑡

√V (𝑢)𝑑𝑢)𝑑𝑡)1/2
⋅ (∫∞
0

󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨2 𝑑𝑡)1/2 .
(39)

Since 𝑡 ≤ 𝑥, we get exp(−2 ∫𝑥
𝑡
√V(𝑢)𝑑𝑢) ≤ 1, and then the

latter estimate for 𝜒2(𝑥, 𝜆) can be rewritten as follows:

󵄨󵄨󵄨󵄨𝜒2 (𝑥, 𝜆)󵄨󵄨󵄨󵄨 ≤ 𝑐2 (𝜆) 1
4√V (𝑥) (∫𝑥𝑎 1√V (𝑡)𝑑𝑡)1/2

≤ 𝑐2 (𝜆) 1
4√V (𝑥) (∫∞𝑎 1√V (𝑡)𝑑𝑡)1/2 .

(40)

By formula (4), we get󵄨󵄨󵄨󵄨𝜒2 (𝑥, 𝜆)󵄨󵄨󵄨󵄨 ≤ 𝑐3 (𝜆)
4√V (𝑥) , (41)

and hence if 𝛼 > 1 and the coefficients of (2) satisfy the
conditions (4) and (5), we have 𝜒2(𝑥, 𝜆) ∈ 𝐿2(H, (0,∞)). In
the case of V(𝑥) = 𝑥2𝛼, 0 < 𝛼 ≤ 1, the assertion can be proved
similarly.

For the function𝜒4(𝑥, 𝜆)wewill conduct the proof for the
case when V(𝑥) = 𝑥2𝛼, 0 < 𝛼 ≤ 1, and the coefficients of (2)
satisfy condition (10). As in (37) we have󵄨󵄨󵄨󵄨𝜒4 (𝑥, 𝜆)󵄨󵄨󵄨󵄨 ≤ 𝑐1 (𝜆) 𝛾∞ (𝑥, 𝜆) ∫∞

𝑥

𝛾0 (𝑡, 𝜆) 󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡, (42)

which can be rewritten as follows:󵄨󵄨󵄨󵄨𝜒4 (𝑥, 𝜆)󵄨󵄨󵄨󵄨≤ 𝑐1 (𝜆) 𝛾0 (𝑥, 𝜆) 𝛾∞ (𝑥, 𝜆) ∫∞
𝑥

𝛾0 (𝑡, 𝜆)𝛾0 (𝑥, 𝜆) 󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡. (43)

Let us use the asymptotic behavior of the functions 𝛾0(𝑥, 𝜆)
and 𝛾∞(𝑥, 𝜆), for example, in the case (𝛼 + 1)/2𝛼 = 𝑛 ∈ 𝑁,

that is, 𝛼 = 1/(2𝑛 − 1) (see (12)). Setting 𝑎(𝛼, 𝜆) = ((1 ⋅ 3 ⋅ . . . ⋅(2𝑛 − 3))/𝑛!) ⋅ (𝜆/2)𝑛, we obtain󵄨󵄨󵄨󵄨𝜒4 (𝑥, 𝜆)󵄨󵄨󵄨󵄨 ≤ 𝑐2 (𝜆) 𝑥−𝛼 ∫∞
𝑥

𝛾0 (𝑡, 𝜆)𝛾0 (𝑥, 𝜆) 󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑡 ≤ 𝑐2 (𝜆)
⋅ 𝑥−𝛼 (∫𝑥

𝑎

( 𝛾0 (𝑡, 𝜆)𝛾0 (𝑥, 𝜆))2 𝑑𝑡)1/2 (∫∞0 󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨2 𝑑𝑡)1/2 ,
󵄨󵄨󵄨󵄨𝜒4 (𝑥, 𝜆)󵄨󵄨󵄨󵄨 ≤ 𝑐3 (𝜆) 𝑥−𝛼(∫∞

𝑥

( 𝑡𝑥)2𝑎(𝛼,𝜆)−𝛼
⋅ exp −2𝑥𝛼+1 ((𝑡/𝑥)𝛼+1 − 1)1 + 𝛼 𝑑𝑡)1/2 .

(44)

Replacing variables 𝑡 = 𝑥𝑢, we get󵄨󵄨󵄨󵄨𝜒4 (𝑥, 𝜆)󵄨󵄨󵄨󵄨 ≤ 𝑐3 (𝜆) 𝑥−𝛼+1/2(∫∞
1

𝑢2𝑎(𝛼,𝜆)−𝛼
⋅ exp −2𝑥𝛼+1 (𝑢𝛼+1 − 1)1 + 𝛼 𝑑𝑢)1/2 . (45)

Since the inequality exp(−𝑥𝛼+1(𝑢𝛼+1−1)/(1+𝛼)) ≤ 𝑥−2 holds
for all 𝛼 ∈ (0, 1] and 𝑢 ∈ [1,∞) with sufficiently large 𝑥, we
have 󵄨󵄨󵄨󵄨𝜒4 (𝑥, 𝜆)󵄨󵄨󵄨󵄨 ≤ 𝑐3 (𝜆) 𝑥−𝛼−1/2(∫∞

1

𝑢2𝑎(𝛼,𝜆)−𝛼
⋅ exp −𝑥𝛼+1 (𝑢𝛼+1 − 1)1 + 𝛼 𝑑𝑢)1/2 . (46)

Hence it follows that |𝜒4(𝑥, 𝜆)| ≤ 𝑐4(𝛼, 𝜆)𝑥−𝛼−1/2, and
therefore 𝜒4(𝑥, 𝜆) ∈ 𝐿2(H, (0,∞)). In case, where 0 < 𝛼 ≤ 1
and (𝛼 + 1)/2𝛼 ∉ 𝑁, and where 𝛼 > 1, the proof is similar.

Thus, 𝑅𝜆𝑓 ∈ 𝐿2(H, (0,∞)) for any function 𝑓 ∈𝐿2(H, (0,∞)). This completes the proof.
Since the resolvent𝑅𝜆 is ameromorphic function of𝜆, the

poles of which coincide with the eigenvalues of the operator𝐿, the statement of Theorem 3 can be refined.

Theorem6. If conditions (4)-(5) where 𝛼 > 1 or condition (10)
where 0 < 𝛼 ≤ 1 is satisfied for (2), then the spectrum of the
operator 𝐿 is real and discrete and coincides with the union of
spectra of self-adjoint operators 𝐿𝑘, 𝑘 = 1,𝑚; that is,𝜎 (𝐿) = 𝑟⋃

𝑘=1

𝜎 (𝐿𝑘) . (47)

5. Application

Here we consider (2) with matrix coefficients and use the
same notation as in Section 3 (note that could be considered
second-order equation with block-triangular coefficients of
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a more general form [14]). Suppose that every symmetric
operator 𝐿󸀠𝑘 is lower semibounded. Let 𝐿 be an arbitrary
extension of the operator 𝐿󸀠, defined boundary condition at
infinity, and𝐿𝑘 an arbitrary self-adjoint extension of the oper-
ator 𝐿󸀠𝑘. If the conditions at infinity determine the Friedrichs
extension 𝐿0𝑘 of the semibounded symmetric operator 𝐿󸀠𝑘, the
corresponding extension of 𝐿󸀠 will be denoted 𝐿0. Besides, let
us assume that coefficients of (2) for the problem of semiaxis
are such that discrete spectrum of 𝐿 operator coincides with
the union of discrete spectra of 𝐿𝑘 operators, 𝑘 = 1, 𝑟,
(sufficient conditions are specified above inTheorem 6).

Denote by nul𝑎𝑇 the algebraic multiplicity of 0 as an
eigenvalue of 𝑇.

Denote by 𝑁0𝑎(𝜆) the number of eigenvalues 𝜆0𝑛 < 𝜆 <𝜆𝑒(𝐿0) of the operator 𝐿0 counted according to their algebraic
multiplicities. Here 𝜆𝑒(𝐿0) stands for the lower bound of the
essential spectrum of the operator 𝐿0.

In [14] is set oscillation theorem of Sturm for equations
with block-triangular matrix potential.

Theorem 7. Suppose the operator 𝐿0 is generated by the
differential expression 𝑙[𝑦]withmatrix block-triangular poten-
tial, the boundary condition at 0 (18), and such boundary
conditions at the infinity that one gets Friedrichs extensions for
semibounded symmetric operators 𝐿󸀠𝑘.Then for 𝜆 < 𝜆𝑒(𝐿0) one
has ∑

𝑥∈(0,∞)

nul𝑎𝑌 (𝑥, 𝜆) = 𝑁0𝑎 (𝜆) (48)

(the sum is in those 𝑥 ∈ (0,∞) for which nul𝑎𝑌(𝑥, 𝜆) ̸= 0).
In the same article a theorem about the connection

between spectral and oscillation properties for any extension
of the minimal operator is also proved. These theorems are
generalizations for non-self-adjoint operators of the classical
Sturm type oscillation theorems and this problem was con-
sidered for the first time.

6. Conclusion

In this work a resolvent is constructed for the Sturm-
Liouville operator with a block-triangular operator potential
increasing at infinite. The structure of the spectrum of such
an operator is obtained.
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