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The well known circulant matrices are applied to solve networked systems. In this paper, circulant and left circulant matrices with
the Fermat and Mersenne numbers are considered. The nonsingularity of these special matrices is discussed. Meanwhile, the exact
determinants and inverse matrices of these special matrices are presented.

1. Introduction

Circulant matrices are an important tool in solving net-
worked systems. In [1], the authors investigated the storage
of binary cycles in Hopfield-type and other neural networks
involving circulant matrix. In [2], the authors considered a
special class of the feedback delay network using circulant
matrices. Distributed differential space-time codes that work
for networks with any number of relays using circulant
matrices were proposed by Jing and Jafarkhani in [3]. Bašić
[4] solved the question for when circulant quantum spin
networks with nearest-neighbor couplings can give perfect
state transfer. Wang et al. considered two-way transmission
model ensured that circular convolution between two fre-
quency selective channels in [5]. Li et al. [6] presented a low-
complexity binary framewise network coding encoder design
based on circulant matrix.

Circulant matrices have been applied to various disci-
plines including image processing, communications, signal
processing, and encoding. Circulant type matrices have
established the substantial basis with the work in [7–12] and
so on.

Lately, some authors gave the explicit determinant and
inverse of the circulant and skew-circulant involving famous
numbers. For example, Yao and Jiang [13] presented the
determinants, inverses, norm, and spread of skew circulant
type matrices involving any continuous Lucas numbers.

Jiang et al. [14] considered circulant type matrices with
the 𝑘-Fibonacci and 𝑘-Lucas numbers and presented the
explicit determinant and inverse matrix by constructing the
transformationmatrices. Dazheng [15] got the determinant of
the Fibonacci-Lucas quasi-cyclic matrices. Determinants and
inverses of circulant matrices with Jacobsthal and Jacobsthal-
Lucas numbers were obtained by Bozkurt and Tam in [16].

For any integer𝑚 ≥ 0, let 𝐹
𝑚
= 2
2
𝑚

+1 be the𝑚th Fermat
number. It is well known that 𝐹

𝑚
is prime for𝑚 ≤ 4, but there

is no other m for which 𝐹
𝑚
is known to prime.TheMersenne

andFermat sequences are defined by the following recurrence
relations [17, 18], respectively:

M
𝑛+1
= 3M

𝑛
− 2M
𝑛−1

F
𝑛+1
= 3F
𝑛
− 2F
𝑛−1

(1)

with the initial conditionM
0
= 0,M

1
= 1, F

0
= 2, F

1
= 3, for

𝑛 ≥ 1.
Let 𝛼 and𝛽 be the roots of the characteristic equation 𝑥2−

3𝑥 + 2 = 0; then the Binet formulas of the sequences {M
𝑘+𝑛
}

and {F
𝑘+𝑛
} have the form

M
𝑘+𝑛
=
𝛼
𝑘+𝑛

− 𝛽
𝑘+𝑛

𝛼 − 𝛽
,

F
𝑘+𝑛
= 𝛼
𝑘+𝑛

+ 𝛽
𝑘+𝑛

.

(2)
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Lemma 1. LetM
𝑘+𝑛

be the (𝑘+𝑛)th Mersenne number and let
F
𝑘+𝑛

be the (𝑘 + 𝑛)th Fermat number; then

(1) M
𝑛+1
−M
𝑛
= 2
𝑛,

M
𝑛+1
− 2M
𝑛
= 1,

M
𝑛
= 2
𝑛

− 1,
M2
𝑛
−M
𝑛+1

M
𝑛−1
= 2
𝑛−1.

(2) F
𝑛+1
− F
𝑛
= 2
𝑛,

F
𝑛+1
− 2F
𝑛
= −1,

F
𝑛
= 2
𝑛

+ 1,
F2
𝑛
− F
𝑛+1

F
𝑛−1
= −2
𝑛−1.

We define a Fermat circulant matrix which is an 𝑛 × 𝑛
matrix with the following form:

Circ (F
𝑘+1
, F
𝑘+2
, . . . , F

𝑘+𝑛
)

=

[
[
[
[

[

F
𝑘+1

F
𝑘+2

⋅ ⋅ ⋅ F
𝑘+𝑛

F
𝑘+𝑛

F
𝑘+1

⋅ ⋅ ⋅ F
𝑘+𝑛−1

.

.

.
.
.
.

.

.

.

F
𝑘+2

F
𝑘+3

⋅ ⋅ ⋅ F
𝑘+1

]
]
]
]

]

.

(3)

A Mersenne circulant matrix which is an 𝑛 × 𝑛 matrix is
defined with the following form:

Circ (M
𝑘+1
,M
𝑘+2
, . . . ,M

𝑘+𝑛
)

=

[
[
[
[

[

M
𝑘+1

M
𝑘+2

⋅ ⋅ ⋅ M
𝑘+𝑛

M
𝑘+𝑛

M
𝑘+1

⋅ ⋅ ⋅ M
𝑘+𝑛−1

.

.

.
.
.
.

.

.

.

M
𝑘+2

M
𝑘+3

⋅ ⋅ ⋅ M
𝑘+1

]
]
]
]

]

.

(4)

Besides, a Fermat left circulant matrix is given by

LCirc (F
𝑘+1
, F
𝑘+2
, . . . , F

𝑘+𝑛
)

=

[
[
[
[

[

F
𝑘+1

F
𝑘+2

⋅ ⋅ ⋅ F
𝑘+𝑛

F
𝑘+2

F
𝑘+3

⋅ ⋅ ⋅ F
𝑘+1

.

.

.
.
.
.

.

.

.

F
𝑘+𝑛

F
𝑘+1

⋅ ⋅ ⋅ F
𝑘+𝑛−1

]
]
]
]

]

.

(5)

A Mersenne left circulant matrix is given by

LCirc (M
𝑘+1
,M
𝑘+2
, . . . ,M

𝑘+𝑛
)

=

[
[
[
[

[

M
𝑘+1

M
𝑘+2

⋅ ⋅ ⋅ M
𝑘+𝑛

M
𝑘+2

M
𝑘+3

⋅ ⋅ ⋅ M
𝑘+1

.

.

.
.
.
.

.

.

.

M
𝑘+𝑛

M
𝑘+1

⋅ ⋅ ⋅ M
𝑘+𝑛−1

]
]
]
]

]

.

(6)

The main content of this paper is to obtain the results
for the exact determinants and inverses of Fermat and
Mersenne circulant matrix. In this paper, let 𝑘 be a nonneg-
ative integer, 𝐴

𝑘,𝑛
= Circ(F

𝑘+1
, F
𝑘+2
, . . . , F

𝑘+𝑛
), and 𝐵

𝑘,𝑛
=

Circ(M
𝑘+1
,M
𝑘+2
, . . . ,M

𝑘+𝑛
).

2. Determinant and Inverse of
Fermat Circulant Matrix

In this section, let 𝐴
𝑘,𝑛

= Circ(F
𝑘+1
, F
𝑘+2
, . . . , F

𝑘+𝑛
) be a

Fermat circulant matrix. Firstly, we obtain the exact form
determinant of the matrix𝐴

𝑘,𝑛
. Afterwards, we find the exact

form inverse of the matrix 𝐴
𝑘,𝑛
.

Theorem 2. Let𝐴
𝑘,𝑛
= Circ(F

𝑘+1
, F
𝑘+2
, . . . , F

𝑘+𝑛
) be a Fermat

circulant matrix. Then one has

det𝐴
𝑘,𝑛
= F
𝑘+1
⋅ [

[

𝑛−2

∑

𝑗=1

(F
𝑗+𝑘+2

− 𝜏
𝑘
F
𝑗+𝑘+1

) ⋅ 𝑦
𝑛−𝑗−1

+ F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛

]

]

⋅ (−𝑓)
𝑛−2

,

(7)

where 𝑦 = −𝑒/𝑓, 𝑒 = 2(F
𝑘
− F
𝑘+𝑛
), 𝑓 = F

𝑘+𝑛+1
− F
𝑘+1

, 𝜏
𝑘
=

F
𝑘+2
/F
𝑘+1

, and F
𝑘+𝑛

is the (𝑘 + 𝑛)th Fermat number. Moreover,
𝐴
𝑘,𝑛

is singular if and only if (1 − 𝛼𝜅
𝑙
)(1 − 𝛽𝜅

𝑙
) ̸= 0 and F

𝑘+1
−

2𝜅
𝑙
F
𝑘
− F
𝑘+𝑛+1

+ 2𝜅
𝑙
F
𝑘+𝑛
= 0, for 𝑘 ∈ 𝑁, 𝑛 ∈ 𝑁

+
, where 𝜅

𝑙
=

cos(2𝑙𝜋/𝑛) + 𝑖 sin(2𝑙𝜋/𝑛), 𝑙 = 1, 2, . . . , 𝑛.

Proof. It is clear that det𝐴
0,𝑛
= F
1
⋅[∑
𝑛−2

𝑗=1
(F
𝑗+2
−𝜏
0
F
𝑗+1
)[2(F
𝑛
−

F
0
)/(F
𝑛+1
− F
1
)]
𝑛−𝑗−1

+ F
1
− 𝜏
0
F
𝑛
] ⋅ [F
1
− F
𝑛+1
]
𝑛−2 satisfies (7).

In the following, let

Σ =

(
(
(
(
(
(

(

1

−𝜏
𝑘

1

2 1 −3

0 0 1 −3 2

.

.

. c c c
0 1 c c
0 1 −3 c 0

0 1 −3 2

)
)
)
)
)
)

)

,

Ω
1
=
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 𝑦
𝑛−2

0 ⋅ ⋅ ⋅ 0 0

0 𝑦
𝑛−3

0 ⋅ ⋅ ⋅ 0 −1

.

.

.
.
.
.

.

.

. d
.
.
.
.
.
.

0 𝑦 0 ⋅ ⋅ ⋅ 0 0

0 1 −1 ⋅ ⋅ ⋅ 0 0

)
)

)

(8)

be two 𝑛 × 𝑛matrices; we have

Σ𝐴
𝑘,𝑛
Ω
1
=

(
(
(
(

(

F
𝑘+1

ℎ
󸀠

𝑘,𝑛
−F
𝑘+𝑛

−F
𝑘+𝑛−1

⋅ ⋅ ⋅ −F
𝑘+3

0 ℎ
𝑘,𝑛

𝑎
3

𝑎
4

⋅ ⋅ ⋅ 𝑎
𝑛

0 0 𝑒 𝑓 0

0 0 0 𝑒 0

.

.

.
.
.
.

.

.

.
.
.
. d

.

.

.

0 0 0 0 d 𝑓

0 0 0 0 𝑒

)
)
)
)

)

,

(9)
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where

𝜏
𝑘
=
F
𝑘+2

F
𝑘+1

,

𝑦 = −
𝑒

𝑓
,

𝑎
3
= 𝜏
𝑘
F
𝑘+𝑛
− F
𝑘+1
,

𝑎
𝑗
= 𝜏
𝑘
F
𝑘+𝑛+3−𝑗

− F
𝑘+𝑛+4−𝑗

(𝑗 = 4, 5, . . . , 𝑛) ,

ℎ
󸀠

𝑘,𝑛
=

𝑛−1

∑

𝑡=1

F
𝑡+𝑘+1

[
2 (F
𝑘+𝑛
− F
𝑘
)

F
𝑘+𝑛+1

− F
𝑘+1

]

𝑛−𝑡−1

,

ℎ
𝑘,𝑛
=

𝑛−2

∑

𝑡=1

(F
𝑡+𝑘+2

− 𝜏
𝑘
F
𝑡+𝑘+1

) 𝑦
𝑛−𝑡−1

+ F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛
.

(10)

We obtain

detΣ det𝐴
𝑘,𝑛

detΩ
1

= F
𝑘+1
⋅ [

𝑛−2

∑

𝑡=1

(F
𝑡+𝑘+2

− 𝜏
𝑘
F
𝑡+𝑘+1

) 𝑦
𝑛−𝑡−1

+F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛
] ⋅ 𝑒
𝑛−2

,

(11)

while

detΣ = (−1)(𝑛−1)(𝑛−2)/2 ,

detΩ
1
= (−1)

(𝑛−1)(𝑛−2)/2

[
2 (F
𝑘
− F
𝑘+𝑛
)

F
𝑘+1
− F
𝑘+𝑛+1

]

𝑛−2

.

(12)

We have

det𝐴
𝑘,𝑛
= F
𝑘+1

⋅ [

𝑛−2

∑

𝑡=1

(F
𝑡+𝑘+2

− 𝜏
𝑘
F
𝑡+𝑘+1

) ⋅ 𝑦
𝑛−𝑡−1

+F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛
] ⋅ (−𝑓)

𝑛−2

.

(13)

Next, we discuss the singularity of the matrix 𝐴
𝑘,𝑛
.

The roots of polynomial 𝑔(𝑥) = 𝑥
𝑛

− 1 are 𝜅
𝑙
(𝑙 =

1, 2, . . . , 𝑛), where 𝜅
𝑙
= cos (2𝑙𝜋/𝑛) + 𝑖𝑠𝑖𝑛(2𝑙𝜋/𝑛). We have

𝑓 (𝜅
𝑙
) = F
𝑘+1
+ F
𝑘+2
𝜅
𝑙
+ ⋅ ⋅ ⋅ + F

𝑘+𝑛
(𝜅
𝑙
)
𝑛−1

=
F
𝑘+1
− 2𝜅
𝑙
F
𝑘
− F
𝑘+𝑛+1

+ 2𝜅
𝑙
F
𝑘+𝑛

(1 − 𝛼𝜅
𝑙
) (1 − 𝛽𝜅

𝑙
)

.

(14)

By Lemma 1 in [14], thematrix𝐴
𝑘,𝑛

is nonsingular if and only
if 𝑓(𝜅

𝑙
) ̸= 0; that is, when (1 − 𝛼𝜅

𝑙
)(1 − 𝛽𝜅

𝑙
) ̸= 0, 𝐴

𝑘,𝑛
is

nonsingular if and only if F
𝑘+1
− 2𝜅
𝑙
F
𝑘
− F
𝑘+𝑛+1

+ 2𝜅
𝑙
F
𝑘+𝑛

̸= 0;
when (1 − 𝛼𝜅

𝑙
)(1 − 𝛽𝜅

𝑙
) = 0, we obtain 𝜅

𝑙
= 1/𝛼 or 𝜅

𝑙
= 1/𝛽.

Let 𝜅
𝑙
= 1/𝛼; then the eigenvalue of 𝐴

𝑘,𝑛
is

𝑓 (𝜅
𝑙
) =
𝑛𝛼
𝑘+𝑛

− 𝛽
𝑘+1F
𝑛

𝛼𝑛−1 (𝛼 − 𝛽)
̸= 0, (15)

for 𝛼 = 2, 𝛽 = 1, 𝑘 ∈ 𝑁, 𝑛 ∈ 𝑁
+
, 𝑙 = 1, 2, . . . , 𝑛, so 𝐴

𝑘,𝑛
is

nonsingular. The arguments for 𝜅
𝑙
= 1/𝛽 are similar. Thus,

the proof is completed.

Lemma 3. Let the matrixM = [𝑚
󸀠

𝑖,𝑙
]
𝑛−2

𝑖,𝑙=1
be of the form

𝑚
𝑖,𝑙
=

{{

{{

{

2 (F
𝑘
− F
𝑘+𝑛
) = 𝑒, 𝑖 = 𝑙,

F
𝑘+𝑛+1

− F
𝑘+1
= 𝑓, 𝑙 = 𝑖 + 1,

0, otherwise.
(16)

Then the inverseM−1 = [𝑚󸀠
𝑖,𝑙
]
𝑛−2

𝑖,𝑙=1
of the matrixM is equal to

𝑚
󸀠

𝑖,𝑙
=

{{{

{{{

{

(F
𝑘+1
− F
𝑘+𝑛+1

)
𝑙−𝑖

[2 (F
𝑘
− F
𝑘+𝑛
)]
𝑙−𝑖+1

=
(−𝑓)
𝑙−𝑖

𝑒𝑙−𝑖+1
, 𝑙 ≥ 𝑖,

0, 𝑙 < 𝑖.

(17)

Proof. Let 𝑒
𝑖,𝑙
= ∑
𝑛−2

𝑘=1
𝑚
𝑖,𝑘
𝑚
󸀠

𝑘,𝑙
. Distinctly, 𝑐

𝑖,𝑙
= 0 for 𝑙 < 𝑖. In

the case 𝑖 = 𝑙, we obtain

𝑒
𝑖,𝑖
= 𝑚
𝑖,𝑖
𝑚
󸀠

𝑖,𝑖

= (F
𝑘+1
− F
𝑘+𝑛+1

) ⋅
1

(F
𝑘+1
− F
𝑘+𝑛+1

)

= 1.

(18)

For 𝑙 ≥ 𝑖 + 1, we get

𝑒
𝑖,𝑙
=

𝑛−2

∑

𝑘=1

𝑚
𝑖,𝑘
𝑚
󸀠

𝑘,𝑙

= 𝑚
𝑖,𝑖
𝑚
󸀠

𝑖,𝑙
+ 𝑚
𝑖,𝑖+1
𝑚
󸀠

𝑖+1,𝑙

= 𝑒 ⋅
(−𝑓)
𝑙−𝑖

𝑒𝑙−𝑖+1
+ 𝑓 ⋅

(−𝑓)
𝑙−𝑖−1

𝑒𝑙−𝑖

= 0.

(19)

We check on MM−1 = 𝐼
𝑛−2

, where 𝐼
𝑛−2

is (𝑛 − 2) × (𝑛 − 2)
identity matrix. Similarly, we can verifyM−1M = 𝐼

𝑛−2
. Thus,

the proof is completed.
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Theorem4. Let𝐴
𝑘,𝑛
= Circ(F

𝑘+1
, F
𝑘+2
, . . . , F

𝑘+𝑛
) be a Fermat

circulant matrix. Then one acquires 𝐴−1
𝑘,𝑛
= Circ(V

1
, V
2
, . . . ,

V
𝑛
), where

V
1
=
1

ℎ
𝑘,𝑛

+ (F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛
− ℎ
𝑘,𝑛
)

⋅
−F
𝑘+𝑛+1

+ 3F
𝑘+𝑛
+ F
𝑘+1
− 3F
𝑘

2ℎ
𝑘,𝑛
(F
𝑘
− F
𝑘+𝑛
)
2

+
(F
𝑘+𝑛
− 𝜏
𝑘
F
𝑘+𝑛−1

)

ℎ
𝑘,𝑛
(F
𝑘
− F
𝑘+𝑛
)
,

V
2
=

−2
𝑘

− ℎ
𝑘,𝑛
F
𝑘+1

F
𝑘+1
ℎ
𝑘,𝑛
(F
𝑘
− F
𝑘+𝑛
)
,

V
3
=

F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛
− ℎ
𝑘,𝑛

ℎ
𝑘,𝑛

⋅
(F
𝑘+1
− F
𝑘+𝑛+1

)
𝑛−3

[2 (F
𝑘
− F
𝑘+𝑛
)]
𝑛−2
+
1

ℎ
𝑘,𝑛

⋅

𝑛

∑

𝑖=4

(F
𝑘+𝑛+4−𝑖

− 𝜏
𝑘
F
𝑘+𝑛+3−𝑖

)

⋅
(F
𝑘+1
− F
𝑘+𝑛+1

)
𝑛−𝑖

[2 (F
𝑘
− F
𝑘+𝑛
)]
𝑛−𝑖+1

,

V
4
=

F
𝑘+𝑛+2

− F
𝑘+2

ℎ
𝑘,𝑛

× [(F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛
− ℎ
𝑘,𝑛
)

×
(F
𝑘+1
−M
𝑘+𝑛+1

)
𝑛−4

[2 (M
𝑘
−M
𝑘+𝑛
)]
𝑛−2

+

𝑛

∑

𝑖=4

(F
𝑘+𝑛+4−𝑖

− 𝜏
𝑘
F
𝑘+𝑛+3−𝑖

)

⋅
(F
𝑘+1
− F
𝑘+𝑛+1

)
𝑛−𝑖−1

[2 (F
𝑘
− F
𝑘+𝑛
)]
𝑛−𝑖+1

] ,

V
𝑠
= 0 (𝑠 = 5, 6, . . . , 𝑛) .

(20)

Proof. Let

Ω
2
=

(
(
(
(
(
(
(
(

(

1 −
ℎ
󸀠

𝑘,𝑛

F
𝑘+1

𝑥
󸀠

3
𝑥
󸀠

4
⋅ ⋅ ⋅ 𝑥
󸀠

𝑛

0 1 𝑦
󸀠

3
𝑦
󸀠

4
⋅ ⋅ ⋅ 𝑦
󸀠

𝑛

0 0 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

.
.
.
. d

.

.

.

0 0 0 0 ⋅ ⋅ ⋅ 1

)
)
)
)
)
)
)
)

)

, (21)

where

𝜏
𝑘
=
F
𝑘+2

F
𝑘+1

,

𝑥
󸀠

3
=
F
𝑘+𝑛

F
𝑘+1

+
ℎ
󸀠

𝑘,𝑛

ℎ
𝑘,𝑛

⋅
(𝜏
𝑘
F
𝑘+𝑛
− F
𝑘+1
)

F
𝑘+1

,

𝑦
󸀠

3
=
F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛

ℎ
𝑘,𝑛

,

𝑥
󸀠

𝑖
=
F
𝑘+𝑛+3−𝑖

F
𝑘+1

+
ℎ
󸀠

𝑘,𝑛

ℎ
𝑘,𝑛

⋅
𝜏
𝑘
F
𝑘+𝑛+3−𝑖

− F
𝑘+𝑛+4−𝑖

F
𝑘+1

(𝑖 = 4, . . . , 𝑛) ,

𝑦
󸀠

𝑖
=
F
𝑘+𝑛+4−𝑖

− 𝜏
𝑘
F
𝑘+𝑛+3−𝑖

ℎ
𝑘,𝑛

(𝑖 = 4, . . . , 𝑛) ,

ℎ
󸀠

𝑘,𝑛
=

𝑛−1

∑

𝑖=1

F
𝑖+𝑘+1

[
2 (F
𝑘+𝑛
− F
𝑘
)

F
𝑘+𝑛+1

− F
𝑘+1

]

𝑛−𝑖−1

,

ℎ
𝑘,𝑛
=

𝑛−2

∑

𝑖=1

(F
𝑖+𝑘+2

− 𝜏
𝑘
F
𝑖+𝑘+1

) 𝑦
𝑛−𝑖−1

+ F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛
.

(22)

We have

Σ𝐴
𝑘,𝑛
Ω
1
Ω
2
= D
2
⊕M, (23)

whereD
2
= diag(F

𝑘+1
, ℎ
𝑘,𝑛
) is a diagonal matrix, andD

2
⊕M

is the direct sum ofD
2
andM. If we denoteΩ = Ω

1
Ω
2
, then

we obtain

𝐴
−1

𝑘,𝑛
= Ω(D

−1

2
⊕M
−1

) Σ. (24)

Let𝐴−1
𝑘,𝑛
= Circ(V

1
, V
2
, . . . , V

𝑛
). Since the last row elements

of the matrix Ω are 0, 1, 𝑦󸀠
3
− 1, 𝑦

󸀠

4
, . . . , 𝑦

󸀠

𝑛−1
, 𝑦
󸀠

𝑛
, according to

Lemma 3, then the last row elements of 𝐴−1
𝑘,𝑛

are given by the
following equations:

V
2
= −

𝜏
𝑘

ℎ
𝑘,𝑛

+
𝑦
󸀠

3
− 1

F
𝑘
− F
𝑘+𝑛

,

V
3
= (𝑦
󸀠

3
− 1)

(−𝑓)
𝑛−3

𝑒𝑛−2
+

𝑛

∑

𝑖=4

𝑦
󸀠

𝑖
⋅
(−𝑓)
𝑛−𝑖

𝑒𝑛−𝑖+1
,

V
4
= (𝑦
󸀠

3
− 1) [

(−𝑓)
𝑛−4

(−𝑓)
𝑛−3
−
3 (−𝑓)

𝑛−3

𝑒𝑛−2
]

+

𝑛

∑

𝑖=4

𝑦
󸀠

𝑖
⋅ [
(−𝑓)
𝑛−𝑖−1

𝑒𝑛−𝑖
−
3 (−𝑓)

𝑛−𝑖

𝑒𝑛−𝑖+1
]

(𝑡 < 0, (−𝑓)
𝑡

= 0) ,



Abstract and Applied Analysis 5

V
𝑠
= (𝑦
󸀠

3
− 1) [

(−𝑓)
𝑛−𝑠

𝑒𝑛−𝑠+1
−
3 (−𝑓)

𝑛−𝑠+1

𝑒𝑛−𝑠+2
+
2 (−𝑓)

𝑛−𝑠+2

𝑒𝑛−𝑠+3
]

+

𝑛−𝑠+5

∑

𝑖=4

𝑦
󸀠

𝑖
⋅ [
(−𝑓)
𝑛−𝑖−𝑠+3

𝑒𝑛−𝑖−𝑠+4
−
3 (−𝑓)

𝑛−𝑖−𝑠+4

𝑒𝑛−𝑖−𝑠+5

+
2 (−𝑓)

𝑛−𝑖−𝑠+5

𝑒𝑛−𝑖−𝑠+6
]

(𝑠 = 5, 6, . . . , 𝑛; 𝑡 < 0, (−𝑓)
𝑡

= 0) ,

V
1
=
1

ℎ
𝑘,𝑛

+
−2𝑓 − 3𝑒

𝑒2
(𝑦
3
− 1) +

2

𝑒
𝑦
4
,

(25)

where 𝑓 = F
𝑘+𝑛+1

− F
𝑘+1

, 𝑒 = 2(F
𝑘
− F
𝑘+𝑛
), according to

Lemma 1; then we have

(i) 𝑒 + 𝑓 = 0,

(ii) 𝑒 + 2𝑓 = 2𝑘+𝑛+1 − 2𝑘+1.

Hence, we obtain

V
1
=
1

ℎ
𝑘,𝑛

+ (F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛
− ℎ
𝑘,𝑛
)

⋅
−F
𝑘+𝑛+1

+ 3F
𝑘+𝑛
+ F
𝑘+1
− 3F
𝑘

2ℎ
𝑘,𝑛
(F
𝑘
− F
𝑘+𝑛
)
2

+
(F
𝑘+𝑛
− 𝜏
𝑘
F
𝑘+𝑛−1

)

ℎ
𝑘,𝑛
(F
𝑘
− F
𝑘+𝑛
)
,

V
2
=

−2
𝑘

− ℎ
𝑘,𝑛
F
𝑘+1

F
𝑘+1
ℎ
𝑘,𝑛
(F
𝑘
− F
𝑘+𝑛
)
,

V
3
=
F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛
− ℎ
𝑘,𝑛

ℎ
𝑘,𝑛

⋅
(F
𝑘+1
− F
𝑘+𝑛+1

)
𝑛−3

[2 (F
𝑘
− F
𝑘+𝑛
)]
𝑛−2
+
1

ℎ
𝑘,𝑛

⋅

𝑛

∑

𝑖=4

(F
𝑘+𝑛+4−𝑖

− 𝜏
𝑘
F
𝑘+𝑛+3−𝑖

)

⋅
(F
𝑘+1
− F
𝑘+𝑛+1

)
𝑛−𝑖

[2 (F
𝑘
− F
𝑘+𝑛
)]
𝑛−𝑖+1

,

V
4
=
F
𝑘+𝑛+2

− F
𝑘+2

ℎ
𝑘,𝑛

× [(F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛
− ℎ
𝑘,𝑛
)

⋅
(F
𝑘+1
− F
𝑘+𝑛+1

)
𝑛−4

[2 (F
𝑘
− F
𝑘+𝑛
)]
𝑛−2

+

𝑛

∑

𝑖=4

(F
𝑘+𝑛+4−𝑖

− 𝜏
𝑘
F
𝑘+𝑛+3−𝑖

)

×
(F
𝑘+1
− F
𝑘+𝑛+1

)
𝑛−𝑖−1

[2 (F
𝑘
− F
𝑘+𝑛
)]
𝑛−𝑖+1

] ,

V
𝑠
= 0 (𝑠 = 5, 6, . . . , 𝑛) .

(26)

Thus, the proof is completed.

3. Determinant and Inverse of
Mersenne Circulant Matrix

In this section, let 𝐵
𝑘,𝑛
= Circ(M

𝑘+1
,M
𝑘+2
, . . . ,M

𝑘+𝑛
) be a

Mersenne circulantmatrix. Firstly, we obtain the determinant
of the matrix 𝐵

𝑘,𝑛
. Afterwards, we seek out the inverse of the

matrix 𝐵
𝑘,𝑛
.

Theorem 5. Let 𝐵
𝑘,𝑛

= Circ(M
𝑘+1
,M
𝑘+2
, . . . ,M

𝑘+𝑛
) be a

Mersenne circulant matrix. Then one obtains

det𝐵
𝑘,𝑛
= M
𝑘+1

⋅ [

𝑛−2

∑

𝑘=1

(M
𝑘+𝑘+2

− 𝜇
𝑘
M
𝑘+𝑘+1

) 𝑥
𝑛−𝑘−1

+M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛
] ⋅ (−𝑑)

𝑛−2

,

(27)

where 𝑥 = −𝑐/𝑑, 𝑐 = 2(M
𝑘
− M
𝑘+𝑛
), 𝑑 = M

𝑘+𝑛+1
− M
𝑘+1

,
𝜇
𝑘
= M
𝑘+2
/M
𝑘+1

, andM
𝑘+𝑛

is the (𝑘 + 𝑛)th Mersenne number.
Furthermore,𝐵

𝑘,𝑛
is singular if and only if (1−𝛼𝜅

𝑙
)(1−𝛽𝜅

𝑙
) ̸= 0

andM
𝑘+1
−2𝜅
𝑙
M
𝑘
−M
𝑘+𝑛+1

+2𝜅
𝑙
M
𝑘+𝑛
= 0, for 𝑘 ∈ 𝑁, 𝑛 ∈ 𝑁

+
,

where 𝜅
𝑙
= cos(2𝑙𝜋/𝑛) + 𝑖 sin(2𝑙𝜋/𝑛), 𝑙 = 1, 2, . . . , 𝑛.

Proof. Obviously,

det𝐴
0,𝑛
= M
1

⋅ [

𝑛−2

∑

𝑖=1

(M
𝑖+2
− 𝜇
0
M
𝑖+1
) ⋅ [

2 (M
𝑛
−M
0
)

M
𝑛+1
−M
1

]

𝑛−𝑘−1

+M
1
− 𝜇
0
M
𝑛
] ⋅ [2 (M

0
−M
𝑛
)]
𝑛−2

(28)
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satisfies (27). In the following, let

Γ =

(
(
(
(
(
(

(

1

−𝜇
𝑘

1

2 1 −3

0 0 1 −3 2

.

.

. c c c
0 1 c c
0 1 −3 c 0

0 1 −3 2

)
)
)
)
)
)

)

,

Π
1
=
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 𝑥
𝑛−2

0 ⋅ ⋅ ⋅ 0 0

0 𝑥
𝑛−3

0 ⋅ ⋅ ⋅ 0 −1

.

.

.
.
.
.

.

.

. d
.
.
.
.
.
.

0 𝑥 0 ⋅ ⋅ ⋅ 0 0

0 1 −1 ⋅ ⋅ ⋅ 0 0

)
)

)

(29)

be two 𝑛 × 𝑛matrices; then we have

Γ𝐵
𝑘,𝑛
Π
1
=

(
(
(
(

(

M
𝑘+1

𝑓
󸀠

𝑘,𝑛
−M
𝑘+𝑛

⋅ ⋅ ⋅ −M
𝑘+3

0 𝑓
𝑘,𝑛

ℎ
3

⋅ ⋅ ⋅ ℎ
𝑛

0 0 𝑐 ⋅ ⋅ ⋅ 0

0 0 0 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

. d
.
.
.

0 0 0 ⋅ ⋅ ⋅ 𝑑

0 0 0 ⋅ ⋅ ⋅ 𝑐

)
)
)
)

)

, (30)

where
𝑐 = 2 (M

𝑘
−M
𝑘+𝑛
) ,

𝑑 = M
𝑘+𝑛+1

−M
𝑘+1
,

𝑥 = −
𝑐

𝑑
, 𝜇

𝑘
=
M
𝑘+2

M
𝑘+1

,

ℎ
3
= 𝜇
𝑘
M
𝑘+𝑛
−M
𝑘+1
,

ℎ
𝑗
= (𝜇
𝑘
M
𝑘+𝑛+3−𝑗

−M
𝑘+𝑛+4−𝑗

)

(𝑗 = 4, 5, . . . , 𝑛) ,

𝑓
󸀠

𝑘,𝑛
=

𝑛−1

∑

𝑖=1

M
𝑖+𝑘+1

[
2 (M
𝑘+𝑛
−M
𝑘
)

M
𝑘+𝑛+1

−M
𝑘+1

]

𝑛−𝑖−1

,

𝑓
𝑘,𝑛
=

𝑛−2

∑

𝑖=1

(M
𝑖+𝑘+2

− 𝜇
𝑘
M
𝑖+𝑘+1

) , 𝑥
𝑛−𝑖−1

+M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛
.

(31)

We get

det Γ det𝐵
𝑘,𝑛

detΠ
1

= M
𝑘+1
⋅ [

𝑛−2

∑

𝑖=1

(M
𝑖+𝑘+2

− 𝜇
𝑘
M
𝑖+𝑘+1

) 𝑥
𝑛−𝑖−1

+M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛
] ⋅ 𝑐
𝑛−2

;

(32)

besides

det Γ = (−1)(𝑛−1)(𝑛−2)/2 ,

detΠ
1
= (−1)

(𝑛−1)(𝑛−2)/2

[
2 (M
𝑘+𝑛
−M
𝑘
)

M
𝑘+𝑛+1

−M
𝑘+1

]

𝑛−2

.

(33)

We have

det𝐵
𝑘,𝑛
= M
𝑘+1
⋅ [

𝑛−2

∑

𝑖=1

(M
𝑖+𝑘+2

− 𝜇
𝑘
M
𝑖+𝑘+1

) 𝑥
𝑛−𝑖−1

+M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛
] ⋅ (−𝑑)

𝑛−2

.

(34)

Now, we discuss the singularity of the matrix 𝐵
𝑘,𝑛
.

The roots of polynomial 𝑔(𝑥) = 𝑥
𝑛

− 1 are 𝜅
𝑙
(𝑙 =

1, 2, . . . , 𝑛), where 𝜅
𝑙
= cos(2𝑙𝜋/𝑛) + 𝑖 sin(2𝑙𝜋/𝑛). So we have

𝑓 (𝜅
𝑙
) = M

𝑘+1
+M
𝑘+2
𝜅
𝑙
+ ⋅ ⋅ ⋅ +M

𝑘+𝑛
(𝜅
𝑙
)
𝑛−1

=
M
𝑘+1
− 2𝜅
𝑙
M
𝑘
−M
𝑘+𝑛+1

+ 2𝜅
𝑙
M
𝑘+𝑛

(1 − 𝛼𝜅
𝑙
) (1 − 𝛽𝜅

𝑙
)

.

(35)

By Lemma 1 in [14], the matrix 𝐵
𝑘,𝑛

is nonsingular if and only
if 𝑓(𝜅

𝑙
) ̸= 0. That is when (1 − 𝛼𝜅

𝑙
)(1 − 𝛽𝜅

𝑙
) ̸= 0, 𝐵

𝑘,𝑛
is

nonsingular if and only ifM
𝑘+1
−2𝜅
𝑙
M
𝑘
−M
𝑘+𝑛+1

+2𝜅
𝑙
M
𝑘+𝑛

̸=

0, for 𝑘 ∈ 𝑁, 𝑛 ∈ 𝑁
+
, 𝑙 = 1, 2, . . . , 𝑛. When (1−𝛼𝜅

𝑙
)(1−𝛽𝜅

𝑙
) =

0, we obtain 𝜅
𝑙
= 1/𝛼 or 𝜅

𝑙
= 1/𝛽. Let 𝜅

𝑙
= 1/𝛼; then the

eigenvalue of 𝐵
𝑘,𝑛

is

𝑓 (𝜅
𝑙
) =
𝑛𝛼
𝑘+𝑛

− 𝛽
𝑘+1M
𝑛

𝛼𝑛−1 (𝛼 − 𝛽)
̸= 0, (36)

for 𝛼 = 2, 𝛽 = 1, 𝑘 ∈ 𝑁, 𝑛 ∈ 𝑁
+
, 𝑙 = 1, 2, . . . , 𝑛, so 𝐵

𝑘,𝑛
is

nonsingular. The arguments for 𝜅
𝑙
= 1/𝛽 are similar. Thus,

the proof is completed.

Lemma 6. Let the matrixG = [𝑔
𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1
be of the form

𝑔
𝑖,𝑗
=

{{

{{

{

2 (M
𝑘
−M
𝑘+𝑛
) = 𝑐, 𝑖 = 𝑗,

M
𝑘+𝑛+1

−M
𝑘+1
= 𝑑, 𝑗 = 𝑖 + 1,

0, otherwise.
(37)

Then the inverseG−1 = [𝑔󸀠
𝑖,𝑗
]
𝑛−2

𝑖,𝑗=1
of the matrixG is equal to

𝑔
󸀠

𝑖,𝑗
=

{{

{{

{

(M
𝑘+1
−M
𝑘+𝑛+1

)
𝑗−𝑖

[2 (M
𝑘
−M
𝑘+𝑛
)]
𝑗−𝑖+1

=
(−𝑑)
𝑗−𝑖

𝑐𝑗−𝑖+1
, 𝑗 ≥ 𝑖,

0, 𝑗 < 𝑖.

(38)

Proof. Let 𝑐
𝑖,𝑗
= ∑
𝑛−2

𝑘=1
𝑔
𝑖,𝑘
𝑔
󸀠

𝑘,𝑗
. Distinctly, 𝑐

𝑖,𝑗
= 0 for 𝑗 < 𝑖.

When 𝑖 = 𝑗, we obtain

𝑐
𝑖,𝑖
= 𝑔
𝑖,𝑖
𝑔
󸀠

𝑖,𝑖
= −𝑑 ⋅

1

−𝑑
= 1. (39)



Abstract and Applied Analysis 7

For 𝑗 ≥ 𝑖 + 1, we obtain

𝑐
𝑖,𝑗
=

𝑛−2

∑

𝑘=1

𝑔
𝑖,𝑘
𝑔
󸀠

𝑘,𝑗
= 𝑔
𝑖,𝑖
𝑔
󸀠

𝑖,𝑗
+ 𝑔
𝑖,𝑖+1
𝑔
󸀠

𝑖+1,𝑗

= 𝑐 ⋅
(−𝑑)
𝑗−𝑖

𝑐𝑗−𝑖+1
+ 𝑑 ⋅

(−𝑑)
𝑗−𝑖−1

𝑐𝑗−𝑖
= 0.

(40)

We verifyGG−1 = 𝐼
𝑛−2

, where 𝐼
𝑛−2

is (𝑛 − 2) × (𝑛− 2) identity
matrix. Similarly, we check on G−1G = 𝐼

𝑛−2
. Thus, the proof

is completed.

Theorem 7. Let 𝐵
𝑘,𝑛

= Circ(M
𝑘+1
,M
𝑘+2
, . . . ,M

𝑘+𝑛
) be a

Mersenne circulant matrix. Then one acquires

𝐵
−1

𝑘,𝑛
= Circ (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) , (41)

where

𝑢
1
=
1

𝑓
𝑘,𝑛

+ (M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛
− 𝑓
𝑘,𝑛
)

⋅
−M
𝑘+𝑛+1

+ 3M
𝑘+𝑛
+M
𝑘+1
− 3M
𝑘

2𝑓
𝑘,𝑛
(M
𝑘
−M
𝑘+𝑛
)
2

+
(M
𝑘+𝑛
− 𝜇
𝑘
M
𝑘+𝑛−1

)

𝑓
𝑘,𝑛
(M
𝑘
−M
𝑘+𝑛
)
,

𝑢
2
=

2
𝑘

− 𝑓
𝑘,𝑛
M
𝑘+1

M
𝑘+1
𝑓
𝑘,𝑛
(M
𝑘
−M
𝑘+𝑛
)
,

𝑢
3
=
M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛
− 𝑓
𝑘,𝑛

𝑓
𝑘,𝑛

⋅
(M
𝑘+1
−M
𝑘+𝑛+1

)
𝑛−3

[2 (M
𝑘
−M
𝑘+𝑛
)]
𝑛−2
+
1

𝑓
𝑘,𝑛

⋅

𝑛

∑

𝑖=4

(M
𝑘+𝑛+4−𝑖

− 𝜇
𝑘
M
𝑘+𝑛+3−𝑖

)

⋅
(M
𝑘+1
−M
𝑘+𝑛+1

)
𝑛−𝑖

[2 (M
𝑘
−M
𝑘+𝑛
)]
𝑛−𝑖+1

,

𝑢
4
=
M
𝑘+𝑛+2

−M
𝑘+2

𝑓
𝑘,𝑛

× [(M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛
− 𝑓
𝑘,𝑛
) ⋅
(M
𝑘+1
−M
𝑘+𝑛+1

)
𝑛−4

[2 (M
𝑘
−M
𝑘+𝑛
)]
𝑛−2

+

𝑛

∑

𝑖=4

(M
𝑘+𝑛+4−𝑖

− 𝜇
𝑘
M
𝑘+𝑛+3−𝑖

)

⋅
(M
𝑘+1
−M
𝑘+𝑛+1

)
𝑛−𝑖−1

[2 (M
𝑘
−M
𝑘+𝑛
)]
𝑛−𝑖+1

] ,

𝑢
𝑠
= 0 (𝑠 = 5, 6, . . . , 𝑛) ,

(42)

where

𝜇
𝑘
=
M
𝑘+2

M
𝑘+1

,

𝑓
𝑘,𝑛
=

𝑛−2

∑

𝑖=1

(M
𝑖+𝑘+2

− 𝜇
𝑘
M
𝑖+𝑘+1

) 𝑥
𝑛−𝑖−1

+M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛
.

(43)

Proof. Let

Π
2
=

(
(
(
(
(
(
(

(

1 −
𝑓
󸀠

𝑘,𝑛

M
𝑘+1

𝑥
3
𝑥
4
⋅ ⋅ ⋅ 𝑥
𝑛

0 1 𝑦
3
𝑦
4
⋅ ⋅ ⋅ 𝑦
𝑛

0 0 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

.
.
.
. d

.

.

.

0 0 0 0 ⋅ ⋅ ⋅ 1

)
)
)
)
)
)
)

)

, (44)

where

𝜇
𝑘
=
M
𝑘+2

M
𝑘+1

,

𝑥
3
=
M
𝑘+𝑛

M
𝑘+1

+
𝑓
󸀠

𝑘,𝑛

𝑓
𝑘,𝑛

⋅
(𝜇
𝑘
M
𝑘+𝑛
−M
𝑘+1
)

M
𝑘+1

,

𝑦
3
=
M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛

𝑓
𝑘,𝑛

,

𝑥
𝑖
=
M
𝑘+𝑛+3−𝑖

M
𝑘+1

+
𝑓
󸀠

𝑘,𝑛

𝑓
𝑘,𝑛

⋅
𝜇
𝑘
M
𝑘+𝑛+3−𝑖

−M
𝑘+𝑛+4−𝑖

M
𝑘+1

(𝑖 = 4, . . . , 𝑛) ,

𝑦
𝑖
=
M
𝑘+𝑛+4−𝑖

− 𝜇
𝑘
M
𝑘+𝑛+3−𝑖

𝑓
𝑘,𝑛

(𝑖 = 4, . . . , 𝑛) ,

𝑓
󸀠

𝑘,𝑛
=

𝑛−1

∑

𝑖=1

M
𝑖+𝑘+1

[
2 (M
𝑘+𝑛
−M
𝑘
)

M
𝑘+𝑛+1

−M
𝑘+1

]

𝑛−𝑖−1

,

𝑓
𝑘,𝑛
=

𝑛−2

∑

𝑖=1

(M
𝑖+𝑘+2

− 𝜇
𝑘
M
𝑖+𝑘+1

) 𝑥
𝑛−𝑖−1

+M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛
.

(45)

We have

Γ𝐵
𝑘,𝑛
Π
1
Π
2
= D
1
⊕G, (46)

whereD
1
= diag(M

𝑘+1
, 𝑓
𝑘,𝑛
) is a diagonal matrix, andD

1
⊕G

is the direct sum ofD
1
andG. If we denote Π = Π

1
Π
2
, then

we obtain

𝐵
−1

𝑘,𝑛
= Π (D

−1

1
⊕G
−1

) Γ. (47)
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Let𝐵−1
𝑘,𝑛
= Circ(𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
). Since the last row elements

of the matrix Π are 0, 1, 𝑦
3
− 1, 𝑦

4
, . . . , 𝑦

𝑛−1
, 𝑦
𝑛
, according to

Lemma 6, then the last row elements of 𝐵−1
𝑘,𝑛

are given by the
following equations:

𝑢
2
= −

𝜇
𝑘

𝑓
𝑘,𝑛

+
2 (𝑦
3
− 1)

𝑐
,

𝑢
3
= (𝑦
3
− 1) ⋅

(−𝑑)
𝑛−3

𝑐𝑛−2
+

𝑛

∑

𝑖=4

𝑦
𝑖
⋅
(−𝑑)
𝑛−𝑖

𝑐𝑛−𝑖+1
,

𝑢
4
= (𝑦
3
− 1) ⋅ [

(−𝑑)
𝑛−4

𝑐𝑛−3
−
3 (−𝑑)

𝑛−3

𝑐𝑛−2
]

+

𝑛

∑

𝑖=4

𝑦
𝑖
⋅ [
(−𝑑)
𝑛−𝑖−1

𝑐𝑛−𝑖
−
3 (−𝑑)

𝑛−𝑖

𝑐𝑛−𝑖+1
]

= (𝑦
3
− 1) ⋅

(−𝑑)
𝑛−4

𝑐𝑛−2
(𝑐 + 3𝑑)

+

𝑛

∑

𝑖=4

𝑦
𝑖
⋅
(−𝑑)
𝑛−𝑖−1

𝑐𝑛−𝑖+1
(𝑐 + 3𝑑) (𝑡 < 0, (−𝑑)

𝑡

= 0) ,

𝑢
𝑠
= (𝑦
3
− 1)

⋅ [
(−𝑑)
𝑛−𝑠

𝑐𝑛−𝑠+1
−
3 (−𝑑)

𝑛−𝑠+1

𝑐𝑛−𝑠+2
+
2 (−𝑑)

𝑛−𝑠+2

𝑐𝑛−𝑠+3
]

+

𝑛−𝑠+5

∑

𝑖=4

𝑦
𝑖
⋅ [
(−𝑑)
𝑛−𝑖−𝑠+3

𝑐𝑛−𝑖−𝑠+4

−
3 (−𝑑)

𝑛−𝑖−𝑠+4

𝑐𝑛−𝑖−𝑠+5
+
2 (−𝑑)

𝑛−𝑖−𝑠+5

𝑐𝑛−𝑖−𝑠+6
]

= [(𝑦
3
− 1) ⋅

(−𝑑)
𝑛−𝑠

𝑐𝑛−𝑠+3
+

𝑛−𝑠+5

∑

𝑖=4

𝑦
𝑖
⋅
(−𝑑)
𝑛−𝑖−𝑠+3

𝑐𝑛−𝑖−𝑠+6
]

× (𝑐 + 2𝑑) (𝑐 + 𝑑) (𝑠 = 5, 6, . . . , 𝑛; 𝑡 < 0, (−𝑑)
𝑡

= 0) ,

𝑢
1
=
1

𝑓
𝑘,𝑛

+
−2𝑑 − 3𝑐

𝑐2
(𝑦
3
− 1) +

2

𝑐
𝑦
4
,

(48)

where 𝑑 = M
𝑘+𝑛+1

− M
𝑘+1
, 𝑐 = 2(M

𝑘
− M
𝑘+𝑛
), according to

Lemma 1; then we have

(i) 𝑐 + 𝑑 = 0,
(ii) 𝑐 + 2𝑑 = 2𝑘+𝑛+1 − 2𝑘+1.

We get

𝑢
1
=
1

𝑓
𝑘,𝑛

+ (M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛
− 𝑓
𝑘,𝑛
)

⋅
−M
𝑘+𝑛+1

+ 3M
𝑘+𝑛
+M
𝑘+1
− 3M
𝑘

2𝑓
𝑘,𝑛
(M
𝑘
−M
𝑘+𝑛
)
2

+
(M
𝑘+𝑛
− 𝜇
𝑘
M
𝑘+𝑛−1

)

𝑓
𝑘,𝑛
(M
𝑘
−M
𝑘+𝑛
)
,

𝑢
2
=

2
𝑘

− 𝑓
𝑘,𝑛
M
𝑘+1

M
𝑘+1
𝑓
𝑘,𝑛
(M
𝑘
−M
𝑘+𝑛
)
,

𝑢
3
=
M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛
− 𝑓
𝑘,𝑛

𝑓
𝑘,𝑛

⋅
(M
𝑘+1
−M
𝑘+𝑛+1

)
𝑛−3

[2 (M
𝑘
−M
𝑘+𝑛
)]
𝑛−2
+
1

𝑓
𝑘,𝑛

⋅

𝑛

∑

𝑖=4

(M
𝑘+𝑛+4−𝑖

− 𝜇
𝑘
M
𝑘+𝑛+3−𝑖

)

⋅
(M
𝑘+1
−M
𝑘+𝑛+1

)
𝑛−𝑖

[2 (M
𝑘
−M
𝑘+𝑛
)]
𝑛−𝑖+1

,

𝑢
4
=
M
𝑘+𝑛+2

−M
𝑘+2

𝑓
𝑘,𝑛

× [(M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛
− 𝑓
𝑘,𝑛
)
(M
𝑘+1
−M
𝑘+𝑛+1

)
𝑛−4

[2 (M
𝑘
−M
𝑘+𝑛
)]
𝑛−2

+

𝑛

∑

𝑖=4

(M
𝑘+𝑛+4−𝑖

− 𝜇
𝑘
M
𝑘+𝑛+3−𝑖

)

⋅
(M
𝑘+1
−M
𝑘+𝑛+1

)
𝑛−𝑖−1

[2 (M
𝑘
−M
𝑘+𝑛
)]
𝑛−𝑖+1

] ,

𝑢
𝑠
= 0 (𝑠 = 5, 6, . . . , 𝑛) .

(49)
Thus, the proof is completed.

4. Determinants and Inverses of Fermat and
Mersenne Left Circulant Matrix

In this section, let 𝐴󸀠
𝑘,𝑛

= LCirc(F
𝑘+1
, F
𝑘+2
, . . . , F

𝑘+𝑛
) and

𝐵
󸀠

𝑘,𝑛
= LCirc(M

𝑘+1
,M
𝑘+2
, . . . ,M

𝑘+𝑛
) beMersenne and Fermat

left circulant matrices, respectively. By using the obtained
conclusions, we give a determinant formula for the matrix
𝐴
󸀠

𝑘,𝑛
and 𝐵󸀠

𝑘,𝑛
. In addition, the inverse matrices of 𝐴󸀠

𝑘,𝑛
and

𝐵
󸀠

𝑘,𝑛
are derived.
According to Lemma 2 in [14] and Theorems 2, 4, 5, and

7, we can obtain the following theorems.

Theorem 8. Let 𝐴󸀠
𝑘,𝑛

= LCirc(F
𝑘+1
, F
𝑘+2
, . . . , F

𝑘+𝑛
) be a

Fermat left circulant matrix; then one has

det𝐴󸀠
𝑘,𝑛
= (−1)

(𝑛−1)(𝑛−2)/2

⋅ F
𝑘+1

⋅ [

[

𝑛−2

∑

𝑗=1

(F
𝑗+𝑘+2

− 𝜏
𝑘
F
𝑗+𝑘+1

) 𝑝
𝑛−𝑗−1

+ F
𝑘+1
− 𝜏
𝑘
F
𝑘+𝑛

]

]

⋅ (F
𝑘+1
− F
𝑘+𝑛+1

)
𝑛−2

,

(50)
where 𝜏

𝑘
= F
𝑘+2
/F
𝑘+1

,𝑝 = 2(F
𝑘+𝑛
−F
𝑘
)/(F
𝑘+𝑛+1

−F
𝑘+1
), and F

𝑘+𝑛

is the (𝑘+𝑛)th Fermat number.Moreover,𝐴󸀠
𝑘,𝑛

is singular if and
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only if (1−𝛼𝜅
𝑙
)(1−𝛽𝜅

𝑙
) ̸= 0 and F

𝑘+1
−2𝜅
𝑙
F
𝑘
−F
𝑘+𝑛+1

+2𝜅
𝑙
F
𝑘+𝑛
=

0, for 𝑘 ∈ 𝑁, 𝑛 ∈ 𝑁
+
, where 𝜅

𝑙
= cos(2𝑙𝜋/𝑛) + 𝑖 sin(2𝑙𝜋/𝑛),

𝑙 = 1, 2, . . . , 𝑛.

Theorem 9. Let 𝐴󸀠
𝑘,𝑛

= LCirc(F
𝑘+1
, F
𝑘+2
, . . . , F

𝑘+𝑛
) be a

Fermat left circulant matrix; then

(𝐴
󸀠

𝑘,𝑛
)
−1

= Circ −1 (F
𝑘+1
, F
𝑘+2
, . . . , F

𝑘+𝑛
) ⋅ Δ

= Circ (V
1
, V
2
, . . . , V

𝑛
) ⋅ Δ

= LCirc (V
1
, V
𝑛
, . . . , V

2
) ,

(51)

where V
1
, V
2
, . . . , V

𝑛
were given by Theorem 4 and Δ =

LCirc(1, 0, . . . , 0) was given by Lemma 2 in [14].

Theorem 10. Let 𝐵󸀠
𝑘,𝑛
= LCirc(M

𝑘+1
,M
𝑘+2
, . . . ,M

𝑘+𝑛
) be a

Mersenne left circulant matrix; then one has

det𝐵󸀠
𝑘,𝑛
= (−1)

(𝑛−1)(𝑛−2)/2

⋅M
𝑘+1

⋅ [

[

M
𝑘+1
− 𝜇
𝑘
M
𝑘+𝑛

+

𝑛−2

∑

𝑗=1

(M
𝑗+𝑘+2

− 𝜇
𝑘
M
𝑗+𝑘+1

) 𝑧
𝑛−𝑗−1]

]

⋅ (M
𝑘+1
−M
𝑘+𝑛+1

)
𝑛−2

,

(52)

where 𝜇
𝑘
= M
𝑘+2
/M
𝑘+1

, 𝑧 = 2(M
𝑘+𝑛
−M
𝑘
)/(M
𝑘+𝑛+1

−M
𝑘+1
),

andM
𝑘+𝑛

is the (𝑘+𝑛)th Mersenne number. Furthermore, 𝐵󸀠
𝑘,𝑛

is singular if and only if (1 − 𝛼𝜅
𝑙
)(1 − 𝛽𝜅

𝑙
) ̸= 0 and M

𝑘+1
−

2𝜅
𝑙
M
𝑘
− M
𝑘+𝑛+1

+ 2𝜅
𝑙
M
𝑘+𝑛
= 0, for 𝑘 ∈ 𝑁, 𝑛 ∈ 𝑁

+
, where

𝜅
𝑙
= cos(2𝑙𝜋/𝑛) + 𝑖 sin(2𝑙𝜋/𝑛), 𝑙 = 1, 2, . . . , 𝑛.

Theorem 11. Let 𝐵󸀠
𝑘,𝑛
= LCirc(M

𝑘+1
,M
𝑘+2
, . . . ,M

𝑘+𝑛
) be a

Mersenne left circulant matrix; then one has

(𝐵
󸀠

𝑘,𝑛
)
−1

= Circ −1 (M
𝑘+1
,M
𝑘+2
, . . . ,M

𝑘+𝑛
) ⋅ Δ

= Circ (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) ⋅ Δ

= LCirc (𝑢
1
, 𝑢
𝑛
, . . . , 𝑢

2
) ,

(53)

where 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
were given by Theorem 7 and Δ =

LCirc(1, 0, . . . , 0) was given by Lemma 2 in [14].

5. Conclusion

In this paper, we present the exact determinants and the
inverse matrices of Fermat and Mersenne circulant matrix,
respectively. Furthermore, we give the exact determinants
and the inverse matrices of Fermat and Mersenne left circu-
lant matrix. Meanwhile, the nonsingularity of these special
matrices is discussed. On the basis of circulant matrices
technology, we will develop solving the problems in [19–22].
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