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We introduce and study two subclasses of multivalent functions denoted by /%Zf’ﬁ’g(M;M) and A g”;‘,"‘ﬁ (4, 85 p). Further, by
using the method of differential subordination, certain inclusion relations between the two subclasses aforementioned are given.
Moreover, several consequences of the main results are also discussed.

1. Introduction

Let ;. denote the class of the functions f of the form

f@=2"+ ) az, (npeN={1,23..1}), q

k=p+n

which are analytic in the open unitdiscU = {z € C : |z| < 1},
and let denote & := 4 ;).

A function f € o, is said to be multivalent starlike
(pn)

functions of order « in U, if it satisfies the following inequal-

ity:

m{%}wx, zel, (0<a<p, peN), (2

and we denote this class by S;’n(oc).
A function f € o/, is said to be multivalent convex
functions of order « in U, if it satisfies the following inequal-

ity:

qu (2)
f' @

ER{H }>oc, zel, (0<sa<p, peN), (3)

and we denote this class by C,, ().

For a function f € &, ), Goyal et al. [1] introduced the
following generalized Salagean differential operator:

D)f(2) = f(2), (4)
D f(z)=D,f(z) = (1-0) f (2) + Z2f' (2),
P (5)
(020),
DJ'f(2) =D, (DI f(2)), (meN). (6)

If f is given by (1), then from (5) and (6) we have

Dy f(2) = 2P + i [1+(§—1>U]makzk- @)

k=p+n
Remark 1. For ¢ = p = 1, the differential operator D’ f(z)
reduces to Salagean differential operator D" f(z) [2].

Definition 2. Let .%;”:‘6 (A3 A,) be the class of functions
f € 9, that satisfy the condition
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where (0 <0, 0<a<f<1, A eR, 0<A, <p, mpe

N), and let /¥ g’,’:’ﬁ “(u,8;y) be the class of functions f ¢
A () that satisty the conditions

)

(030, SueR, 0<sa<f<l, 0<y<p(a+pp), m,peN),

2
!
(12 2271 2)
aﬁmf( )
o ®)
z(DyP™ f (2)
+A <1+(—f),>} >A,, zel,
(DS f (2))
DY £ (2)) (DEF £ (2))
( z f )2( ‘ f( )) :/: 0) zZ € [IJ)
z2p-1
Da,ﬁ,mf (Z) u (Da,ﬁ,mf (Z)), 8
R ( s ) = >y, zel,
where
D" f(z) =D f (2) + Bz (DT f (2))' . (10)
Remark 3. By specifying different values, we have some well-
known subclasses of the classes A(,,) and A,y = A,

appearing from the families of the classes ﬂmaﬁ A A,)
and ,/V;Z:ﬁg(‘u, 85 ).

(D) 25,0705 41) = H52(-L1LA) = Sp 0 (0< Ay <
p) is the class of multivalent starlike functions of order
Al
(i) 23,27 (0 41) = /% (-1, 1,A)) = S}, = S}, (0 <
A, < 1) is the class of starlike functlons of order Al
(iii) 25" (054,) = B,,(A)), (0 < Ay < p)is the class
of multivalent convex functions of order A,.
(iv) M0 )) = By (Ay) = B,(0), (0 A; < 1)is
the class of convex functions of order .
) AN (1,8 4) = B85 M), (62-1,0< A, <1)is
the subclass of Bazilevi¢ functions.

Let 7[a, n] be denoted by the class

H |a,n]

(1)

={he# (U):h(z)=a+a,z"+ -, zeU}.

In this investigation, we focus on certain inequalities con-

sisting of the following differential operator jm P (1, 6) :
A pmy = Zl(u+90),n+pl:

z (Dg’ﬁ’mf (z))’
D" f (2)

oo "
+(‘>‘<1+—Z(D‘7 f(Z)): )
(DSP £ (2))

TtB? (u,8) f (2) =
(12)

that generalizes the expression used in the definition of class

./%:l,‘lxﬁ (A3 A,) and we receive several properties of the

expression

u P "\
(Dz,ﬁf"f (z)) <(Do’ ' f(z)) ) (z e U) (13)

zP zb~1

including relations between classes .%m“ﬁ “(A;3A,) and

maﬁa (M) 5 Y)
In order to prove our main results, we will need the
following lemmas due to Miller and Mocanu [3].

Lemma 4. Let Q ¢ C and suppose that the function y : C* x
U — C satisfies y(Me*,Ke%;z) ¢ Q for all K > Mn, 6 €
R, andz € U. Ifh(z) = a + h,z" + -+ is analytic in U and
u/(h(z),zh'(z);z) € Qforallz € U, then |h(z)| < M, z € U.

Lemma 5. Let Q ¢ C and suppose that the function y : C* x
U — C satisfies y(ix, y;z) ¢ Q forallx e R, y < —n(1 +
x%)/2, and z € U. Ifh(z) = a+h,z" +--- is analytic in U and
v(h(z),zh (2);2) € Qforallz € U, then R{h(z)} > 0, z € U.

2. Main Results

Following the same techniques and procedure given by
Goswami et al. [4], we have the following results.

Theorem 6. Let f(2) € o, with (DYP"f (2))(DEP"f (2))'/

2771 4 0 for all z € U, where D®P™ is given by (10), and also
let u,6 e R.If

R{IP (,0) f (2)}
14
M (zew), o
M+ p? (a+ fp)™"

<p(8+u)+
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where p°(a + Bp)°** < M, then
1\ O
DyFf @)\ [ (D57"f (=)
zP zb1

—p° (at Bp)*| < M,

(15)

(zel),

where the powers are the principal ones.

Proof. Let the function h(z) be defined by

! 5
DyFf )\ (D3P (2)
h (Z) - zP zP-1
(16)

~p° (a+ Bp)°*

From the assumptions f € A with

(DZ’ﬁ””f(z))(Dg"B’"‘f(z))'/zzf’_1 # 0foral z € U, we
have that h € [0, n]. By a simple manipulation, we have

we have from (17) and (14) that

y(h(z),2h (2);2) = 7P (1,0) f (2) € ©
(19)

Vz € U.

Further, forany 0 € R, K > nM, and z € U, since M >
P2 (o + Bp)°*, we also have

R {1// (Meie, Ke®; z)}

1
- 1?(<3+M)+K§R<1\/I+e_i6p(s (oc+ﬁp)8+’4> (20)
M
>p(8 h , (zel),
p( +‘u)+M+p6(OC+IBP)6+H z

which shows that y(Me”, Ke?;z) ¢ Qforall ¢ R, K >

m“ﬁ 7(u,0) f(z)=p(6+p) nM, and z € U. Therefore, according to Lemma 4, we obtain
|h(z)] < M (z € U). Hence, (15) is proven. ]
N H (2) 17)
h(z)+ p° (e + ﬁp)aw Theorem?7. Let f(z) € o, with (DEP™F(2))(DXP™f(2))' |
) 2271+ 0 for all z € U, where Dg’ﬁ’m is given by (10), and also
Now letting let 4,8 € R. If
s
(r,s,2) =p(S+u)+ ,
Y PO S a Bo™
RALwP (10) f @)} > k(.80 Biy).
Q=qweC:Rw)<p(d+ @D
{ )<p(8+u) (18) e,
N nM }
S5+ >
M + p (a+ Bp)° ™ where y € [0, p° (e + Bp)°**) and
ro9 O+p
n . o+
p(8+u)- r w7 e 0>%]
2P (a+ Bp)° - y] _
k(u, 0,0, Bsy) = (22)
5 O+u
n|p (a+pp) " -y o+ pp)°* :
por-"L ! | gy [ P,
L Y i 2
then f € ./ng’,f’“’ﬁ(/d, 0 y). (Df,"ﬁ’mf (z)), °
Proof. Suppose that ' zb ! -
23
1 DyP"f (=)' =
h(z) = — o s Then, h(z) = 1 + h,z" + -+ is analytic in U. It is easily seen
PO (et Bp) -y from (23) that



TP (u,8) f (2)

(" (a+pp)™ =y)ah ) (29
P (ot Bp)* —y)h(2) +y

=p(B+p)+
(

Further, since

(p° (a+ p)°"* =)
P ot pp)’ ™ =y)rey  (29)
Q={weC:Rw)>k(wd o By)},

v (r,s2) =p(6+;4)+(

it leads to
y(h(2),2h (2);2) = TP (.0) f (2) €
Vz € U.

(26)

Also, for any x € R, y < —n(1 + x*)/2 and z € U, we have

)8+y

y(p° @+ Bp)~y) y
[£° (o Bp)™™ - Y]Z 2 +y?

Ry (ix y32)} = p(S+u)+

<p(d+u)

ny [p° (a+ Bp)"™ -] 145
2

[0 (@ o)™ =] 2492 (27)

q(2) <k(ud,a,By)

5 S+u
lengoq(z), ifye [0,1)(a+2ﬁp):|
- 5 O+p
q(0), if y € [W)pé(a+ﬁp)5+#>;

that is, y(ix, y;z) ¢ . Finally, by Lemma 5, we obtain that
Re(h(z)) > 0. The proof of Theorem 7 is complete. O

3. Corollaries and Consequences

We will discuss some interesting consequences of the main
theorems that extend some previous results obtained in ([4,
5]).

Putting « = 1, § = 0 in Theorems 6 and 7, we get the
following corollaries.

Corollary 8. Let f(z) € oy, with (D;”f(z))(D;"f(z))'/

2’7" # 0 for all z € U, where D" is given by (7), and also
let u,8 e R. If

z(DI'f (2)) ( z(DI'f (2)" )}
R — - L 485l 1+ —T——
{“ Drf@ O\ (orf ) (28)
<p(6+y)+—MniVIp5, (zel),
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where p° < M, then

(D;”f (2) )*‘ < (00 f @) >5 Ly

<M,
zP zp-1

(29)

(z€l),

where the powers are the principal ones.

Corollary 9. Let f(z) € A (o) with (D;”f(z))(DZ“f(z))'/
2’7" # 0 for all z € U, where D" is given by (7), and also

let u,6 e R.If
m{y—“,’;ﬁ”;‘;’) +a(1+—z<D?”f ) )}
g (D7 f (2)) (30)
>¢(udy), (zel),

wherey € [0, p°) and

¢ (1.8;y) = k(p.6,1,0; )

n 5
P(5+H)—ﬁ> if ye [0’%]

nl vl
P(5+#)—T> 1f)’€[7’P)’

(31)

then

D" I D" "\°
m{( UZJ;<Z>> (( “fo(f)) ) }m zel), (32)

where the powers are the principal ones.

Taking u = 1 — A, and § = A, in Corollaries 8 and 9,
respectively, we obtain the following special cases.

Corollary 10. Let f(z) € &, with (D;"f(z))(D;"f(z))'/
2*P7" # 0 for all z € U, where D" is given by (7), and also let
A eRIf

D" !
SRR
+A1<1+m>}< LM (33)
(D f (2)) M + ph
(zel),

where p*' < M, then

m -1, m 1\ M
(Daf(2)> ((Dg /(@) > ohlem,
zP zp-1

(34)
(Z € lD)

where the powers are the principal ones.
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Corollary 11. Let f(z) € A (py with (D?f(z))(DGmf(z))'/
2*P™" # 0 for all z € U, where D" is given by (7), and also let
A eRIf
2 (D f )

D7 f (2)

O T

m{(l—Al)

(zel),

where y € [0, p™) and

x(Asy)=k(1-21,,1,,1,059)

n . M
s <o)

. 2[ph -y (36)
n[p’\l _V] . AL,
Pm— lf)’é[T)P >
then
D f @)\ ((0rf @) )"
m{( @ ) < 2 . (37)
(zel),

where the powers are the principal ones.

Next, upon taking & = 0, § = 1 in Theorems 6 and 7, we
obtain the following results.

Corollary 12. Let f(2) € o/, with (DY f(2))'[(D f(2))' +

z(DZ‘f(z))”]/zz(pfl) # 0 for all z € U, where D! is given by
(7), and also let u,6 € R. If

nM

R{Tm™ (1.6) f (@)} < p(8+p)+ Mt o G8)
(z el),

where p?** < M, then

( (DI f (2) )" ( (DI f (2) +2(DI'f (2)" )6

zP1 zb1

(39)

-p?PH <M, (zeU),

where the powers are the principal ones.

Corollary13. Let f(z) € o, with (D) f(2))'[(D f(2))' +

z(DZ‘f(z))”]/zz(p_l) # 0 for all z € U, where D is given by
(7), and also let u,d € R. If

R (10) f ()} > 6 (w85y), (zel),  (40)

5
where y € [0, pz‘S*H) and
¢ (1 8;y) = k(16,0,1;y)
ny ) P26+;4
P(5+M)—W, zfye[o,T] w
= " p26+y _ 2044 .
P(‘S‘U/l)—%, if ye [pT)p5 14>’
then
(D f @)\
ER {( zp—l >
< (DIf (2) +2 (D' f (2))" >5} (42)
. Zp-1 >,
(z e ),

where the powers are the principal ones.

Taking u = 1 = A, and § = A, in Corollaries 12 and 13,
respectively, we obtain the following special cases.
Corollary 14. Let f(2) € o, with (D) f(2))' (D} f(2))' +
z(D;”f(z))"]/zz(p_1> # 0 for all z € U, where D! is given by
(7), and also let A, € R. If

nM
M + P)”H ’ (43)

(zel),

R{T(1-A,4) f (@)} < p+

where p"*! < M, then

‘( (DI'f () >”‘
zP1

. < (D2 (2)) +2(Dyf (2))" >A‘ e (44)

<M,
zb1

(zel),
where the powers are the principal ones.

Corollary 15. Let f(z) € A (py with (D;”f(z))'[(DZ’f(z))'+

z(D;”f(z))”]/zz(Pfl) # 0 for all z € U, where D!’ is given by
(7), and also let 1| € R. If

R{TT (=250 f @)} > v (A7), "
(z€el),

wherey € [0, pM*) and



v (A3y) =k(1-211,11,0,1;p)
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In the next result, we will find the relation between

p(6+4) - ny ifye [0 pl‘“] ﬂgﬁf’ﬁ’g(/\l;y) and /[Zf’,’f’ﬁ’”(l — A1, A5 p). For this purpose,
- B3 [ph* -y Y ) (46) taking y = 1 — A, and § = A, in Theorem 7, we obtain the
= " [ PR y] . . following result.
P(5+M)—T, lfYE[ 5P )
then Corollary16. Let f(z) € d ,,,, with D3F"f (2)(DFP"'f (2))'/
a 2P 4 0 for all z € U, where D*P™ is given by (10), and also
1<(D?f(z))’> ‘ let A, € R. If
R el
zb1
m ! m m\ M (47)
_ ((Dof (2)) ;i(Dgf (2)) ) } - F@ 2P Ao (M afiy)),  (48)
el),
(=€) where y € [0, p™ (o + Bp)) and
where the powers are the principal ones.
A
ny : p™ (o + Bp)
p- , if ye [0, _
2[p" (ot Bp) — 7] 2
oA, By) =k(1=Ap, 41,0, B5y) = 3 N (49)
,_ il (a fp) -] p" (a+ Bp)

pM [(a+ Bp))s

then f(z) € /V;f’:’ﬁ’a(l - ALABY).

Taking A, = 0 and n = 1 in the above corollary, we get the
next special result.

Corollary17. Let f(z) € o, with D2F"f (2)(DEF7f (2))'/

2P 4 0 for all z € U, where D®P™ is given by (10), and also
let A, e R.If

f(2) € 3P (o Biy)), (50)

where y € [0, + Bp) and
o (o Biy) =k (1,0, Biy)

_ Y . @
P S wr fp) o] iFyeo

MBIy [ ),

then f(z) € /'y *P0(1,0;y).

Again, for the special cases of ¢ and §, Theorems 6 and 7
reduce at once to some results obtained by [4, 5].

Remark 18. Taking p = 1 and m = 0in (7) and & = 1 and
B = 0in (10), we get a known result obtained by Irmak et al.

[5].

Remark 19. Takingm = 01in (7) and o = 1 — in (10), we get
a known result obtained by Goswami et al. [4].

2y
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