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We will investigate the decay estimate of the energy of the global solutions to the p-Laplacian wave equation with dissipation of
the form 𝑢

𝑡𝑡
− div(|∇

𝑥
𝑢|
𝑝−2

∇
𝑥
𝑢) + 𝜎(𝑡)(𝑢

𝑡
− div(|∇

𝑥
𝑢
𝑡
|
𝑚−2

∇
𝑥
𝑢
𝑡
)) = 0 under suitable assumptions on the positive function 𝜎. For

this end we use the multiplier method combined with nonlinear integral inequalities given by Martinez; the proof is based on the
construction of a special weight function that depends on the behavior of 𝜎.

1. Introduction

In this paper we are concerned with the energy decay rate of
the 𝑝-Laplacian type wave equation of the form

𝑢
𝑡𝑡
− div (󵄨󵄨󵄨

󵄨
∇
𝑥
𝑢
󵄨
󵄨
󵄨
󵄨

𝑝−2
∇
𝑥
𝑢)

+ 𝜎 (𝑡) (𝑢
𝑡
− div (󵄨󵄨󵄨

󵄨
∇
𝑥
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−2
∇
𝑥
𝑢
𝑡
)) = 0

in Ω × [0, +∞[ ,

𝑢 = 0 on Γ × [0, +∞[ ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) ,

𝑢
𝑡
(𝑥, 0) = 𝑢1 (𝑥)

on Ω,

(𝑃)

where Ω is a bounded domain in R𝑛 with smooth boundary
Γ = 𝜕Ω, 𝑝, 𝑚 ≥ 2 are real numbers, and 𝜎 is a positive
function satisfying some conditions to be specified later.

Problem (𝑃) can be considered as a system describing the
longitudinal motion of a viscoelastic configuration obeying
a nonlinear Voigt model. The bibliography of works in this
direction is so long. We mention, for instance, the works of

Andrews [1], Andrews and Ball [2], Ang and Dinh [3], and
Kawashima and Shibata [4].

Existence of global solution and the decay property of
the energy for the wave equation related to the problem
(𝑃) have been investigated by many authors through various
approaches (see [5–8]).

In [5], Benaissa and Messaoudi considered the following
problem:

𝑢
𝑡𝑡
−Δ𝑢+ 𝑎 (1+ 󵄨󵄨󵄨

󵄨
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−2
) 𝑢
𝑡
= − 𝑏𝑢 |𝑢|

𝑝−2

in Ω × [0, +∞[ ,

𝑢 = 0 on Γ × [0, +∞[ ,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) ,

𝑢
𝑡
(𝑥, 0) = 𝑢1 (𝑥)

on Ω,

(1)

where 𝑎, 𝑏 > 0. They showed that, for suitably chosen initial
data, the problem has a global weak solution, which decays
exponentially even if 𝑚 > 2. Further they proved the global
existence by using the potential well theory introduced by
Sattinger [9].
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Similar results have been established by Ye [7, 10]. In these
works the author used the Faedo-Galerkin approximation
together with compactness criteria and difference inequality
introduced by Nakao [11].

More related studies of the nonlinear 𝑝-Laplacian wave
equation type with damping term can be found in the papers
[6, 8, 12, 13].

In [14], with considering −div(|∇
𝑥
𝑢
𝑡
|
𝑚−2

∇
𝑥
𝑢
𝑡
) instead of

the damping term 𝜎(𝑡)(𝑢
𝑡
− div(|∇

𝑥
𝑢
𝑡
|
𝑚−2

∇
𝑥
𝑢
𝑡
)), we have

obtained global existence result by using the argument in [15]
combined with the concepts of so-called stable sets due to
Sattinger [9]. We have also shown the asymptotic behavior
of global solutions through the use of the integral inequality
given by Komornik [16].

The purpose of this paper is to give an energy decay
estimate of the solution of problem (𝑃). Our proof is based
on the multiplier method combined with nonlinear integral
inequalities given by Martinez [17].

The plan of the paper is as follows. In the next section
we present some assumptions, technical lemmas, and main
result. Then in Section 3 we are devoted to the proof of decay
estimate.

For simplicity of notation, we denote by ‖⋅‖
𝑝
the Lebesgue

space 𝐿
𝑝
(Ω) norm. In particular ‖ ⋅ ‖2 denotes 𝐿2(Ω) and

(⋅, ⋅) the inner product of 𝐿2(Ω). We also write equivalent
norm ‖∇

⋅
‖
𝑝
instead of 𝑊1,𝑝

0 (Ω) norm ‖ ⋅ ‖
𝑊

1,𝑝
0 (Ω)

. As usual,
we write, respectively, 𝑢(𝑡) and 𝑢

𝑡
(𝑡) instead of 𝑢(𝑥, 𝑡) and

𝑢
𝑡
(𝑥, 𝑡). Furthermore, throughout this paper the functions

considered are all real valued.

2. Preliminaries and Main Result

First assume that 𝜎 : R
+
→ R

+
is a nonincreasing positive

function of class 𝐶1 on R
+
, satisfying

∫

+∞

0
𝜎 (𝜏) 𝑑𝜏 = +∞. (2)

Let us define the energy equality associated with the solution
of the problem (𝑃) by the following formula:

𝐸 (𝑡) =

1
2
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

2
+

1
𝑝

‖∇𝑢‖
𝑝

𝑝
, (3)

for 𝑢 ∈ 𝑊
1,𝑝
0 (Ω) and 𝑡 ≥ 0.

We state, without proof, a global existence result for the
problem (𝑃). For more details we refer the reader to [6].

Theorem 1. Let 2 ≤ 𝑚 ≤ 𝑝 and assume that (𝑢0, 𝑢1) ∈

𝑊
1,𝑝
0 (Ω) × 𝐿

2
(Ω). Then, for any 𝑇 > 0, the problem (𝑃) has

a unique strong solution 𝑢(𝑡) on Ω × [0, 𝑇] in the class

𝑢 (𝑡) ∈ 𝐿
∞
([0, 𝑇] ,𝑊1,𝑝

0 (Ω)) ∩𝑊
1,∞

([0, 𝑇] , 𝐿2 (Ω))

∩𝑊
1,𝑚

([0, 𝑇] ,𝑊1,𝑚
0 (Ω)) .

(4)

We now present the following well-known lemmas which
will be needed later.

Lemma 2 (energy identity). Let 𝑢(𝑥, 𝑡) be a global solution to
the problem (𝑃) on [0,∞). Then one has

𝐸 (𝑡) +∫

Ω

∫

𝑡

0
𝜎 (𝑠) 𝑢

𝑡
(𝑢
𝑡
− div (󵄨󵄨󵄨

󵄨
∇
𝑥
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−2
∇
𝑥
𝑢
𝑡
)) 𝑑𝑠 𝑑𝑥

= 𝐸 (0) ,
(5)

for all 𝑡 ∈ [0,∞).

Lemma 3 (Sobolev-Poincaré inequality). Let 𝑝 ∈ N∗ and 𝑟 ∈
R with 2 ≤ 𝑟 < +∞ (𝑛 = 1, 2, . . . , 𝑝) or 2 ≤ 𝑟 ≤ 𝑛𝑝/(𝑛 −

𝑝) (𝑛 ≥ 𝑝 + 1). Then there is a constant 𝑐
∗
= 𝑐
∗
(Ω, 𝑝, 𝑟) such

that

‖𝑢‖
𝑟
≤ 𝑐
∗
‖∇𝑢‖
𝑝

for 𝑢 ∈ 𝑊
1,𝑝
0 (Ω) . (6)

The case 𝑝 = 𝑟 = 2 gives the known Poincaré’s inequality.

Before stating ourmain result, we introduce the following
lemma which plays an important part in studying the decay
estimate of energy associatedwith the solution of the problem
(𝑃).

Lemma 4 (see [17]). Let 𝐸 : R
+

→ R
+
be a nonincreasing

function and 𝜙 : R
+

→ R
+
an increasing 𝐶2 function such

that

𝜙 (0) = 0,

𝜙 (𝑡) 󳨀→ +∞ as 𝑡 󳨀→ +∞.

(7)

Assume that there exist 𝑞 ≥ 0 and 𝛾 > 0 such that

∫

+∞

𝑆

𝐸 (𝑡)
𝑞+1

𝜙
󸀠
(𝑡) 𝑑𝑡 ≤ 𝛾

−1
𝐸 (0)𝑞 𝐸 (𝑆) ,

0 ≤ 𝑆 < +∞.

(8)

Then one has

𝐸 (𝑡) ≤ 𝐸 (0) (
1 + 𝑞

1 + 𝑞𝛾𝜙 (𝑡)

)

1/𝑞
∀𝑡 ≥ 0 if 𝑞 > 0,

𝐸 (𝑡) ≤ 𝐸 (0) exp (1− 𝛾𝜙 (𝑡)) ∀𝑡 ≥ 0 if 𝑞 = 0.

(9)

Nowwe are in position to state and prove ourmain result.

Theorem 5. Let (𝑢0, 𝑢1) ∈ 𝑊
1,𝑝
0 (Ω) × 𝐿

2
(Ω) and 𝑝 ≥ 𝑚 ≥ 2.

Suppose that (2) holds. Then the solution 𝑢(𝑥, 𝑡) of the problem
(𝑃) satisfies the following energy decay estimates.

(1) If 𝑝 = 𝑚, then there exists a positive constant 𝜔 such
that

𝐸 (𝑡) ≤ 𝑐 (𝐸 (0)) exp(1−𝜔∫

𝑡

0
𝜎 (𝜏) 𝑑𝜏) ∀𝑡 > 0. (10)

(2) If 𝑝 > 𝑚, then there exists a positive constant 𝑐(𝐸(0))
depending continuously on 𝐸(0) such that

𝐸 (𝑡) ≤ (

𝑐 (𝐸 (0))
∫

𝑡

0 𝜎 (𝜏) 𝑑𝜏
)

𝑝(𝑚−1)/(𝑝−𝑚)

∀𝑡 > 0. (11)
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3. Proof of Main Result

From now on, we denote by 𝑐 various positive constants
depending on the known constants and they may be different
at each appearance.

Multiplying by 𝐸𝑞𝜙󸀠(𝑡) 𝑢 on both sides of the first equa-
tion of (𝑃) and integrating over Ω × [𝑇, 𝑆], where 𝜙 is a
function satisfying all the hypotheses of Lemma 4 and 0 ≤

𝑆 ≤ 𝑇 ≤ +∞, we obtain that

0 = ∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
∫

Ω

𝑢 [𝑢
𝑡𝑡
− div (󵄨󵄨󵄨

󵄨
∇
𝑥
𝑢
󵄨
󵄨
󵄨
󵄨

𝑝−2
∇
𝑥
𝑢)

+ 𝜎 (𝑡) (𝑢
𝑡
− div (󵄨󵄨󵄨

󵄨
∇
𝑥
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−2
∇
𝑥
𝑢
𝑡
))] 𝑑𝑥 𝑑𝑡.

(12)

By an integration by parts we see that

0 = [𝐸
𝑞
𝜙
󸀠
∫

Ω

𝑢𝑢
𝑡
]

𝑇

𝑆

−∫

𝑇

𝑆

(𝑞𝐸
󸀠
𝐸
𝑞−1

𝜙
󸀠
+𝐸
𝑞
𝜙
󸀠󸀠
)

⋅ ∫

Ω

𝑢𝑢
𝑡
𝑑𝑥 𝑑𝑡 −∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 𝑑𝑡

+∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
∫

Ω

|∇𝑢|
𝑝
𝑑𝑥 𝑑𝑡 +∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
𝜎 (𝑡)

⋅ ∫

Ω

𝑢 (𝑢
𝑡
− div (󵄨󵄨󵄨

󵄨
∇
𝑥
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−2
∇
𝑥
𝑢
𝑡
)) 𝑑𝑥 𝑑𝑡.

(13)

Hence from the definition of energy and a simple argument
we can obtain

𝑝∫

𝑇

𝑆

𝐸
𝑞+1

𝜙
󸀠
𝑑𝑡 = − [𝐸

𝑞
𝜙
󸀠
∫

Ω

𝑢𝑢
𝑡
]

𝑇

𝑆

+∫

𝑇

𝑆

(𝑞𝐸
󸀠
𝐸
𝑞−1

𝜙
󸀠
+𝐸
𝑞
𝜙
󸀠󸀠
)∫

Ω

𝑢𝑢
𝑡
𝑑𝑥 𝑑𝑡 + (

𝑝

2
+ 1)

⋅ ∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 𝑑𝑡 −∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
𝜎

⋅ ∫

Ω

𝑢 (𝑢
𝑡
− div (󵄨󵄨󵄨

󵄨
∇
𝑥
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−2
∇
𝑥
𝑢
𝑡
)) 𝑑𝑥 𝑑𝑡.

(14)

Now we must estimate both sides of (14) to arrive at a similar
inequality as (8).

Define

𝜙 (𝑡) = ∫

𝑡

0
𝜎 (𝜏) 𝑑𝜏. (15)

It is clear that 𝜙 is a nondecreasing function of class𝐶2 onR
+

and hypothesis (2) ensures that

𝜙 (𝑡) 󳨀→ +∞ as 𝑡 󳨀→ +∞. (16)

Since 𝐸 is nonincreasing, 𝜙󸀠 is a bounded nonnegative
function on R

+
(we denote by 𝜇 its maximum) and, using

the definition of energy, Cauchy-Schwartz inequality, and
Sobolev-Poincaré inequality, we have

−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

[𝐸
𝑞
𝜙
󸀠
∫

Ω

𝑢𝑢
𝑡
𝑑𝑥]

𝑇

𝑆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑐𝜇𝐸 (𝑆)
𝑞+1/2+1/𝑝

, (17)

where the above estimate follows from the fact that

∫

Ω

𝑢𝑢
𝑡
𝑑𝑥 ≤ ‖𝑢‖2

󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩2 ≤ 𝑐 ‖∇𝑢‖

𝑝

󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩2

≤ 𝑐𝐸 (𝑡)
1/𝑝

𝐸 (𝑡)
1/2

.

(18)

Again, exploiting Cauchy-Schwartz inequality, Sobolev-
Poincaré inequality, the definition of energy, and (18), we
obtain

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

𝑆

(𝑞𝐸
󸀠
𝐸
𝑞−1

𝜙
󸀠
+𝐸
𝑞
𝜙
󸀠󸀠
)∫

Ω

𝑢𝑢
𝑡
𝑑𝑥 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑐𝜇∫

𝑇

𝑆

−𝐸
󸀠
𝐸
𝑞−1/2+1/𝑝

𝑑𝑡

+∫

𝑇

𝑆

𝑐𝐸
𝑞+1/2+1/𝑝

(−𝜙
󸀠󸀠
) 𝑑𝑡 ≤ 𝑐𝜇𝐸 (𝑆)

𝑞+1/2+1/𝑝
,

(19)

where the fact that 𝐸(𝑡) is nonincreasing is used.
Furthermore, by using Lemma 2, we have

(1+
𝑝

2
)∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 𝑑𝑡

≤ (1+
𝑝

2
)∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
∫

Ω

(
󵄨
󵄨
󵄨
󵄨
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

2
+
󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚

) 𝑑𝑥 𝑑𝑡

≤ (1+
𝑝

2
)∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
(−

𝐸
󸀠
(𝑡)

𝜎 (𝑡)

) 𝑑𝑡 ≤ 𝑐𝐸
𝑞+1

(𝑆) .

(20)

We then estimate the last term in (14) as follows:
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
𝜎 (𝑡) ∫

Ω

𝑢 (𝑢
𝑡
− div (󵄨󵄨󵄨

󵄨
∇
𝑥
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−2
∇
𝑥
𝑢
𝑡
)) 𝑑𝑥 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
𝜎 (𝑡) ∫

Ω

𝑢𝑢
𝑡
𝑑𝑥 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
𝜎 (𝑡) ∫

Ω

𝑢 div (󵄨󵄨󵄨
󵄨
∇
𝑥
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−2
∇
𝑥
𝑢
𝑡
) 𝑑𝑥 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

(21)

which implies that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
𝜎 (𝑡) ∫

Ω

𝑢 div (󵄨󵄨󵄨
󵄨
∇
𝑥
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−2
∇
𝑥
𝑢
𝑡
) 𝑑𝑥 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
𝜎 (𝑡) ∫

Ω

|∇𝑢|
󵄨
󵄨
󵄨
󵄨
∇𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−1
𝑑𝑥 𝑑𝑡.

(22)

Using Hölder’s and Sobolev-Poincaré’s inequalities, we see
that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
(𝑡) 𝜎 (𝑡) ∫

Ω

𝑢 div (󵄨󵄨󵄨
󵄨
∇
𝑥
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−2
∇
𝑥
𝑢
𝑡
) 𝑑𝑥 𝑑𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
𝜎 (𝑡) ‖∇𝑢‖

𝑝

󵄩
󵄩
󵄩
󵄩
∇𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

𝑚−1
𝑝(𝑚−1)/(𝑝−1) 𝑑𝑡.

(23)

We also have
󵄩
󵄩
󵄩
󵄩
∇𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

𝑚−1
𝑝(𝑚−1)/(𝑝−1) ≤ 𝑐 |Ω|

(𝑝−𝑚)/𝑝𝑚 󵄩
󵄩
󵄩
󵄩
∇𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

𝑚−1
𝑚

,

󵄩
󵄩
󵄩
󵄩
∇𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

𝑚−1
𝑚

≤ (

−𝐸
󸀠
(𝑡)

𝜎 (𝑡)

)

(𝑚−1)/𝑚

.

(24)
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This gives
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
(𝑡) 𝜎 (𝑡) ∫

Ω

𝑢 div (󵄨󵄨󵄨
󵄨
∇
𝑥
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−2
∇
𝑥
𝑢
𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑐 ∫

𝑇

𝑆

𝐸
𝑞+1/𝑝

𝜙
󸀠
𝜎 (𝑡) (

−𝐸
󸀠
(𝑡)

𝜎 (𝑡)

)

(𝑚−1)/𝑚

𝑑𝑡

= 𝑐∫

𝑇

𝑆

𝐸
𝑞+1/𝑝

𝜙
󸀠
𝜎 (𝑡)

1/𝑚
(−𝐸
󸀠
(𝑡))

(𝑚−1)/𝑚
𝑑𝑡.

(25)

Further, by Young inequality, we have for 𝜀 > 0
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑇

𝑆

𝐸
𝑞
𝜙
󸀠
(𝑡) 𝜎 (𝑡) ∫

Ω

𝑢 div (󵄨󵄨󵄨
󵄨
∇
𝑥
𝑢
𝑡

󵄨
󵄨
󵄨
󵄨

𝑚−2
∇
𝑥
𝑢
𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1
𝑚

𝜀
𝑚
∫

𝑇

𝑆

𝐸
(𝑞+1/𝑝)𝑚

(𝜙
󸀠
(𝑡))

𝑚

𝜎 (𝑡) 𝑑𝑡

+

𝑚 − 1
𝑚

1
𝜀 (𝑚/ (𝑚 − 1))

𝐸 (𝑆)

=

1
𝑚

𝜀
𝑚
∫

𝑇

𝑆

𝐸
(𝑞+1/𝑝)𝑚

𝜙
󸀠
(𝑡) (𝜎 (𝑡))

𝑚
𝑑𝑡

+

𝑚 − 1
𝑚

1
𝜀 (𝑚/ (𝑚 − 1))

𝐸 (𝑆) .

(26)

We choose 𝑞 such that

𝑚(𝑞+

1
𝑝

) = 𝑞+ 1. (27)

Thus 𝑞 = (𝑝 − 𝑚)/𝑝(𝑚 − 1).
Combining estimates (17)–(26), (14) becomes

∫

𝑇

𝑆

𝐸
𝑞+1

𝜙
󸀠
(𝑡) 𝑑𝑡

≤ 𝑐𝐸 (𝑆)
𝑞+1/2+1/𝑝

+ 𝑐
󸀠
𝐸 (𝑆)
𝑞+1

+ 𝑐
󸀠󸀠
𝐸 (𝑆)

≤ (

𝑐𝐸 (0)𝑞−1/2+1/𝑝 + 𝑐
󸀠
𝐸 (0)𝑞 + 𝑐

󸀠󸀠

𝐸 (0)𝑞
)𝐸 (0)𝑞 𝐸 (𝑆) ,

(28)

where 𝑐, 𝑐󸀠, and 𝑐
󸀠󸀠 are different positive constants indepen-

dent of 𝐸(0).
Letting 𝑇 → +∞, this yields the following estimate:

∫

+∞

𝑆

𝐸
𝑞+1

𝜙
󸀠
(𝑡) 𝑑𝑡

≤ (

𝑐𝐸 (0)𝑞−1/2+1/𝑝 + 𝑐
󸀠
𝐸 (0)𝑞 + 𝑐

󸀠󸀠

𝐸 (0)𝑞
)𝐸 (0)𝑞 𝐸 (𝑆) ,

∀𝑆 ≥ 0,

(29)

and we conclude from Lemma 4 that

𝐸 (𝑡) ≤ (𝑐𝐸 (0)𝑞−1/2+1/𝑝 + 𝑐󸀠𝐸 (0)𝑞 + 𝑐󸀠󸀠)
1/𝑞

⋅ (

1 + 𝑞

𝑞

)

1/𝑞
∫

𝑡

0
𝜎 (𝑡) 𝑑𝑡.

(30)

It is clear that, for 𝑝 = 𝑚, we have 𝑞 = 0 and the energy 𝐸(𝑡)
associated with the solution of the problem (𝑃) satisfies the
decay property in (10).
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