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We define and study several properties of what we callMaximal Strichartz Family of Gaussian Distributions. This is a subfamily of
the family of Gaussian Distributions that arises naturally in the context of the Linear Schrödinger Equation and Harmonic Analysis,
as the set of maximizers of certain norms introduced by Strichartz. From a statistical perspective, this family carries with itself some
extrastructure with respect to the general family of Gaussian Distributions. In this paper, we analyse this extrastructure in several
ways. We first compute the Fisher Information Matrix of the family, then introduce some measures of statistical dispersion, and,
finally, introduce a Partial Stochastic Order on the family. Moreover, we indicate how these tools can be used to distinguish between
distributions which belong to the family and distributions which do not. We show also that all our results are in accordance with
the dispersive PDE nature of the family.

1. Introduction

The most important multivariate distribution is the Multi-
variate Normal (MVN) Distribution. To fix the notation, we
give here its definition.

Definition 1. One says that a random variable𝑋 is distributed
as a Multivariate Normal Distribution if its probability den-
sity function (pdf)

𝑓
𝑋
: R𝑛

→ R (1)

takes the form

𝑓
𝑋
(𝑥

1
, . . . , 𝑥

𝑛
)

=
1

√(2𝜋)
𝑛
|Σ|

exp(−1
2
(𝑥 − 𝜇)

𝑇
Σ

−1
(𝑥 − 𝜇)) ,

(2)

where 𝜇 fl 𝐸[𝑋] ∈ R𝑛 is the mean value vector and Σ fl
Var(𝑋) ∈ Sym+

𝑛
is the 𝑛 × 𝑛 positive definite symmetric

Variance-Covariance Matrix.

Its importance derives mainly (but not only) from the
Multivariate Central Limit Theorem which has the following
statement.

Theorem 2. Suppose that 𝑋 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇 is a random

vector with Variance-Covariance Matrix Σ. Assume also that
𝐸[𝑥

2

𝑖
] < +∞ for every 𝑖 = 1, . . . , 𝑛. If 𝑋

1
, 𝑋

2
, 𝑋

3
, . . . is a

sequence of i.i.d. random variables distributed as 𝑋, then

1

𝑛1/2

𝑛

∑

𝑖=1

(𝑋
𝑖
− 𝐸 [𝑋

𝑖
]) →

𝑑MVN (0, Σ) , (3)

where→𝑑 represents the convergence in distribution.

Due to its importance, several authors have tried to
give characterizations of this family of distributions. See, for
example, [1, 2] for an extended discussion onmultivariate dis-
tributions and their properties. Here, we concentrate on char-
acterizing the MVN through variational principles, such as
the maximization of certain functionals. A well-known char-
acterization of the Gaussian Distribution is through themax-
imization of the Differential Entropy, under the constraint of
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fixed variance Σ. We focus on the case of when the support
of the pdf is the whole Euclidean Space R𝑛.

Theorem 3. Let 𝑋 be a random variable whose pdf is 𝑓
𝑋
.

The Differential Entropy ℎ(𝑋) is defined by the following func-
tional:

ℎ (𝑋) fl −∫
R𝑛
𝑓
𝑋 (𝑥) log𝑓𝑋 (𝑥) 𝑑𝑥. (4)

The Multivariate Normal Distribution has the largest Differ-
ential Entropy ℎ(𝑋) amongst all the random variables 𝑋 with
equal variance Σ. Moreover, the maximal value of the Differen-
tial Entropy ℎ(𝑋) is ℎ(MVN(Σ)) = (1/2) log[(2𝜋𝑒)𝑛|Σ|].

We refer to Appendix for a proof of this well-known the-
orem.This characterization is, in some sense, not completely
satisfactory because it is given just with the restriction of fixed
variance. A more general characterization of the Gaussian
Distribution has been given in a setting which, at first sight,
seems very far, and it is the one of Harmonic Analysis and
PartialDifferential Equations.Wefirst introduce the so-called
admissible exponents.

Definition 4. Fix 𝑛 ≥ 1. One calls a set of exponents (𝑞, 𝑟)
admissible if 2 ≤ 𝑞, 𝑟 ≤ +∞ and

2

𝑞
+
𝑛

𝑟
=
𝑛

2
. (5)

Remark 5. These exponents are characteristic quantities of
certain norms, the Strichartz Norms, naturally arising in the
context of Dispersive Equations and can vary from equation
to equation. We refer to [3] for more details.

Here is the precise characterization of the Multivariate
Normal Distribution, through Strichartz Estimates.

Theorem 6 (see [4–7]). Suppose 𝑛 = 1 or 𝑛 = 2. Then, for
every (𝑞, 𝑟) and (�̃�, �̃�) admissible and for every 𝑢

0
∈ 𝐿

2

𝑥
(R𝑛

)

such that ‖𝑢
0
‖
2

𝐿
2
(R𝑛) = 1, we have


𝑒
−𝑖𝑡Δ

𝑢
0

𝐿
𝑞

𝑡
𝐿
𝑟

𝑥

≤ 𝑆 (𝑛, 𝑞, 𝑟) , (6)

where 𝑆
ℎ
(𝑛, 𝑞, 𝑟) = 𝑆

ℎ
(𝑛, 𝑟) is the Sharp Homogeneous

Strichartz Constant, defined by

𝑆
ℎ (𝑛, 𝑟) fl sup {‖𝑢‖

𝐿
𝑞

𝑡
𝐿
𝑟

𝑥
(R×R𝑛) : ‖𝑢‖

2

𝐿
2

𝑥
(R𝑛) = 1} (7)

and given by

𝑆
ℎ (𝑛, 𝑟) = 2

𝑛/4−𝑛(𝑟−2)/2𝑟
𝑟
−𝑛/2𝑟

. (8)

Moreover, inequality (6) becomes an equality if and only if |𝑢
0
|
2

is the pdf of a Multivariate Normal Distribution.

For several other important results on Strichartz Esti-
mates, we refer to [8–11] and the references therein.

Remark 7. This characterization does not need the restriction
of fixed variance as the one achieved using the Differential
Entropy Functional and so it is, in some sense, more “gen-
eral.” The result is conjectured to be true for any dimension
𝑛 ≥ 1. See, for example, [7], where the optimal constant has
been computed in any dimension 𝑛 ≥ 1, under the hypothesis
that the maximizers are Gaussians also in dimension 𝑛 ≥ 3.

We refer to [7] for the relation of this result with harmonic
analysis and restriction theorems.

Strichartz Estimates are a fundamental tool in the prob-
lem of global well-posedness of PDEs and measure a partic-
ular type of dispersion (see, e.g., [3–5, 7, 12, 13]). Strichartz
Estimates bring with themselves some interesting statistical
features and this is what we want to analyse in the present
paper.

The symmetries of the functional in (6) give rise to a
family of distributions that we callMaximal Strichartz Family
of Gaussian Distributions:

F fl {𝑝 (𝑡, 𝑥) = (
𝜋

2
)

−𝑛/2

𝑅

𝑇
𝑅


−1/2 
𝜆

2
+ 16𝑡

2

−𝑛/2

⋅ 𝑒
−2(𝑥−𝑥

0
−V𝑡)𝑇(𝑅𝑇𝑅)

−1

(𝑥−𝑥
0
−V𝑡)/(𝜆2+16𝑡

2

)
:

(9)

(𝑡, 𝜆) ∈ R × R, (𝑥
0
, V) ∈ R𝑛

× R𝑛
, 𝑅 ∈ 𝑆𝑂 (𝑛) } . (10)

We refer to Section 2 for its precise construction. This is a
subfamily of the family of GaussianDistributions and, among
the other things, it has the feature that the Mean Vector 𝜇
and the Variance-Covariance Matrix Σ depend on common
parameters.Therefore, froma statistical perspective, this fam-
ily carries with itself some extrastructure with respect to the
general family of Gaussian Distributions. This extrastructure
becomes evident from the form of the Fisher Information
Metric of the family.

Theorem 8. Consider 𝑝(𝑡, 𝑥), a probability distribution func-
tion belonging to the Maximal Strichartz Family of Gaussian
Distributions F, defined in (9). The vector of parameters 𝜃,
indexingF, is given by

𝜃 fl (𝑥
𝑇

0
, V𝑇

0
, 𝜆, (𝑅

𝑇
𝑅)

𝑖𝑗
, 𝑡)

𝑇

. (11)

Then, the Fisher Information Matrix of 𝑝(𝑡, 𝑥) is given

(i) in the spherical case (𝑅𝑇
𝑅 = 𝜎

2
𝐼𝑑) by
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)

)

; (12)

(ii) in the elliptical case (𝑅𝑇
𝑅 = 𝜎

2

𝑖
𝐼𝑑; see Section 3 for the

precise definition) by
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𝑖
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𝑡
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0



2
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)
)
)
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. (13)

Remark 9. Technically, the only possible case inside the
Maximal Strichartz Family of Gaussian Distributions is when
𝑅

𝑇
𝑅 = 𝐼𝑑

𝑛×𝑛
, since 𝑅 ∈ 𝑆𝑂(𝑛) (the spherical case, with

𝜎
2
= 1). The form of the Fisher Information Matrix, in that

case, is simplified to a lower dimension. Nevertheless, the
computation performed in the way we did gives the possibil-
ity to compute a distance (in some sense centred at the Max-
imal Strichartz Family of Gaussian Distributions) between
members of the Maximal Strichartz Family of Gaussian
Distributions and otherGaussianDistributions, forwhich the
orthogonal matrix condition 𝑅

𝑇
𝑅 = 𝐼𝑑

𝑛×𝑛
is not necessarily

satisfied. In particular, it can distinguish between Gaussians
evolving through the PDE flow (see Section 2) and Gaussians
which do not.

Remark 10. We believe that using the flow of a Partial Differ-
ential Equation is a naturalway to produce probability density
functions, in particular, in this case, since the flow of the
PDE, that we are using, preserves the probability constraint.
See Section 2.2 for more details on this comment.

As we said, Strichartz Estimates are a way to measure
the dispersion caused by the flow of the PDE to which they
are related. In statistics, dispersion explains how stretched or
squeezed is a distribution. A measure of statistical dispersion
is a nonnegative real number which is small for data which
are very concentrated and increases as the data become more
spread-out. Common examples of measures of statistical
dispersion are the variance, the standard deviation, the range,
and many others. Here, we connect the two closely related
concepts (dispersion in statistics and PDEs) by introducing
some measures of statistical dispersion like the Index of
Dispersion in Definition 38 (see Section 4) which reflect the
dispersive PDE nature of the Maximal Strichartz Family of
Gaussian Distributions.

Definition 11. Consider the norms ‖ ⋅ ‖
𝑎
and ‖ ⋅ ‖

𝑏
on the space

of Variance-Covariance Matrices Σ and ‖ ⋅ ‖
𝑐
on the space of

mean values 𝜇. One defines the following Index of Dispersion:

I
𝑎𝑏𝑐

𝑀
fl ‖Σ (0)‖𝑎 ×

‖Σ (𝑡)‖𝑏

𝜇 (𝑡)


4

𝑐

, (14)
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with 𝑡 ̸= 0 and where 𝜇(𝑡) is as follows:

𝜇 (𝑡) fl 𝑥
0
+ V𝑡, (15)

while Σ(𝑡) is given by

Σ (𝑡) fl
1

4
(𝜆

2
+ 16𝑡

2
) 𝑅

𝑇
𝑅. (16)

One calls I𝑎𝑏𝑐

𝑀
the 𝑎𝑏𝑐-Dispersion Index of the Maximal

Family of Gaussians and one calls

I
𝑎

𝑀
fl ‖Σ (0)‖𝑎 (17)

𝑎-Static Dispersion Index of the Maximal Family of Gaus-
sians.

We compute this Index of Dispersion for our family of
distributions and show that it is consistent with PDE results.
We refer to Definition 38 for more details.

Another important concept in probability and statistics
is the one of Stochastic Order. A Stochastic Order is a way
to consistently put a set of random variables in a sequence.
Most of the Stochastic Orders are partial orders, in the sense
that an order between the random variables exists, but not all
the random variables can be put in the same sequence. Many
different Stochastic Orders exist and have different applica-
tions. For more details on Stochastic Orders, we refer to [14].
Here, we use our Index of Dispersion to define a Stochastic
Order on theMaximal Strichartz Family of GaussianDistribu-
tions and see how there are natural ways of partially ranking
the distributions of the family (see Section 5), in agreement
with the flow of the PDE.

Definition 12. Consider two random variables 𝑋
1
and 𝑋

2

such that 𝜇
𝑋
1

(𝜃
1
) = 𝜇

𝑋
2

(𝜃), for any 𝜃
1
and 𝜃

2
. One says

that the two random variables are ordered according to their
Dispersion Index I if and only if the following condition is
satisfied:

𝑋
1
≺ 𝑋

2
⇐⇒

I (𝑋
2
) ≤ I (𝑋

1
) .

(18)

Remark 13. In this definition the indexI can vary according
to the context and the choices of the norms in the definition
of the index.

An important tool which will be fundamental in our
analysis is what we call 1/𝛼-Characteristic Function (see Sec-
tion 2 and [7, 15]). We conclude the paper with an appendix
in which, among the other things, we use the concept of
1/𝛼-Characteristic Function to define generalized types of
Momenta that exist also for the Multivariate Cauchy Distri-
butions.

2. Construction of the Maximal Strichartz
Family of Gaussian Distributions

This section is devoted to the construction of the Maximal
Strichartz Family of Gaussian Distributions; see Figure 1. This

u
0
∈ L

2

(𝐑
n

)

S(t)

u(t) ∈ L
2

(𝐑
n

)

|·|
2

|·|
2

p
0
∈ 𝒫(Rn)

S(t)
∗

p(t) ∈ 𝒫(Rn)

Figure 1

is basically done through PDE methods. The program is the
following.

(1) We define 1/𝛼-Characteristic Functions.
(2) Weprove that if𝑢

0
generates a probability distribution

𝑝
0
(𝑥), then 𝑢(𝑡, 𝑥) = 𝑒

𝑖𝑡Δ
𝑢
0
(see below its precise def-

inition) still defines a probability distribution 𝑝
𝑡
(𝑥) =

|𝑢(𝑡, 𝑥)|
2.

(3) By means of 1/𝛼-Characteristic Functions, we give
the explicit expression of 𝑢(𝑡, 𝑥) the generator of the
family.

(4) We use symmetries and invariances to build the
complete familyF.

2.1. The 1/𝛼-Characteristic Functions. Following the pro-
gram, we first need to introduce the tool of 1/𝛼-Characteristic
Functions to characterizeF. It is basically the Fourier Trans-
form, but, differently from the Characteristic Function, the
average is not taken with the pdf, but with a power of the pdf.

Definition 14. Consider 𝑢 : R𝑛
→ C to be a Schwartz

function, namely, a function belonging to the space

S (R𝑛
) fl {𝑓 ∈ 𝐶

∞
(R𝑛

) |
𝑓
𝛼,𝛽

< ∞ ∀𝛼, 𝛽} , (19)

with𝛼 and𝛽 beingmulti-indices, endowedwith the following
norm:

𝑓
𝛼,𝛽

= sup
𝑥∈R𝑛


𝑥

𝛼
𝐷

𝛽
𝑓 (𝑥)


. (20)

Moreover, suppose that

∫
R𝑛
|𝑢|

𝛼
= 1; (21)

namely, |𝑢|𝛼 defines a continuous probability distribution
function. Then, one defines

𝜙
𝑢

𝛼
(𝜉) fl

1

(2𝜋)
𝑛/2

∫
R𝑛
𝑒
−𝑖𝑥⋅𝜉

𝑢 (𝑥) 𝑑𝑥. (22)

One calls 𝜙𝑢

𝛼
(𝜉) the 1/𝛼-Characteristic Function of 𝑢. More-

over, one defines the Inverse 1/𝛼-Characteristic Function by

𝜓
𝜙
𝑢

𝛼

𝛼
(𝑥) fl

1

(2𝜋)
𝑛/2

∫
R𝑛
𝑒
𝑖𝑥⋅𝜉

𝜙
𝑢

𝛼
(𝜉) 𝑑𝜉. (23)
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We refer to the note [15] for examples and properties of
1/𝛼-Characteristic Functions and to Appendix for a simple
straightforward application of this tool. In particular, we
notice that 𝜓𝜙

𝑢

𝛼

𝛼
(𝑥) = 𝑢(𝑥).

Remark 15. If 𝑢 is complex valued (not just real valued) and,
for example, 𝛼 = 𝑛 ∈ N, then there are 𝑛-distinct complex
roots of |𝑢|2. In our discussion, this will not create to us any
problem, because our process starts with 𝑢 and produces |𝑢|2.
We want to remark that the map |𝑢|

𝛼
→ 𝑢 is a multivalued

function. For this reason, we cannot reconstruct uniquely a
generator, given the family that it generates. See formula (39)
below and [15] for more details.

Remark 16. Wecould define 1/𝛼-Characteristic Functions for
more general functions 𝑢 : 𝑋 → 𝐹 with 𝑋 a locally compact
abelian group and 𝐹 a general field. We do not pursue this
direction here andwewill leave it for a future work.We notice
that 𝜙𝑢

𝛼
(𝜉) can be considered also as a 1/𝛼-Expected Value:

𝐸
1/𝛼

|𝑢|
2
[𝑒

−𝑖𝑥𝜉
] =

1

(2𝜋)
𝑛/2

∫
R𝑛
𝑒
−𝑖𝑥⋅𝜉

𝑢 (𝑥) 𝑑𝑥. (24)

2.2. Conservation of Mass and Flow on the Space of Probability
Measures. In this subsection, we show that if 𝑝

0
(𝑥) = |𝑢

0
|
2

defines a probability distribution, then also 𝑝
𝑡
(𝑥) = |𝑒

𝑖𝑡Δ
𝑢
0
|
2

defines a probability distribution. This is mainly a conse-
quence of the property of 𝑒𝑖𝑡Δ of being a unitary operator.

Theorem 17. ConsiderP(R𝑛
), the set of all probability distri-

butions on R𝑛 and 𝑢 : (0,∞) × R𝑛
→ C a solution to (27).

Then 𝑢 induces a flow in the space of probability distributions.

Proof. Consider 𝑢
0
: R𝑛

→ C such that ‖𝑢‖
𝐿
2
(R𝑛) = 1; so

𝑝
0
(𝑥) fl |𝑢

0
(𝑥)|

2 is a probability distribution onR𝑛. Consider
𝑢(𝑡, 𝑥), the solution of (27) with initial datum 𝑢

0
. Then

𝜕
𝑡
∫
R𝑛
|𝑢|

2
= 𝜕

𝑡
∫
R𝑛
𝑢𝑢 = ∫

R𝑛
𝜕
𝑡 (𝑢𝑢)

= ∫
R𝑛
(𝜕

𝑡
𝑢𝑢 + 𝑢𝜕

𝑡
𝑢)

= ∫
R𝑛
R [𝑢 (

𝑖

2
Δ𝑢) − 𝑢(

𝑖

2
Δ𝑢)] = 0.

(25)

So 𝜕
𝑡
∫R𝑛 |𝑢|

2
= 0 and hence

∫
R𝑛
|𝑢 (𝑡, 𝑥)|

2
= ∫

R𝑛
𝑢0 (𝑥)



2
= 1. (26)

Therefore, for every 𝑡 ∈ R, 𝑝(𝑡, 𝑥) fl |𝑢(𝑡, 𝑥)|
2 is a probability

distribution.

Remark 18. This situation is in striking contrast with respect
to the heat equation, where if you start with a probability
distribution as initial datum, instantaneously the constraint
of being a probability measure is broken.

2.3. Fundamental Solution for the Linear Schrödinger Equation
Using 1/𝛼-Characteristic Functions. In this subsection, we
solve the Linear Schrödinger Equation

𝑖𝜕
𝑡
𝑢 (𝑡, 𝑥) = Δ𝑢 (𝑡, 𝑥) , (𝑡, 𝑥) ∈ (0,∞) × R𝑛

, (27)

with initial datum 𝑢
0
(𝑥) = 𝑒

−|𝑥|
2

∈ S(R𝑛
). This will produce

a natural generator 𝑢(𝑡, 𝑥) of a family of probability distribu-
tions, due toTheorem 17.

We first notice that the initial datum becomes a proba-
bility density function, if and only if multiplied by a constant.
But, since the equation is linear, we can do everythingwithout
that constant and then include it at the end.

Remark 19. These computations are well known, but we
perform them in detail here, in order to clarify what we will
compute in the context of 1/𝛼-Characteristic Functions.

Since 𝑢
0
(𝑥) ∈ S(R𝑛

), then also 𝜕
𝑡
𝑢(𝑡, 𝑥) ∈ S(R𝑛

) and
Δ𝑢(𝑡, 𝑥) ∈ S(R𝑛

). So, we can apply the 1/2-Characteristic
Function to both sides of (27) and get

𝑖𝜕
𝑡
𝜙

𝑢

2
= −

𝜉


2
𝜙

𝑢

2
, (28)

whose solution is

𝜙
𝑢

2
(𝜉, 𝑡) = 𝑒

𝑖|𝜉|
2

𝑡
𝜙

𝑢

2
(𝜉, 0) . (29)

We now need to compute the 1/𝛼-Characteristic Function
of the initial datum and then the Inverse 1/2-Characteristic
Function of 𝜙𝑢

2
(𝑡, 𝜉) to get the explicit form of the solution.

We have

𝜙
𝑢

2
(0, 𝜉) =

1

(2𝜋)
𝑛/2

∫
R𝑛
𝑒
−𝑖𝑥⋅𝜉

𝑢 (0, 𝑥) 𝑑𝑥

=
1

(2𝜋)
𝑛/2

∫
R𝑛
𝑒
−𝑖𝑥⋅𝜉

𝑒
−|𝑥|
2

𝑑𝑥

=
1

(2𝜋)
𝑛/2

∫
R𝑛
𝑒
−(|𝑥|
2

+𝑖𝑥⋅𝜉−|𝜉|
2

/4)
𝑒
−|𝜉|
2

/4
𝑑𝑥

=
𝑒
−|𝜉|
2

/4

(2𝜋)
𝑛/2

∫
R𝑛
𝑒
−|𝑥−𝑖𝜉/2|

2

𝑑𝑥

(30)

by using contour integrals. We notice that, with a simple
change of variables, we have

2
𝑛/2

∫
R𝑛
𝑒
−|𝑥−𝑖𝜉/2|

2

𝑑𝑥 = 2
𝑛/2

∫
R𝑛
𝑒
−|𝑥|
2

𝑑𝑥

= ∫
R𝑛
𝑒
−|𝑥|
2

/2
𝑑𝑥 = (2𝜋)

𝑛/2
.

(31)

Hence

𝜙
𝑢

2
(0, 𝜉) =

𝑒
−|𝜉|
2

/4

(2𝜋)
𝑛/2

𝜋
𝑛/2

=
𝑒
−|𝜉|
2

/4

2𝑛/2
. (32)
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With this, we can conclude

𝑢 (𝑡, 𝑥) =
1

(2𝜋)
𝑛/2

∫
R𝑛
𝑒
𝑖|𝜉|
2

𝑡+𝑖𝑥⋅𝜉 𝑒
−|𝜉|
2

/4

2𝑛/2
=

1

2𝑛

1

𝜋𝑛/2

⋅ ∫
R𝑛
𝑒
−|𝜉|
2

(1/4−𝑖𝑡)+𝑖𝑥�̇�
𝑑𝜉 =

1

2𝑛

1

𝜋𝑛/2

⋅ ∫
R𝑛
𝑒
−(|𝜉|
2

(1/4−𝑖𝑡)−𝑖𝑥�̇�−|𝑥|
2

/(1−4𝑖𝑡))
𝑒
−|𝑥|
2

/(1−4𝑖𝑡)
𝑑𝜉 =

1

2𝑛

⋅
1

𝜋𝑛/2
𝑒
−|𝑥|
2

/(1−4𝑖𝑡)
∫
R𝑛
𝑒
−|𝜉√1/4−𝑖𝑡+𝑖𝑥/(√1−4𝑖𝑡)|

2

𝑑𝜉.

(33)

Now, we make the change of variables 𝜂 = 𝜉√1/4 − 𝑖𝑡 +

𝑖𝑥/(√1 − 4𝑖𝑡) to get

𝑢 (𝑡, 𝑥)

=
1

2𝑛

1

𝜋𝑛/2
𝑒
−|𝑥|
2

/(1−4𝑖𝑡)
∫
R𝑛
𝑒
−|𝜂|
2

(
1

4
− 𝑖𝑡)

−𝑛/2

𝑑𝜂

=
1

2𝑛

1

𝜋𝑛/2
𝑒
−|𝑥|
2

/(1−4𝑖𝑡)
(
1

4
− 𝑖𝑡)

−𝑛/2

𝜋
𝑛/2

= (1 − 4𝑖𝑡)
−𝑛/2

𝑒
−|𝑥|
2

/(1−4𝑖𝑡)
.

(34)

Hence, we obtain

𝑢 (𝑡, 𝑥) = (1 − 4𝑖𝑡)
−𝑛/2

𝑒
−|𝑥|
2

/(1−4𝑖𝑡)
. (35)

Now, we have to find a constant 𝑐 > 0 such that, for every 𝑡 ∈
R, the function 𝑝(𝑡, 𝑥) = 𝑐

2
|𝑢(𝑡, 𝑥)|

2 is a probability density
function. The condition to be satisfied is the following:

1 =

|𝑐|

2
𝑢 (𝑡, 𝑥)



2

𝐿
2
(R𝑛) =


|𝑐|

2
𝑢 (0, 𝑥)



2

𝐿
2
(R𝑛)

= |𝑐|
2
∫
R𝑛
𝑒
−2|𝑥|
2

𝑑𝑥 = |𝑐|
2
(
𝜋

2
)

𝑛/2

,

(36)

which implies 𝑐 = (𝜋/2)
−𝑛/4. Therefore, the function

𝑢 (𝑡, 𝑥) = (
𝜋

2
)

−𝑛/4

(1 − 4𝑖𝑡)
−𝑛/2

𝑒
−|𝑥|
2

/(1−4𝑖𝑡) (37)

induces the probability density function:

𝑝 (𝑡, 𝑥) = |𝑐|
2
|𝑢 (𝑡, 𝑥)|

2

= (
𝜋

2
)

−𝑛/2

|1 − 4𝑖𝑡|
−𝑛

𝑒
−|𝑥|
2

/(1−4𝑖𝑡)


2

= (
𝜋

2
)

−𝑛/2

1 + 16𝑡

2

−𝑛/2 
𝑒
−(1+4𝑖𝑡)|𝑥|

2

/(1+16𝑡
2

)


2

= (
𝜋

2
)

−𝑛/2

1 + 16𝑡

2

−𝑛/2

𝑒
−2|𝑥|
2

/(1+16𝑡
2

)
,

(38)

so

𝑝 (𝑡, 𝑥) = (
𝜋

2
)

−𝑛/2

1 + 16𝑡

2

−𝑛/2

𝑒
−2|𝑥|
2

/(1+16𝑡
2

) (39)

is going to be the generator of the family of distributionsF.

Remark 20. This procedure works because the Gaussian
Distribution is, up to constants, a fixed point of the 1/𝛼-
Characteristic Function. Indeed, if 𝑢 is Gaussian, then
𝜙

𝑢

𝛼
(𝑒

−|⋅|
2

)(𝜉) = 𝑐𝑒
−|𝜉|
2

for some normalizing constant 𝑐 > 0.
Moreover, the Schrödinger flow preserves Gaussian Distri-
butions; namely, if your initial datum is Gaussian, then the
solution is Gaussian for any future and past times.

2.4. Strichartz Estimates and Their Symmetries. In this
subsection, we deduce the Strichartz Estimates for the
Schrödinger equation in the case of probability distributions
and discuss their symmetries. For clarity, we repeat here the
definition of admissible exponents and the Strichartz Estimate.

Definition 21. Fix 𝑛 ≥ 1. One calls a set of exponents (𝑞, 𝑟)
admissible if 2 ≤ 𝑞, 𝑟 ≤ +∞ and

2

𝑞
+
𝑛

𝑟
=
𝑛

2
. (40)

Theorem 22 (see [4–7]). For dimension 𝑛 = 1 or 𝑛 = 2

(and for any 𝑛 ≥ 1, supposing that Gaussians are maximizers)
and (𝑞, 𝑟) admissible pair, the Sharp Homogeneous Strichartz
Constant 𝑆

ℎ
(𝑛, 𝑞, 𝑟) = 𝑆

ℎ
(𝑛, 𝑟) defined by

𝑆
ℎ (𝑛, 𝑟)

fl sup{
‖𝑢‖

𝐿
𝑞

𝑡
𝐿
𝑟

𝑥
(R×R𝑛)

‖𝑢‖𝐿2
𝑥
(R𝑛)

: 𝑢 ∈ 𝐿
2

𝑥
(R𝑛

) , 𝑢 ̸= 0}

(41)

is given by

𝑆
ℎ (𝑛, 𝑟) = 2

𝑛/4−𝑛(𝑟−2)/2𝑟
𝑟
−𝑛/2𝑟

. (42)

Moreover, if one defines 𝑆
ℎ
(𝑛) fl 𝑆

ℎ
(𝑛, 2 + 4/𝑛, 2 + 4/𝑛) by

𝑆
ℎ (𝑛) = sup{

‖𝑢‖
𝐿
2+4/𝑛

𝑡,𝑥
(R×R𝑛)

‖𝑢‖𝐿2
𝑥
(R𝑛)

: 𝑢 ∈ 𝐿
2
(R𝑛

) , 𝑢 ̸= 0} , (43)

then, for every 𝑛 ≥ 1 (always supposing that Gaussians are
maximizers), one has that

𝑆
ℎ (𝑛) = (

1

2
(1 +

2

𝑛
)

−𝑛/2

)

1/(2+4/𝑛)

; (44)

𝑆
ℎ
(𝑛) is a decreasing function of 𝑛 and

𝑆
ℎ (𝑛) →

1

(2𝑒)
1/2

, 𝑛 → +∞. (45)

For any 𝑛 ≥ 1 and (�̃�, �̃�) admissible pair, the Sharp Dual
Homogeneous Strichartz Constant 𝑆

𝑑
(𝑞, 𝑟, 𝑛) = 𝑆

𝑑
(𝑛, 𝑟) is

defined by

𝑆
𝑑 (𝑛, 𝑟) fl sup

{

{

{


∫R 𝑒

𝑖𝑠Δ
𝐹 (𝑠) 𝑑𝑠

𝐿2
𝑥

‖𝐹‖
𝐿
�̃�


𝑡
𝐿
�̃�


𝑥

: 𝐹

∈ 𝐿
�̃�


𝑡
𝐿

�̃�


𝑥
(R × R𝑛

) , 𝐹 ̸= 0

}

}

}

.

(46)

One has that 𝑆
ℎ
(𝑛, 𝑟) = 𝑆

𝑑
(𝑛, 𝑟).
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This is the version of the theorem on Strichartz Estimates
without the restriction ‖𝑢‖2R𝑛 = 1, as proved in [7]. From this,
we can very easily deduceTheorem 6.

Proof ofTheorem 6. Just substitute the condition ‖𝑢‖2R𝑛 = 1 in
all the statements.

As explained for example in [12], Strichartz Estimates are
invariant by the following set of symmetries.

Lemma 23 (see [12]). Let G be the group of transformations
generated by

(i) space-time translations: 𝑢(𝑡, 𝑥) → 𝑢(𝑡+𝑡
0
, 𝑥+𝑥

0
), with

𝑡
0
∈ R, 𝑥

0
∈ R𝑛;

(ii) parabolic dilations: 𝑢(𝑡, 𝑥) → 𝑢(𝜆
2
𝑡, 𝜆𝑥), with 𝜆 > 0;

(iii) change of scale: 𝑢(𝑡, 𝑥) → 𝜇𝑢(𝑡, 𝑥), with 𝜇 > 0;
(iv) space rotations: 𝑢(𝑡, 𝑥) → 𝑢(𝑡, 𝑅𝑥), with 𝑅 ∈ 𝑆𝑂(𝑛);
(v) phase shifts: 𝑢(𝑡, 𝑥) → 𝑒

𝑖𝜃
𝑢(𝑡, 𝑥), with 𝜃 ∈ R;

(vi) Galilean transformations:

𝑢 (𝑡, 𝑥) → 𝑒
(𝑖/4)(|V|2𝑡+2V⋅𝑥)

𝑢 (𝑡, 𝑥 + 𝑡V) , (47)

with V ∈ R𝑛.

Then, if 𝑢 solves (27) and 𝑔 ∈ G, V = 𝑔 ∘ 𝑢 solves (27)
also. Moreover, the constants 𝑆

ℎ
(𝑛, 𝑞, 𝑟), 𝑆

𝑑
(𝑛, 𝑞, 𝑟), and 𝑆

𝑖
(𝑛, 𝑞,

𝑟, �̃�, �̃�) are left unchanged by the action ofG.

The only point here is that not all these symmetries leave
the set of probability distributions P(R𝑛

) invariant. There-
fore, we need to reduce the set of symmetries in our treatment
and, in particular, we need to combine the scaling and the
parabolic dilations in order to have all the family inside the
space of probability distributionsP(R𝑛

).

Lemma 24. Consider 𝑢
𝜇,𝜆

= 𝜇𝑢(𝜆
2
𝑡, 𝜆𝑥) such that 𝑢(𝑡, 𝑥) ∈

P(R𝑛
)maximizes (6); then 𝜇 = 𝜆

𝑛/2.

Proof. Consider

1 =
𝑢𝜆



2

𝐿
2
(R𝑛) = 𝜇

2
∫
R𝑛

𝑢 (𝜆

2
𝑡, 𝜆𝑥)



2

𝑑𝑥

= 𝜇
2
𝜆

−𝑛
‖𝑢‖

2

𝐿
2
(R𝑛) = 𝜇

2
𝜆

−𝑛
,

(48)

so 𝜇 = 𝜆
𝑛/2.

Remark 25. We notice that some of the symmetries can be
seen just at the level of the generator of the family 𝑢 but not
by the family of probability distributions 𝑝

𝑡
(𝑥). For example,

the phase shifts 𝑢(𝑡, 𝑥) → 𝑒
𝑖𝜃
𝑢(𝑡, 𝑥), with 𝜃 ∈ R, give

rise to the same probability distribution function because
|𝑒

𝑖𝜃
𝑢(𝑡, 𝑥)|

2
= |𝑢(𝑡, 𝑥)|

2 and, partially, the Galilean trans-
formations 𝑢(𝑡, 𝑥) → 𝑒

(𝑖/4)(|V|2𝑡+2V⋅𝑥)
𝑢(𝑡, 𝑥 + 𝑡V), with V ∈

R𝑛, reduces to a space translation with 𝑥
0

= V𝑡, since
|𝑒

(𝑖/4)(|V|2𝑡+2V⋅𝑥)
𝑢(𝑡, 𝑥 + 𝑡V)|2 = |𝑢(𝑡, 𝑥 + 𝑡V)|2. In some sense,

the parameter 𝜃 can be seen as a latent variable.

Therefore, we have the complete set of probability distri-
butions induced by the generator 𝑢(𝑡, 𝑥).

Theorem 26. Consider 𝑝
𝑡
(𝑥) = |𝑢(𝑡, 𝑥)|

2 a probability
distribution function generated by 𝑢(𝑡, 𝑥) (see Section 2.3). Let
S be the group of transformations generated by

(i) inertial-space translations and time translations:
𝑝(𝑡, 𝑥) → 𝑝(𝑡 + 𝑡

0
, 𝑥 + 𝑥

0
+ V𝑡), with 𝑡

0
∈ R, 𝑥

0
∈ R𝑛

and V ∈ R𝑛;

(ii) scaling-parabolic dilations: 𝑢(𝑡, 𝑥) → 𝜆
𝑛
𝑢(𝜆

2
𝑡, 𝜆𝑥),

with 𝜆 > 0;

(iii) space rotations: 𝑢(𝑡, 𝑥) → 𝑢(𝑡, 𝑅𝑥), with 𝑅 ∈ 𝑆𝑂(𝑛);

Then, if 𝑢 solves (27) and 𝑔 ∈ S, V = 𝑔 ∘ 𝑢 solves (27) also,
𝑞
𝑡
(𝑥) = |V(𝑡, 𝑥)|2 is still a probability distribution for every 𝑔 ∈

S, and the constant 𝑆
ℎ
(𝑛, 𝑞, 𝑟) is left unchanged by the action

of S.

This theorem produces the following definition.

Definition 27. One calls Maximal Strichartz Family of Gaus-
sian Distributions the following family of distributions:

F fl {𝑝
𝑡 (𝑥) = (

𝜋

2
)

−𝑛/2

𝑅

𝑇
𝑅


−1/2 
𝜆

2
+ 16𝑡

2

−𝑛/2

⋅ 𝑒
−2(𝑥−𝑥

0
−V𝑡)𝑇(𝑅𝑇𝑅)

−1

(𝑥−𝑥
0
−V𝑡)/(𝜆2+16𝑡

2

)
: (𝑡, 𝜆)

∈ R2
, (𝑥

0
, V) ∈ R𝑛

× R𝑛
, 𝑅 ∈ 𝑆𝑂 (𝑛)} .

(49)

Remark 28. Let 𝑝(𝑡, 𝑥) be the pdf defined in (39). Then,
choose �̃�

𝑡
(𝑥) ∈ F with 𝑅 = 𝐼𝑑, 𝑥

0
= V

0
= 0, and 𝜆 = 0.

This implies that �̃�
𝑡
(𝑥) = 𝑝(𝑡, 𝑥) ∈ F. For this reason, we call

𝑝(𝑡, 𝑥) the Family Generator ofF. We notice also that, in the
definition of the family and with respect to Theorem 26, we
used as scale parameter 𝜆1/2 instead of 𝜆.This is done without
loss of generality, since 𝜆 > 0.

Right away we can compute the Variance-Covariance
Matrix andMean Vector of the family.

Corollary 29. Suppose X is a random variable with pdf
𝑝

𝑡
(𝑥) ∈ F. Then its Expected Value is

𝐸 [X] fl 𝜇 = 𝑥
0
+ V𝑡 (50)

and its Variance is

Σ =
1

4
(𝜆

2
+ 16𝑡

2
) (𝑅

𝑇
𝑅) . (51)

Proof. The proof is a direct computation.

Remark 30. We see here that, differently from the general
family of Gaussian distributions, here the Mean Vector and
the Variance-Covariance Matrix are related by a parameter,
which represents the time flow.
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3. The Fisher Information Metric of
the Maximal Strichartz Family F

Information geometry is a branch of mathematics that
applies the techniques of differential geometry to the field of
statistics and probability theory. This is done by interpreting
probability distributions of a statistical model as the points
of a Riemannian Manifold, forming in this way a statistical
manifold. The Fisher Information Metric provides a natural
Riemannian Metric for this manifold, but it is not the only
possible one. With this tool, we can define and compute
meaningful distances between probability distributions, in
both the discrete and the continuous cases. Crucial is then the
set of parameters on which a certain family of distributions
is indexed and the geometrical structure of the parameter
set is also crucial. We refer to [16] for a general reference on
information geometry.Thefirst one to introduce the notion of
distance between two probability distributions has been Rao
in [17], who used the Fisher InformationMatrix as a Rieman-
nian Metric on the space of parameters.

In this section, we restrict our attention to the Fisher
InformationMetric of theMaximal Strichartz Family of Gaus-
sian Distributions F and provide details on the additional
structure that the family has with respect to the hyperbolic
model of the general Family of Gaussian Distributions. See,
for example, [18–20].

3.1. The Fisher Information Metric for the Multivariate Gaus-
sian Distribution. First, we give the general definition of the
Fisher Information Metric.

Definition 31. Consider a statistical manifoldS, with coordi-
nates given by 𝜃 = (𝜃

1
, 𝜃

2
, . . . , 𝜃

𝑛
) andwith probability density

function 𝑝(𝑥; 𝜃). Here, 𝑥 is a specific observation of the
discrete or continuous random variables 𝑋. The probability
is normalized, so that ∫

𝑋
𝑝(𝑥, 𝜃)𝑑𝑥 = 1 for every 𝜃 ∈ S.

The Fisher Information Metric 𝐼
𝑖𝑗
is defined by the following

formula:

𝐼
𝑖𝑗 (𝜃) = ∫

𝑋

𝜕 log𝑝 (𝑥, 𝜃)
𝜕𝜃

𝑖

𝜕 log𝑝 (𝑥, 𝜃)
𝜕𝜃

𝑗

𝑝 (𝑥, 𝜃) 𝑑𝑥. (52)

Remark 32. The integral is performed over all values 𝑥 that
the random variable 𝑋 can take. Again, the variable 𝜃 is
understood as a coordinate on the statistical manifold S,
intended as a RiemannianManifold. Under certain regularity
conditions (any that allows integration by parts), 𝐼

𝑖𝑗
can be

rewritten as

𝐼
𝑖𝑗 (𝜃) = −∫

𝑋

𝜕
2 log𝑝 (𝑥, 𝜃)
𝜕𝜃

𝑖
𝜕𝜃

𝑗

𝑝 (𝑥, 𝜃) 𝑑𝑥

= −𝐸[
𝜕
2 log𝑝 (𝑥, 𝜃)
𝜕𝜃

𝑖
𝜕𝜃

𝑗

] .

(53)

Now, to compute explicitly the Fisher Information Matrix
of the family F, we use the following theorem that you can
find in [21].

Theorem 33. The Fisher Information Matrix for an 𝑛-variate
Gaussian Distribution can be computed in the following way.
Let

𝜇 (𝜃) = [𝜇1 (𝜃) , 𝜇2 (𝜃) , . . . , 𝜇𝑁 (𝜃)]
𝑇 (54)

be the vector of Expected Values and let Σ(𝜃) be the Variance-
Covariance Matrix. Then, the typical element I

𝑖,𝑗
, 0 ≤ 𝑖, 𝑗 <

𝑛, of the Fisher Information Matrix for𝑋 ∼ N(𝜇(𝜃), Σ(𝜃)) is

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

+
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

) , (55)

where (⋅)𝑇 denotes the transpose of a vector, tr(⋅) denotes the
trace of a square matrix, and

𝜕𝜇

𝜕𝜃
𝑖

= [
𝜕𝜇

1

𝜕𝜃
𝑖

𝜕𝜇
2

𝜕𝜃
𝑖

⋅ ⋅ ⋅
𝜕𝜇

𝑛

𝜕𝜃
𝑖

]

𝑇

,

𝜕Σ

𝜕𝜃
𝑖

=

[
[
[
[
[
[
[
[
[
[
[

[

𝜕Σ
1,1

𝜕𝜃
𝑖

𝜕Σ
1,2

𝜕𝜃
𝑖

⋅ ⋅ ⋅
𝜕Σ

1,𝑛

𝜕𝜃
𝑖

𝜕Σ
2,1

𝜕𝜃
𝑖

𝜕Σ
2,2

𝜕𝜃
𝑖

⋅ ⋅ ⋅
𝜕Σ

2,𝑛

𝜕𝜃
𝑖

.

.

.
.
.
. d

.

.

.

𝜕Σ
𝑛,1

𝜕𝜃
𝑖

𝜕Σ
𝑛,2

𝜕𝜃
𝑖

⋅ ⋅ ⋅
𝜕Σ

𝑛,𝑛

𝜕𝜃
𝑖

]
]
]
]
]
]
]
]
]
]
]

]

.

(56)

Now, we have just to compute the Fisher Information
Matrix entry by entry, following the theorem. We recall here
that we are considering the following family of Gaussian
Distributions:

F fl {𝑝 (𝑡, 𝑥) = (
𝜋

2
)

−𝑛/2

𝑅

𝑇
𝑅


−1/2 
𝜆

2
+ 16𝑡

2

−𝑛/2

⋅ 𝑒
−2(𝑥−𝑥

0
−V𝑡)𝑇(𝑅𝑇𝑅)

−1

(𝑥−𝑥
0
−V𝑡)/(𝜆2+16𝑡

2

)
: (𝑡, 𝜆)

∈ R2
, (𝑥

0
, V) ∈ R𝑛

× R𝑛
, 𝑅 ∈ 𝑆𝑂 (𝑛)}

(57)

and that, in particular, we have that the Expected Value of a
random variable 𝑋 with distribution belonging to the family
F is given by

𝜇 fl 𝑥
0
+ V𝑡, (58)

while the Variance-Covariance Matrix is given by

Σ fl
1

4
(𝜆

2
+ 16𝑡

2
) 𝑅

𝑇
𝑅. (59)

Remark 34. We remark again that 𝜇 and Σ depend on some
common parameters, like the time 𝑡.

3.2. Proof of Theorem 8: The Spherical Multivariate Gaussian
Distribution. Here, we consider the case in which 𝑅

𝑇
𝑅 =

𝜎
2
𝐼𝑑

𝑛×𝑛
, namely, the case where the Variance-Covariance

Matrix is given by Σ fl (1/4)(𝜆
2
+ 16𝑡

2
)𝜎

2
𝐼𝑑

𝑛×𝑛
. In this case,

the vector of parameters 𝜃 is given by

𝜃 fl (𝑥
𝑇

0
, V𝑇

0
, 𝜆, 𝜎

2
, 𝑡)

𝑇

, (60)
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with 𝑥
0
and V

0
being 𝑛 × 1, while 𝜆, 𝜎2, and 𝑡 are scalars. In

order to fix the notation, we call (𝜃
1
, . . . , 𝜃

𝑛
)
𝑇 fl (𝑥

0
, . . . , 𝑥

𝑛
),

(𝜃
𝑛+1

, . . . , 𝜃
2𝑛
)
𝑇 fl (V0

0
, . . . , V𝑛

0
), 𝜃

2𝑛+1
= 𝜆, 𝜃

2𝑛+2
= 𝜎

2, and
𝜃
2𝑛+3

= 𝑡. Now, we want to compute all the coefficients of 𝐼
𝑖𝑗
.

We use the symmetry of the information matrix 𝐼
𝑖𝑗
, so 𝐼

𝑖𝑗
=

𝐼
𝑗𝑖
. The relevant coefficients are

(i) 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

= (0, . . . , 1
𝑖
, . . . , 0)

𝑇 1

𝜎2
𝐼𝑑

𝑛×𝑛
(0, . . . , 1

𝑗
, . . . , 0)

=
1

𝜎2
𝛿
𝑖𝑗
;

(61)

(ii) 𝑖 = 1, . . . , 𝑛, 𝑗 = 𝑛 + 1, . . . , 2𝑛

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

= (0, . . . , 1
𝑖
, . . . , 0)

𝑇 1

𝜎2
𝐼𝑑

𝑛×𝑛
(0, . . . , 𝑡

𝑗
, . . . , 0)

=
𝑡

𝜎2
𝛿
𝑖𝑗
;

(62)

(iii) 𝑖 = 1, . . . , 𝑛, 𝑗 = 2𝑛 + 1

I
𝑖,𝑗
= 0, (63)

because 𝜇 does not depend on 𝜆 and Σ does not
depend on 𝑥

0
;

(iv) 𝑖 = 1, . . . , 𝑛, 𝑗 = 2𝑛 + 2

I
𝑖,𝑗
= 0, (64)

because 𝜇 does not depend on 𝜎
2 and Σ does not

depend on 𝑥
0
;

(v) 𝑖 = 1, . . . , 𝑛, 𝑗 = 2𝑛 + 3

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

= (0, . . . , 1
𝑖
, . . . , 0)

𝑇 1

𝜎2
𝐼𝑑

𝑛×𝑛
(V0

0
, . . . , V𝑛

0
)

=
1

𝜎2
V𝑖
0
;

(65)

(vi) 𝑖 = 𝑛 + 1, . . . , 2𝑛, 𝑗 = 𝑛 + 1, . . . , 2𝑛

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

= (0, . . . , 𝑡
𝑖
, . . . , 0)

𝑇 1

𝜎2
𝐼𝑑

𝑛×𝑛
(0, . . . , 𝑡

𝑗
, . . . , 0)

=
𝑡
2

𝜎2
𝛿
𝑖𝑗
;

(66)

(vii) 𝑖 = 𝑛 + 1, . . . , 2𝑛, 𝑗 = 2𝑛 + 1

I
𝑖,𝑗
= 0, (67)

because 𝜇 does not on 𝜆 and Σ does not depend on V
0
;

(viii) 𝑖 = 𝑛 + 1, . . . , 2𝑛, 𝑗 = 2𝑛 + 2

I
𝑖,𝑗
= 0, (68)

because 𝜇 does not depend on 𝜎
2 and Σ does not

depend on V
0
;

(ix) 𝑖 = 𝑛 + 1, . . . , 2𝑛, 𝑗 = 2𝑛 + 3

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

= (0, . . . , 1
𝑖
, . . . , 0)

𝑇 1

𝜎2
𝐼𝑑

𝑛×𝑛
(V0

0
, . . . , V𝑛

0
)

=
𝑡

𝜎2
V𝑖
0
;

(69)

(x) 𝑖 = 2𝑛 + 1, 𝑗 = 2𝑛 + 1

I
𝑖,𝑗
=
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

)

=
1

2
tr( 1

𝜎2
𝐼𝑑

2𝜆𝜎
2

4
𝐼𝑑

1

𝜎2
𝐼𝑑

2𝜆𝜎
2

4
𝐼𝑑)

=
𝜆

2

8
tr (𝐼𝑑) = 𝜆

2
𝑛

8
;

(70)

(xi) 𝑖 = 2𝑛 + 1, 𝑗 = 2𝑛 + 2

I
𝑖,𝑗
=
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

)

=
1

2
tr( 1

𝜎2
𝐼𝑑

2𝜆𝜎
2

4
𝐼𝑑

1

𝜎2
𝐼𝑑

𝜆
2
+ 16𝑡

2

4
𝐼𝑑)

= 𝑛
𝜆

16𝜎2
(𝜆

2
+ 16𝑡

2
) ;

(71)

(xii) 𝑖 = 2𝑛 + 1, 𝑗 = 2𝑛 + 3

I
𝑖,𝑗
=
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

)

=
1

2
tr( 1

𝜎2
𝐼𝑑

2𝜆𝜎
2

4
𝐼𝑑

1

𝜎2
𝐼𝑑

8𝑡𝜎
2

4
𝐼𝑑) = 2𝜆𝑡𝑛;

(72)

(xiii) 𝑖 = 2𝑛 + 2, 𝑗 = 2𝑛 + 2

I
𝑖,𝑗
=
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

)

=
1

2
tr( 1

𝜎2
𝐼𝑑

𝜆
2
+ 16𝑡

2

4
𝐼𝑑

1

𝜎2
𝐼𝑑

𝜆
2
+ 16𝑡

2

4
𝐼𝑑)

=
𝑛

32

(𝜆
2
+ 16𝑡

2
)
2

𝜎4
;

(73)
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(xiv) 𝑖 = 2𝑛 + 2, 𝑗 = 2𝑛 + 3

I
𝑖,𝑗
=
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

)

=
1

2
tr( 1

𝜎2
𝐼𝑑

𝜆
2
+ 16𝑡

2

4
𝐼𝑑

1

𝜎2
𝐼𝑑8𝑡𝜎

2
𝐼𝑑)

=
𝑛𝑡

𝜎2
(𝜆

2
+ 16𝑡

2
) ;

(74)

(xv) 𝑖 = 2𝑛 + 3, 𝑗 = 2𝑛 + 3

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

+
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

)

= (V0
0
, . . . , V𝑛

0
)
𝑇 1

𝜎2
𝐼𝑑

𝑛×𝑛
(V0

0
, . . . , V𝑛

0
)

+
1

2
tr( 1

𝜎2
𝐼𝑑8𝑡𝜎

2
𝐼𝑑

1

𝜎2
𝐼𝑑8𝑡𝜎

2
𝐼𝑑)

=

V0


2

𝜎2
+ 32𝑛𝑡

2
.

(75)

In conclusion, we have

𝐼 (𝜃) =

(
(
(
(
(
(
(
(
(
(

(

1

𝜎2
𝐼𝑑

𝑡

𝜎2
𝐼𝑑 0 0

1

𝜎2
V
0

𝑡

𝜎2
𝐼𝑑

𝑡
2

𝜎2
𝐼𝑑 0 0

𝑡

𝜎2
V
0

0 0
𝜆

2
𝑛

8
𝑛

𝜆

16𝜎2
(𝜆

2
+ 16𝑡

2
) 2𝜆𝑡𝑛

0 0 𝑛
𝜆

16𝜎2
(𝜆

2
+ 16𝑡

2
)

𝑛

32

(𝜆
2
+ 16𝑡

2
)
2

𝜎4

𝑛𝑡

𝜎2
(𝜆

2
+ 16𝑡

2
)

1

𝜎2
V
0

𝑡

𝜎2
V
0

2𝜆𝑡𝑛
𝑛𝑡

𝜎2
(𝜆

2
+ 16𝑡

2
)

V0


2

𝜎2
+ 32𝑛𝑡

2

)
)
)
)
)
)
)
)
)
)

)

. (76)

3.3. Proof of Theorem 8: The Elliptical Multivariate Gaussian
Distribution. We define

1

𝜎
2

𝑖

𝐼𝑑 fl

[
[
[
[
[
[
[
[
[
[
[

[

1

𝜎
2

1

0 ⋅ ⋅ ⋅ 0

0
1

𝜎
2

2

⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅
1

𝜎2

𝑛

]
]
]
]
]
]
]
]
]
]
]

]

. (77)

We define also

1

𝜎2
fl

𝑛

∑

𝑖=1

1

𝜎
2

𝑖

,

1

𝜎4
fl

𝑛

∑

𝑖=1

1

𝜎
4

𝑖

.

(78)

Using this notations, we are going to compute the matrix 𝐼
𝑖𝑗
.

The relevant coefficients are

(i) 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

= (0, . . . , 1
𝑖
, . . . , 0)

𝑇 1

𝜎
2

𝑖

𝐼𝑑
𝑛×𝑛

(0, . . . , 1
𝑗
, . . . , 0)

=
1

𝜎
2

𝑖

𝛿
𝑖𝑗
;

(79)

(ii) 𝑖 = 1, . . . , 𝑛, 𝑗 = 𝑛 + 1, . . . , 2𝑛

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

= (0, . . . , 1
𝑖
, . . . , 0)

𝑇 1

𝜎
2

𝑖

𝐼𝑑
𝑛×𝑛

(0, . . . , 𝑡
𝑗
, . . . , 0)

=
𝑡

𝜎
2

𝑖

𝛿
𝑖𝑗
;

(80)

(iii) 𝑖 = 1, . . . , 𝑛, 𝑗 = 2𝑛 + 1

I
𝑖,𝑗
= 0, (81)

because 𝜇 does not depend on 𝜆 and Σ does not
depend on 𝑥

0
;

(iv) 𝑖 = 1, . . . , 𝑛, 𝑗 = 2𝑛 + 2

I
𝑖,𝑗
= 0, (82)

because 𝜇 does not depend on 𝜎
2 and Σ does not

depend on 𝑥
0
;

(v) 𝑖 = 1, . . . , 𝑛, 𝑗 = 2𝑛 + 3

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

= (0, . . . , 1
𝑖
, . . . , 0)

𝑇 1

𝜎2
𝐼𝑑

𝑛×𝑛
(V0

0
, . . . , V𝑛

0
)

=
1

𝜎
2

𝑖

V𝑖
0
= (

V0
0

𝜎
2

1

, . . . ,
V𝑛
0

𝜎2

𝑛

) ;

(83)
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(vi) 𝑖 = 𝑛 + 1, . . . , 2𝑛, 𝑗 = 𝑛 + 1, . . . , 2𝑛

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

= (0, . . . , 𝑡
𝑖
, . . . , 0)

𝑇 1

𝜎2
𝐼𝑑

𝑛×𝑛
(0, . . . , 𝑡

𝑗
, . . . , 0)

=
𝑡
2

𝜎
2

𝑖

𝛿
𝑖𝑗
;

(84)

(vii) 𝑖 = 𝑛 + 1, . . . , 2𝑛, 𝑗 = 2𝑛 + 1

I
𝑖,𝑗
= 0, (85)

because 𝜇 does not depend on 𝜆 and Σ does not
depend on V

0
;

(viii) 𝑖 = 𝑛 + 1, . . . , 2𝑛, 𝑗 = 2𝑛 + 2

I
𝑖,𝑗
= 0, (86)

because 𝜇 does not depend on 𝜎
2 and Σ does not

depend on V
0
;

(ix) 𝑖 = 𝑛 + 1, . . . , 2𝑛, 𝑗 = 2𝑛 + 3

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

= (0, . . . , 1
𝑖
, . . . , 0)

𝑇 1

𝜎2
𝐼𝑑

𝑛×𝑛
(V0

0
, . . . , V𝑛

0
)

=
𝑡

𝜎
2

𝑖

V𝑖
0
= 𝑡(

V0
0

𝜎
2

1

, . . . ,
V𝑛
0

𝜎2

𝑛

) ;

(87)

(x) 𝑖 = 2𝑛 + 1, 𝑗 = 2𝑛 + 1

I
𝑖,𝑗
=
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

)

=
1

2
tr( 1

𝜎2
𝐼𝑑

2𝜆𝜎
2

4
𝐼𝑑

1

𝜎2
𝐼𝑑

2𝜆𝜎
2

4
𝐼𝑑)

=
𝜆

2

8
tr (𝐼𝑑) = 𝜆

2
𝑛

8
;

(88)

(xi) 𝑖 = 2𝑛 + 1, 𝑗 = 2𝑛 + 2

I
𝑖,𝑗
=
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

)

=
1

2
tr( 1

𝜎
2

𝑖

𝐼𝑑
2𝜆𝜎

2

𝑖

4
𝐼𝑑

1

𝜎
2

𝑖

𝐼𝑑
𝜆

2
+ 16𝑡

2

4
𝐼𝑑)

=

𝑛

∑

𝑖=1

𝜆

16𝜎
2

𝑖

(𝜆
2
+ 16𝑡

2
) =

𝜆

16𝜎2
(𝜆

2
+ 16𝑡

2
) ;

(89)

(xii) 𝑖 = 2𝑛 + 1, 𝑗 = 2𝑛 + 3

I
𝑖,𝑗
=
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

)

=
1

2
tr( 1

𝜎
2

𝑖

𝐼𝑑
2𝜆𝜎

2

𝑖

4
𝐼𝑑

1

𝜎
2

𝑖

𝐼𝑑
8𝑡𝜎

2

𝑖

4
𝐼𝑑) = 2𝜆𝑡𝑛;

(90)

(xiii) 𝑖 = 2𝑛 + 2, 𝑗 = 2𝑛 + 2

I
𝑖,𝑗
=
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

)

=
1

2
tr( 1

𝜎
2

𝑖

𝐼𝑑
𝜆

2
+ 16𝑡

2

4
𝐼𝑑

1

𝜎
2

𝑖

𝐼𝑑
𝜆

2
+ 16𝑡

2

4
𝐼𝑑)

=

𝑛

∑

𝑖=1

1

32

((𝜆
2
+ 16𝑡

2
) /4)

2

𝜎
4

𝑖

=
1

32

((𝜆
2
+ 16𝑡

2
) /4)

2

𝜎4
;

(91)

(xiv) 𝑖 = 2𝑛 + 2, 𝑗 = 2𝑛 + 3

I
𝑖,𝑗
=
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

)

=
1

2
tr( 1

𝜎
2

𝑖

𝐼𝑑
𝜆

2
+ 16𝑡

2

4
𝐼𝑑

1

𝜎
2

𝑖

𝐼𝑑8𝑡𝜎
2
𝐼𝑑)

=

𝑛

∑

𝑖=1

𝑡

𝜎
2

𝑖

(𝜆
2
+ 16𝑡

2
) =

𝑡

𝜎2
(𝜆

2
+ 16𝑡

2
) ;

(92)

(xv) 𝑖 = 2𝑛 + 3, 𝑗 = 2𝑛 + 3

I
𝑖,𝑗
=
𝜕𝜇

𝑇

𝜕𝜃
𝑖

Σ
−1 𝜕𝜇

𝜕𝜃
𝑗

+
1

2
tr(Σ−1 𝜕Σ

𝜕𝜃
𝑖

Σ
−1 𝜕Σ

𝜕𝜃
𝑗

)

= (V0
0
, . . . , V𝑛

0
)
𝑇 1

𝜎
2

𝑖

𝐼𝑑
𝑛×𝑛

(V0
0
, . . . , V𝑛

0
)

+
1

2
tr( 1

𝜎
2

𝑖

𝐼𝑑8𝑡𝜎
2

𝑖
𝐼𝑑

1

𝜎
2

𝑖

𝐼𝑑8𝑡𝜎
2

𝑖
𝐼𝑑)

=

𝑛

∑

𝑖=1


V𝑖
0



2

𝜎
2

𝑖

+ 32𝑛𝑡
2
.

(93)
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In conclusion, we have

𝐼 (𝜃) =

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

1

𝜎
2

𝑖

𝐼𝑑
𝑡

𝜎
2

𝑖

𝐼𝑑 0 0
1

𝜎
2

𝑖

V𝑖
0

𝑡

𝜎
2

𝑖

𝐼𝑑
𝑡
2

𝜎
2

𝑖

𝐼𝑑 0 0
𝑡

𝜎
2

𝑖

V𝑖
0

0 0
𝜆

2
𝑛

8

𝜆

16𝜎2
(𝜆

2
+ 16𝑡

2
) 2𝜆𝑡𝑛

0 0
𝜆

16𝜎2
(𝜆

2
+ 16𝑡

2
)

1

32

(𝜆
2
+ 16𝑡

2
)
2

𝜎4

𝑡

𝜎2
(𝜆

2
+ 16𝑡

2
)

1

𝜎
2

𝑖

V𝑖
0

𝑡

𝜎
2

𝑖

V𝑖
0

2𝜆𝑡𝑛
𝑡

𝜎2
(𝜆

2
+ 16𝑡

2
)

𝑛

∑

𝑖=1


V𝑖
0



2

𝜎
2

𝑖

+ 32𝑛𝑡
2

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

. (94)

This concludes the proof of Theorem 8.

3.4. The General Multivariate Gaussian Distribution. As
pointed out in [18, 19], for general Multivariate Normal
Distributions, the explicit form of the Fisher distance has not
been computed in closed form yet even in the simple case
where the parameters are 𝑡 = 0, 𝜆 = 0, and V

0
= 0. From

a technical point of view, as pointed out in [18, 19], the main
difficulty arises from the fact that the sectional curvatures of
the Riemannian Manifold induced by F and endowed with
the Fisher Information Metric are not all constant. We remark
again here that the distance induced by ourFisher Information
Matrix is centred at the Maximal Strichartz Family of
Gaussian Distributions, to enlighten the difference between
members of the Maximal Strichartz Family of Gaussian Dis-
tributions and other GaussianDistributions, for which𝑅𝑇

𝑅 =

𝐼𝑑
𝑛×𝑛

is not necessarily satisfied. In particular, our metric
distinguishes between Gaussians evolving through the PDE
flow (see Section 2) and Gaussians who do not.

Remark 35. We say that two parameters 𝛼 and 𝛽 are orthogo-
nal if the elements of the corresponding rows and columns of
the Fisher Information Matrix are zero. Orthogonal parame-
ters are easy to dealwith in the sense that theirmaximum like-
lihood estimates are independent and can be calculated sep-
arately. In particular, for our familyF the parameters 𝑥

0
and

V
0
are both orthogonal to both the parameters 𝜆 and 𝜎2. Some

partial results, for example, when either mean or variance
is kept constant, can be deduced. See, for example, [18–20].

Remark 36. The Fisher Information Metric is not the only
possible choice to compute distances between pdfs of the
family of Gaussian Distributions. For example, in [20], the
authors parametrize the family of normal distribution as the
symmetric space 𝑆𝐿(𝑛 + 1)/𝑆𝑂(𝑛 + 1) endowed with the
following metric:

𝑑𝑠
2
= tr (Σ−1

𝑑ΣΣ
−1
𝑑Σ) −

1

𝑛 + 1
(tr (Σ−1

𝑑Σ))
2

+
1

2
𝑑𝜇

𝑇
Σ

−1
𝑑𝜇.

(95)

Moreover, the authors in [20] computed the Riemann Curva-
ture Tensor of the metric and, in any dimension, the distance
between two normal distributions with the same mean and
different variance and also the distance between two normal
distributions with the same variance and different mean.

Remark 37. If we consider just the submanifold given by the
restriction to the coordinates 𝑖 = 1, . . . , 𝑛 and 𝑖 = 2𝑛 + 2 on
the ellipse 𝜆2

+ 16𝑡
2
= 4, we recover the hyperbolic distance:

𝑑𝑠
2

H fl
𝑑𝜇

2

𝜎2
+
𝑑𝜎

2

2𝜎4
. (96)

The geometry, however, does not seem the one of a product
space, at least considering the fact that mixed entries are not
zero, in our parametrization.

4. Overdispersion, Equidispersion, and
Underdispersion for the Family F

As we said, Strichartz Estimates are a way to measure the
dispersion caused by the flow of the PDE to which they are
related. In statistics, dispersion explains how a distribution is
spread-out. In this section, we connect the two closely related
concepts (dispersion in statistics and PDEs) by introducing
some measures of statistical dispersion like the Index of
Dispersion in Definition 38 (see Section 4) which reflect the
dispersive PDE nature of the Maximal Strichartz Family of
Gaussian Distributions. We compute this Index of Dispersion
for our family of distributions and show that it is consistent
with PDE results.

Definition 38. Consider the norms ‖ ⋅‖
𝑎
and ‖ ⋅‖

𝑏
on the space

of Variance-Covariance Matrices Σ and ‖ ⋅ ‖
𝑐
on the space of

mean values𝜇. One defines the following Index ofDispersion:

I
𝑎𝑏𝑐

𝑀
fl ‖Σ (0)‖𝑎 ×

‖Σ (𝑡)‖𝑏

𝜇 (𝑡)


4

𝑐

(97)

with 𝑡 ̸= 0 and where 𝜇(𝑡) is as follows:

𝜇 (𝑡) fl 𝑥
0
+ V𝑡, (98)
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while Σ(𝑡) is given by

Σ (𝑡) fl
1

4
(𝜆

2
+ 16𝑡

2
) 𝑅

𝑇
𝑅. (99)

One calls I𝑎𝑏𝑐

𝑀
the 𝑎𝑏𝑐-Dispersion Index of the Maximal

Family of Gaussians and one calls

I
𝑎

𝑀
fl ‖Σ (0)‖𝑎 (100)

𝑎-Static Dispersion Index of the Maximal Family of Gaus-
sians. Moreover, one says that the distribution is

(i) 𝑎𝑏𝑐-overdispersed, ifI𝑎𝑏𝑐

𝑀
< 1;

(ii) 𝑎𝑏𝑐-equidispersed, ifI𝑎𝑏𝑐

𝑀
= 1;

(iii) 𝑎𝑏𝑐-underdispersed, ifI𝑎𝑏𝑐

𝑀
> 1.

Analogously, one says that the distribution is

(i) 𝑎-overdispersed, ifI𝑎

𝑀
< 1;

(ii) 𝑎-equidispersed, ifI𝑎

𝑀
= 1;

(iii) 𝑎-underdispersed, ifI𝑎

𝑀
> 1.

Here, we discuss some particular cases and compute the
dispersion indexes I𝑎𝑏𝑐

𝑀
and I𝑎

𝑀
for certain specific norms

‖ ⋅ ‖
𝑎
, ‖ ⋅ ‖

𝑏
and ‖ ⋅ ‖

𝑐
.

(i) In the case 𝑡 = 0, the 𝑎-Static Dispersion Index of the
Maximal Family of Gaussians that we choose is given by the
variance of the distribution. We choose ‖Σ‖

𝑎
= det(Σ) and so

we get

I
𝑎

𝑀
= ‖Σ‖𝑎 = det (Σ) = (

1

4
𝜆

2
)

𝑛

det (𝑅𝑇
𝑅) . (101)

Now, in the spherical case 𝑅𝑇
𝑅 = 𝜎

2
𝐼𝑑, one gets

I
𝑎

𝑀
= (

1

4
𝜆

2
𝜎

2
)

𝑛

. (102)

So, the distribution is

(i) 𝑎-overdispersed, if (1/4)𝜆2
𝜎

2
< 1;

(ii) 𝑎-equidispersed, if (1/4)𝜆2
𝜎

2
= 1;

(iii) 𝑎-underdispersed, if (1/4)𝜆2
𝜎

2
> 1.

Therefore, with ‖Σ‖
𝑎
= det(Σ), the type of dispersion does not

depend on the dimension 𝑛.

Remark 39. In the strictly Strichartz case 𝜎2
= 1, we have that

the dispersion is measured just by the scaling factor 𝜆.

Choosing instead ‖Σ‖
𝑎

= tr(Σ) as 𝑎-Static Dispersion
Index of theMaximal Family of Gaussians, we have some small
differences:

I
𝑎

𝑀
= ‖Σ‖𝑎 = tr (Σ) = (

1

4
𝜆

2
) tr (𝑅𝑇

𝑅) . (103)

Now, in the spherical case 𝑅𝑇
𝑅 = 𝜎

2
𝐼𝑑, we get

I
𝑎

𝑀
= 𝑛 (

1

4
𝜆

2
𝜎

2
) . (104)

So, the distribution is

(i) 𝑎-overdispersed, if 𝑛(1/4)𝜆2
𝜎

2
< 1;

(ii) 𝑎-equidispersed, if 𝑛(1/4)𝜆2
𝜎

2
= 1;

(iii) 𝑎-underdispersed, if 𝑛(1/4)𝜆2
𝜎

2
> 1.

So with ‖Σ‖
𝑎
= tr(Σ) the type of dispersion does depend on

the dimension 𝑛.
(ii) In the case 𝑡 ∈ R, when 𝑡 is different from zero, we can

express Σ as a function of 𝜇. In fact we have

𝑡 =
(𝜇 − 𝑥

0
) ⋅ V

0

V0


2
(105)

and so

Σ (𝜇) =
1

4
(𝜆

2
+ 16(

(𝜇 − 𝑥
0
) ⋅ V

0

V0


2
)

2

)𝑅
𝑇
𝑅. (106)

For example, if now we choose 𝑥
0
= 0 and 𝜇 = V

0
= (1, 0,

. . . , 0)
𝑇 we get

Σ (𝜇) =
1

4
(𝜆

2
+ 16) 𝑅

𝑇
𝑅, (107)

so for ‖Σ‖
𝑎
= ‖Σ‖

𝑏
= det(Σ) and ‖𝜇‖2

𝑐
= ∑

𝑛

𝑖=1
|𝜇

𝑖
|
2 we get, in

the spherical case 𝑅𝑇
𝑅 = 𝜎

2
𝐼𝑑,

I
𝑎𝑏𝑐

𝑀
= (

1

4
𝜆

2
𝜎

2
)

𝑛

× (
1

4
(𝜆

2
+ 16) 𝜎

2
)

𝑛

. (108)

So the distribution is

(i) 𝑎𝑏𝑐-overdispersed, if ((1/4)𝜆
2
𝜎

2
)
𝑛

× ((1/4)(𝜆
2
+

16)𝜎
2
)
𝑛
< 1;

(ii) 𝑎𝑏𝑐-equidispersed, if ((1/4)𝜆
2
𝜎

2
)
𝑛

× ((1/4)(𝜆
2
+

16)𝜎
2
)
𝑛
= 1;

(iii) 𝑎𝑏𝑐-underdispersed, if ((1/4)𝜆
2
𝜎

2
)
𝑛
× ((1/4)(𝜆

2
+

16)𝜎
2
)
𝑛
> 1.

Remark 40. In particular, from this, we notice that if at 𝑡 =
0 the distribution is 𝑎-equidispersed, an instant after the
distribution is 𝑎𝑏𝑐-overdispersed, in fact

I
𝑎𝑏𝑐

𝑀
= (

1

4
𝜆

2
𝜎

2
)

𝑛

× (
1

4
(𝜆

2
+ 16) 𝜎

2
)

𝑛

= (1 + 4𝜎
2
)
𝑛

> 1.

(109)

This is in agreement with the dispersive properties of the fam-
ily F and legitimates, in some sense, our choice of Indexes
of Dispersion. Moreover, if

I
𝑎𝑏𝑐

𝑀
= (1 + 4𝜎

2
)
𝑛

> 1 (110)

is actually different from I𝑎𝑏𝑐

𝑀
= 5

𝑛, namely, 𝜎2
= 1, we

can argue that theGaussianDistribution thatwe are analysing
does not come from the Maximal Strichartz Family of
Gaussian Distributions.
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Remark 41. This index is different from the Fisher Index
which is basically the variance to mean ratio

I
𝐹
fl

Var (𝑋)
𝐸 [𝑋]

(111)

and it is the natural one for count data. The indexI
𝐹
is then

more appropriate for families of distributions related to the
Poisson distribution and that are dimensionless. In fact, in
our case and in contrast with the Poisson case, we scale the
Variance-Covariance Matrix as the square of the Expected
Value: Σ ≃ 𝜇

2.

Remark 42. The characterization of the Gaussian Distribu-
tion given by Theorems 6 and 22 can be used also to give a
measure of dispersion with respect to the Maximal Family of
Gaussian Distributions, considering the Strichartz Norm:

I
𝑆
fl


𝑒
𝑖𝑡Δ
𝑢
0 (𝑥)

𝐿
𝑞

𝑡
𝐿
𝑟

𝑥

𝑆 (𝑛, 𝑟)
.

(112)

By Theorem 6, one has that 0 ≤ I
𝑆
≤ 1. When the index is

close to one, the distribution is close, in some sense, to the
familyF, while, when the index is close to zero, the distribu-
tion is very far fromF.This index clearly does not distinguish
between distributions in the familyF. It would be very inter-
esting to see if the closeness to one of the Indexes of Disper-
sion I

𝑆
computed on a general distribution implies a prox-

imity to the Maximal Family of Gaussian Distributions from
the distribution point of view also and not just from the point
of view of the dispersion.

5. Partial Stochastic Ordering on F

Using the concept of Index of Dispersion, we can give a
Partial Stochastic Order to the familyF. For a more complete
treatment on Stochastic Orders, we refer to [14]. We start the
analysis of this section with the definition ofMean-Preserving
Spread.

Definition 43. A Mean-Preserving Spread (MPS) is a map
fromP(R𝑛

) to itself

𝑝 (𝑥; 𝜃
1
) → 𝑝 (𝑥; 𝜃

2
) , (113)

where 𝑝(𝑥; 𝜃
1
) and 𝑝(𝑥; 𝜃

2
) are, respectively, the pdf of the

random variables𝑋
1
and𝑋

2
with the property of leaving the

Expected Value unchanged:

𝜇
𝑋
1

(𝜃
1
) = 𝜇

𝑋
2

(𝜃
2
) , (114)

for any 𝜃
1
and 𝜃

2
in the space of parameters.

The concept of a Mean-Preserving Spread provides a
partial ordering of probability distributions according to their
level of dispersion. We then give the following definition.

Definition 44. Consider two random variables 𝑋
1
and 𝑋

2

such that 𝜇
𝑋
1

(𝜃
1
) = 𝜇

𝑋
2

(𝜃), for any 𝜃
1
and 𝜃

2
. One says

that the two random variables are ordered according to their

Dispersion Index I if and only if the following condition is
satisfied:

𝑋
1
≺ 𝑋

2
⇐⇒

I (𝑋
2
) ≤ I (𝑋

1
) .

(115)

Now, we give some examples of ordering according to the
Indexes of Dispersion that we discussed previously.

(i) In case 𝑡 = 0, we choose ‖Σ‖
𝑎
= det(Σ) and so we get

I
𝑎

𝑀
= ‖Σ‖𝑎 = det (Σ) = (

1

4
𝜆

2
)

𝑛

det (𝑅𝑇
𝑅) . (116)

Now, in the spherical case 𝑅𝑇
𝑅 = 𝜎

2
𝐼𝑑, one gets

I
𝑎

𝑀
= (

1

4
𝜆

2
𝜎

2
)

𝑛

. (117)

Using this index, we have the following partial ordering:

𝑋
1
≺ 𝑋

2
⇐⇒

𝜆
2

2
𝜎

2

2
≤ 𝜆

2

1
𝜎

2

1
.

(118)

This order does not depend on the dimension 𝑛. By choosing
instead ‖Σ‖

𝑎
= tr(Σ), we obtain

I
𝑎

𝑀
= ‖Σ‖𝑎 = tr (Σ) = (

1

4
𝜆

2
) tr (𝑅𝑇

𝑅) . (119)

Now, again in the spherical case 𝑅𝑇
𝑅 = 𝜎

2
𝐼𝑑, one gets

𝑋
1
≺ 𝑋

2
⇐⇒

𝜆
2

2
𝜎

2

2
≤ 𝜆

2

1
𝜎

2

1
,

(120)

which is the same ordering as before. This order does not
depend on the dimension 𝑛 again and this seems to suggest
that even if the value of theDispersion Indexmight depend on
the choice of the norms, the Partial Order is less sensible to it.

Remark 45. In the strictly Strichartz case 𝜎2
= 1, we have that

the Stochastic Order is given just by the scaling factor 𝜆.

(ii) In the case when 𝑡 is different from zero, we have

Σ (𝜇) =
1

4
(𝜆

2
+ 16(

(𝜇 − 𝑥
0
) ⋅ V

0

V0


2
)

2

)𝑅
𝑇
𝑅. (121)

If now we choose 𝑥
0
= 0 and 𝜇 = V

0
= (1, 0, . . . , 0)

𝑇, we get

Σ (𝜇) =
1

4
(𝜆

2
+ 16) 𝑅

𝑇
𝑅, (122)

so, for ‖Σ‖
𝑎
= ‖Σ‖

𝑏
= det(Σ) and ‖𝜇‖2

𝑐
= ∑

𝑛

𝑖=1
|𝜇

𝑖
|
2, we get, in

the spherical case 𝑅𝑇
𝑅 = 𝜎

2
𝐼𝑑, the following Partial Order:

𝑋
1
≺ 𝑋

2
⇐⇒ (

1

4
𝜆

2

2
𝜎

2

2
)

𝑛

× (
1

4
(𝜆

2

2
+ 16) 𝜎

2

2
)

𝑛

≤ (
1

4
𝜆

2

1
𝜎

2

1
)

𝑛

× (
1

4
(𝜆

2

1
+ 16) 𝜎

2

1
)

𝑛

.

(123)
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Remark 46. Again, in the strictly Strichartz case 𝜎2
= 1, we

have that the Stochastic Order is given just by the scaling
factor 𝜆.

Remark 47. In the case of the the 𝑎-Static Dispersion Index of
the Maximal Family of Gaussians I𝑎

𝑀
, the role of 𝜎2 and 𝜆2

seems interchangeable.This suggests a dimensional reduction
in the parameter space, but, when 𝑡 ̸= 0, 𝜎2 and the parameter
𝜆 decouple and start to play a slightly different role. This
suggests again a way to distinguish between Gaussian Distri-
butions which come from the familyF and Gaussians which
do not and so to distinguish between Gaussians which are
solutions of the Linear Schrödinger Equation and Gaussians
which are not.

Remark 48. Using the definition of Entropy, we deduce that,
for Gaussian Distributions, ℎ(𝑋) = (1/2) log(2𝜋𝑒)𝑛 det(Σ).
We see that, for our family F, the Entropy increases, every
timewe increase 𝜆, 𝜎2, and 𝑡, but not whenwe increase 𝑥

0
and

V
0
. In particular, the fact that the Entropy increases with 𝑡 is in

accordance with the Second Principle of Thermodynamics.

Remark 49. It seems that the construction of similar indexes
can be performed inmore general situations. In particular, we
think that an index similar toI𝑎𝑏𝑐

𝑀
can be computed in every

situation in which a family of distributions has the Variance-
Covariance Matrix and the Expected Value which depend on
common parameters.

6. Conclusions

In this paper, we have constructed and studied the Maximal
Strichartz Family of Gaussian Distributions. This subfamily
of the family of Gaussian Distributions arises naturally in
the context of Partial Differential Equations and Harmonic
Analysis, as the set ofmaximizers of certain functionals intro-
duced by Strichartz [4] in the context of the Schrödinger Equa-
tion. We analysed the Fisher Information Matrix of the family
and we showed that this matrix possesses an extrastructure
with respect to the general family of Gaussian Distributions.
We studied the spherical and elliptical case and computed
explicitly the Fisher Information Metric in both cases. We
interpreted the Fisher Information Metric as a distance which
can distinguish between Gaussians which maximize the
Strichartz Norm and Gaussians which do not and also as a
distance between Gaussians which are solutions of the Linear
Schrödinger Equation and Gaussians which are not. After
this, we introduced some measures of statistical dispersion
that we called 𝑎𝑏𝑐-Dispersion Index of the Maximal Family
of Gaussian Distributions and 𝑎-Static Dispersion Index of the
Maximal Family of Gaussian Distributions. We showed that
these Indexes of Dispersion are consistent with the dispersive
nature of the Schrödinger Equation and can be used again to
distinguish betweenGaussians belonging to the familyF and
other Gaussians. Moreover, we showed that our Indexes of
Dispersion induce a Partial Stochastic Order on theMaximal
Strichartz Family of Gaussian Distributions, which is in
accordance with the flow of the PDE.

Appendix

In this Appendix, we give the proof of Theorem 3 (for com-
pleteness) and we will use the concept of 1/𝛼-Characteristic
Function to define a generalized type of Moments that exist
also for theMultivariate Cauchy Distribution.

A. Proof of Theorem 3

The proof is very simple and can be found in several places
(see, e.g., a nice treatment in [22]). We report here, for com-
pleteness, the computation in the case 𝑛 = 1. We consider the
variational derivative of ℎ(𝑋) with the constrain of 𝑓 being
a probability distribution and with the constraint of having
a fixed variance 𝜎

2. This gives rise to the following Euler
Lagrange Equationwith two Lagrangianmultipliers𝜆

0
and𝜆

2
:

L (V) = ∫
R
V (𝑥) ln (V (𝑥)) 𝑑𝑥 − 𝜆

0
(1 − ∫

R
V (𝑥) 𝑑𝑥)

− 𝜆
2
(𝜎

2
− ∫

R
V (𝑥) (𝑥 − 𝜇)

2
𝑑𝑥) ,

(A.1)

where V(𝑥) is some function with Expected Value 𝜇. The two
Lagrangian multipliers appear because of the two constraints.
One constraint is related to the normalization condition

∫
R
V (𝑥) 𝑑𝑥 = 1 (A.2)

and the other is related to the requirement of fixed variance:

𝜎
2
= ∫

R
V (𝑥) (𝑥 − 𝜇)

2
𝑑𝑥. (A.3)

Now, we take the variational derivative of the functional L.
To be at a critical point, we need to impose that this varia-
tional derivative is zero. Therefore, we get

0 = 𝐿

(V) =

𝑑

𝑑𝑡

𝑡=0

𝐿 (V (𝑥) + 𝑡𝑔 (𝑥))

= ∫

∞

−∞

𝑔 (𝑥) (ln (V (𝑥)) + 1 + 𝜆
0
+ 𝜆 (𝑥 − 𝜇)

2
) 𝑑𝑥.

(A.4)

Since this must hold for any variation 𝑔(𝑥), the term in
brackets must be zero, and so, solving for V(𝑥) yields

V (𝑥) = 𝑒
−𝜆
0
−1−𝜆(𝑥−𝜇)

2

. (A.5)

Now, we use the constraint of the problem and solve for 𝜆
0

and 𝜆
2
. From ∫R V(𝑥)𝑑𝑥 = 1, we get the condition

𝜆
−1/2

2
𝜋

1/2
= 𝑒

𝜆
0
+1 (A.6)

and from 𝜎
2
= ∫R V(𝑥)(𝑥 − 𝜇)

2
𝑑𝑥, we get

𝜎
2
𝑒
𝜆
0
+1
𝜆

3/2

2
=
𝜋

1/2

2
. (A.7)

Solving for 𝜆
0
and 𝜆

2
we get 𝜆

0
= (1/2) log(2𝜋𝜎2

) − 1 and
𝜆

2
= 1/2𝜎

2 which altogether give the Gaussian Distribution:

V (𝑥) =
1

√2𝜋𝜎

𝑒
−(𝑥−𝜇)

2

/2𝜎
2

. (A.8)
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B. On the 1/𝛼-Momenta of Order 𝑘 and
the Cauchy Distribution

In this subsection, we discuss another application of the con-
cept of 1/𝛼-Characteristic Functions. In particular, we build
1/𝛼-Momenta in a similar way of what happens for the usual
characteristic function and usualMomenta. We apply this tool
to the case of the Cauchy Distribution and see that, in certain
cases, in contrast to the well-known case of 𝛼 = 1, we can
build some finite generalized Momenta. We refer to [15] for
a more detailed discussion on 1/𝛼-Characteristic Functions.

Definition 50. Consider 𝜙𝑢

𝛼
(𝜉) the 1/𝛼-Characteristic Func-

tion of 𝑢:

𝜙
𝑢

𝛼
(𝜉) =

1

(2𝜋)
𝑛/2

∫
R𝑛
𝑒
−𝑖𝑥⋅𝜉

𝑢 (𝑥) 𝑑𝑥. (B.1)

Then, if 𝜙𝑢

𝛼
(𝜉) is 𝑘 times that is continuously differentiable on

R, one defines the 1/𝛼-Moment of order 𝑘 by the formula

𝐸
1/𝛼

[𝑋
𝑘
] fl (−𝑖)

𝑘
𝜙

𝑢

𝛼
(𝜉) (0) . (B.2)

Proof. This is a direct and simple computation.

Remark 51. Here, we do not consider the possibility of
different roots of the unity that can appear in the computation
of the 1/𝛼-Characteristic Function. We refer, for the precise
theory, to [15].

From now on, we concentrate only on the case of the
Multivariate Cauchy Distribution.

Definition 52. One says that a random variable 𝑋 is dis-
tributed as a Multivariate Cauchy Distribution if and only if
its pdf 𝑓(x; 𝜇,Σ, 𝑛) takes the form
𝑓 (x; 𝜇,Σ, 𝑛)

=
Γ ((1 + 𝑛) /2)

Γ (1/2) 𝜋
𝑛/2

|Σ|
1/2

[1 + (x − 𝜇)
𝑇
Σ

−1
(x − 𝜇)]

(1+𝑛)/2
.
(B.3)

Now, we want to determine for which 𝛼 > 0 and 𝑘, 𝑛 =

1, 2, . . . the 1/𝛼-Momenta of order 𝑘 exist and are finite. In
other words, we want to find for which values of 𝑛, 𝑘, and
𝛼, we have that |𝐸1/𝛼

[𝑋
𝑘
]| < +∞. Therefore, we compute


𝐸

1/𝛼
[𝑋

𝑘
]

≤ 𝐶∫

R𝑛
|𝑥|

𝑘

(1 + |𝑥|
2
)
(1+𝑛)/2𝛼

𝑑𝑥

≤ 𝐶∫

+∞

1

𝜌
𝑘+𝑛−1

𝜌(𝑛+1)/𝛼
𝑑𝜌

≤ 𝐶∫

+∞

1

1

𝜌(𝑛+1)/𝛼−𝑛−𝑘+1
,

(B.4)

where the constant 𝐶may vary from step to step. So, we have
that the 1/𝛼-Momenta of order 𝑘 exist and are finite, when


𝐸

1/𝛼
[𝑋

𝑘
]

< +∞ ⇐⇒

𝑛 + 1

𝛼
− 𝑛 − 𝑘 + 1 > 1,

(B.5)

namely, if and only if the order of the momentum 𝑘 satisfies
the following condition:

𝑘 <
𝑛 + 1

𝛼
− 𝑛. (B.6)

In the case 𝑛 = 𝑘 = 1, we need 0 < 𝛼 < 1 and, in general,
we need 0 < 𝛼 < (𝑛 + 1)/(𝑛 + 𝑘) in order to have that the
1/𝛼-Moment of order 𝑘, 𝐸1/𝛼

[𝑋
𝑘
] is well defined.
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