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We consider the equation 𝑢󸀠󸀠 = 𝑃(𝑧)𝑢 + 𝐹(𝑧) (𝑧 ∈ C), where 𝑃(𝑧) is a polynomial and 𝐹(𝑧) is an entire function. Let 𝑧
𝑘
(𝑢) (𝑘 =

1, 2, . . .) be the zeros of a solution 𝑢(𝑧) to that equation. Lower estimates for the products∏𝑗
𝑘=1

|𝑧
𝑘
(𝑢)| (𝑗 = 1, 2, . . .) are derived. In

particular, they give us a bound for the zero free domain. Applications of the obtained estimates to the counting function of the
zeros of solutions are also discussed.

1. Introduction and Statement of
the Main Result

In the present paper, we investigate the zeros of solutions to
the initial problem

𝑢
󸀠󸀠
= 𝑃 (𝑧) 𝑢 + 𝐹 (𝑧)

with the initial conditions 𝑢 (0) = 1, 𝑢
󸀠

(0) = 𝑢
1
∈ C (𝑧 ∈ C) ,

(1)

where

𝑃 (𝑧) =

𝑛

∑

𝑘=0

𝑐
𝑘
𝑧
𝑘

(𝑐
𝑛

̸= 0) (2)

is a polynomial with complex in general coefficients and 𝐹(𝑧)
is an entire function. It is assumed that there are nonnegative
constants 𝐴

𝐹
, 𝐵
𝐹
and an integer 𝜌

𝐹
, such that

|𝐹 (𝑧)| ≤ 𝐴
𝐹
exp [𝐵

𝐹
𝑟
𝜌𝐹
]

(𝑧 = 𝑒
𝑖𝑡
; 𝑟 > 0; 𝑡 ∈ [0, 2𝜋)) .

(3)

The literature devoted to the zeros of solutions of homo-
geneous equations is very rich. Here the main tool is the
Nevanlinna theory. An excellent exposition of the Nevan-
linna theory and its applications to differential equations is

given in book [1]. In connection with the recent results see
interesting papers [2–13] (see also [14, 15]). At the same time
the zeros of solutions to nonhomogeneous ODE were not
enough investigated in the available literature. Here we can
point out [16], only, in which the estimates for the sums
of the zeros of solutions to (1) have been derived. In the
present paper, lower estimates for the products of the zeros
are obtained. In addition, we refine the main result from [16].

Enumerate the zeros 𝑧
𝑘
(𝑢) of 𝑢with their multiplicities in

order of increasing absolute values: |𝑧
𝑘
(𝑢)| ≤ |𝑧

𝑘+1
(𝑢)| (𝑘 =

1, 2, . . .). Denote

𝑠
𝑃
= √

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑐
𝑘

󵄨
󵄨
󵄨
󵄨
,

𝜌
0
= max {𝜌

𝐹
,

𝑛

2

+ 1} .

(4)

Now we are in a position to formulate the main result of the
paper.

Theorem 1. Let condition (3) hold. Then the zeros of the
solution 𝑢 to problem (1) satisfy the inequality

𝑗

∏

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
(𝑢)

󵄨
󵄨
󵄨
󵄨
>

(𝑗!)
1/𝜌0

𝐶 (𝑢
1
) 𝜁
𝑗

(𝑗 = 1, 2, . . .) , (5)
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where

𝜁 = 2 (𝑒𝜌
0
(𝐵
𝐹
+ 𝑠
𝑃
))
1/𝜌0

,

𝐶 (𝑢
1
) = 𝑒
𝑠𝑃
(

3

2

+

12
󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨

𝜁

+

16𝑎
𝐹
𝑒
𝐵𝐹

𝜁
2

) .

(6)

The proof of this theorem is presented in the next
two sections. Below we also suggest the sharper but more
complicated bound for the products of the zeros.

2. Solution Estimates

Consider the equation

𝑑
2
𝑢

𝑑𝑧
2
= 𝑄 (𝑧) 𝑢 + 𝐹

0
(𝑧) (𝑢 (0) = 𝑢

0
, 𝑢
󸀠

(0) = 𝑢
1
) , (7)

where 𝑄(𝑧) and 𝐹
0
(𝑧) are entire functions. Put 𝑀

𝑓
(𝑟) =

sup
|𝑧|≤𝑟

|𝑓(𝑧)|.

Lemma 2. A solution 𝑢(𝑧) of (7) satisfies the inequality

𝑀
𝑢
(𝑟) ≤ (

󵄨
󵄨
󵄨
󵄨
𝑢
0

󵄨
󵄨
󵄨
󵄨
+ 𝑟

󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨
+ ∫

𝑟

0

(𝑟 − 𝑠)𝑀
𝐹0
(𝑠) 𝑑𝑠)

⋅ cosh (𝑟√𝑀
𝑄
(𝑟)) (𝑟 ≥ 0) .

(8)

Proof. For a fixed 𝑡 ∈ [0, 2𝜋) and 𝑧 = 𝑟𝑒
𝑖𝑡 we have

1

𝑒
2𝑖𝑡

𝑑
2
𝑢 (𝑟𝑒
𝑖𝑡
)

𝑑𝑟
2

= 𝑄 (𝑟𝑒
𝑖𝑡
) 𝑢 (𝑟𝑒

𝑖𝑡
) + 𝐹
0
(𝑟𝑒
𝑖𝑡
) .

(9)

Integrating twice this equation in 𝑟, we obtain

𝑒
−2𝑖𝑡

𝑢 (𝑟𝑒
𝑖𝑡
)

= 𝑒
−2𝑖𝑡

(𝑢
0
+ 𝑟𝑢
1
)

+ ∫

𝑟

0

(𝑟 − 𝑠) [𝑄 (𝑠𝑒
𝑖𝑡
) 𝑢 (𝑠𝑒

𝑖𝑡
) + 𝐹
0
(𝑠𝑒
𝑖𝑡
)] 𝑑𝑠.

(10)

Hence,

𝑀
𝑢
(𝑟) ≤

󵄨
󵄨
󵄨
󵄨
𝑢
0

󵄨
󵄨
󵄨
󵄨
+ 𝑟

󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨

+ ∫

𝑟

0

(𝑟 − 𝑠) (𝑀
𝑄
(𝑠)𝑀
𝑢
(𝑠) + 𝑀

𝐹
(𝑠)) 𝑑𝑠

≤ 𝑀
𝑄
(𝑟) ∫

𝑟

0

(𝑟 − 𝑠)𝑀
𝑢
(𝑠) 𝑑𝑠 + 𝐻 (𝑟) ,

(11)

where

𝐻(𝑟) =
󵄨
󵄨
󵄨
󵄨
𝑢
0

󵄨
󵄨
󵄨
󵄨
+ 𝑟

󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨
+ ∫

𝑟

0

(𝑟 − 𝑠)𝑀
𝐹0
(𝑠) 𝑑𝑠. (12)

Due to the comparison lemma [17, Lemma III.2.1], we have
𝑀
𝑢
(𝑠) ≤ V̂(𝑟), where V̂(𝑟) is a solution of the equation

V̂ (𝑟) = 𝐻 (𝑟) + ∫

𝑟

0

(𝑟 − 𝑠)𝑀
𝑄
(𝑠) V̂ (𝑠) 𝑑𝑠

= 𝐻 (𝑟) + 𝑉V̂ (𝑟) .
(13)

Here 𝑉 is the Volterra operator defined by

(𝑉V) (𝑟) = ∫

𝑟

0

(𝑟 − 𝑠)𝑀
𝑄
(𝑠) V (𝑠) 𝑑𝑠, (14)

and, therefore,

V̂ =
∞

∑

𝑘=0

𝑉
𝑘
𝐻. (15)

But for any positive nondecreasing ℎ(𝑟) we have

𝑉ℎ (𝑟) = ∫

𝑟

0

(𝑟 − 𝑠)𝑀
𝑄
(𝑠) ℎ (𝑠) 𝑑𝑠

≤ ℎ (𝑟)𝑀
𝑄
(𝑟) ∫

𝑟

0

(𝑟 − 𝑠) 𝑑𝑠.

(16)

Similarly,

𝑉
𝑚
𝐻(𝑟) ≤ 𝐻 (𝑟)𝑀

𝑚

𝑄
(𝑟)

⋅ ∫

𝑟

0

∫

𝑟1

0

⋅ ⋅ ⋅ ∫

𝑟𝑚−1

0

(𝑟 − 𝑟
1
) ⋅ ⋅ ⋅ (𝑟

𝑚−1
− 𝑟
𝑚
) 𝑑𝑟
1
⋅ ⋅ ⋅ 𝑑𝑟
𝑚

= 𝐻 (𝑟)𝑀
𝑚

𝑄
(𝑟)

𝑟
2𝑚

(2𝑚)!

.

(17)

Thus from (15) it follows

𝑀
𝑢
(𝑟) ≤ V̂ (𝑟) ≤ 𝐻 (𝑟)

∞

∑

𝑘=0

𝑀
𝑘

𝑄
(𝑟) 𝑟
2𝑘

(2𝑘)!

. (18)

But
∞

∑

𝑘=0

𝑀
𝑘

𝑄
(𝑟) 𝑟
2𝑘

(2𝑘)!

= cosh (𝑟√𝑀
𝑄
(𝑟)) . (19)

This implies the required result.

Note that in our reasoning 𝑄 and 𝐹
0
can be arbitrary

piecewise continuous functions.
Consider now (1). In this case

𝑀
𝑄
(𝑟) = 𝑀

𝑃
(𝑟) ≤ 𝑝 (𝑟)fl

𝑛

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑐
𝑘

󵄨
󵄨
󵄨
󵄨
𝑟
𝑘
. (20)

In addition, since 𝑟1+𝑘/2 ≤ 1 + 𝑟
1+𝑑0/2 for any 𝑑

0
≥ 𝑘, we have

𝑟√𝑝 (𝑟) ≤ √𝑝 (1)max
𝑘

𝑟
𝑘/2+1

≤ √𝑝 (1) (1 + 𝑟
𝜌0
) = 𝑠
𝑃
(1 + 𝑟

𝜌0
) ,

cosh (𝑟√𝑝 (𝑟)) ≤ exp [𝑠
𝑃
(1 + 𝑟

𝜌0
)] .

(21)

Now Lemma 2 yields the following.

Corollary 3. A solution 𝑢(𝑧) of problem (1) satisfies the
inequality

𝑀
𝑢
(𝑟) ≤ (1 + 𝑟

󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨
+ ∫

𝑟

0

(𝑟 − 𝑠)𝑀
𝐹
(𝑠) 𝑑𝑠)

⋅ exp [𝑠
𝑃
(1 + 𝑟

𝜌0
)] (𝑟 > 0) .

(22)
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This corollary is sharp: as it is well known a solution of
the homogeneous equation

𝑢
󸀠󸀠
= 𝑃 (𝑧) 𝑢 (23)

is an entire function of order no more than (𝑛 + 2)/2; see, for
example, [1, Proposition 5.1]. Besides, our proof is absolutely
different.

Corollary 4. Let condition (3) hold. Then a solution of
problem (1) satisfies the inequality

𝑀
𝑢
(𝑟) ≤ 𝑒

𝑠𝑃(1+𝑟
𝜌0 )
(1 + 𝑟

󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨
+ 𝐴
𝐹
𝑟
2 exp [𝐵

𝐹
𝑟
𝜌𝐹
])

(𝑟 > 0) .

(24)

3. Proof of Theorem 1

Lemma 5. Let an entire function 𝑓(𝑧) satisfy the inequality

𝑀
𝑓
(𝑟) ≤ 𝑟

𝑚 exp [𝐵𝑟𝜌]

(𝐵 = 𝑐𝑜𝑛𝑠𝑡 > 0; 𝜌 ≥ 1; 𝑟 > 0)

(25)

with an integer𝑚 ≥ 0.Then its Taylor coefficients𝑓
𝑗
are subject

to the inequalities

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤

(𝑒𝐵𝜌)
(𝑗−𝑚)/𝜌

[(𝑗 − 𝑚)!]
1/𝜌

(𝑗 ≥ 𝑚) , 𝑓
0
= ⋅ ⋅ ⋅ = 𝑓

𝑚−1
= 0. (26)

Proof. Let ̂𝑓(𝑧) = (1/𝑧
𝑚
)𝑓(𝑧). Then the Taylor coefficients ̂

𝑓
𝑗

of ̂
𝑓 satisfy the relation 𝑓

𝑗
=

̂
𝑓
𝑗−𝑚

and 𝑀
𝑓
(𝑟) ≤ exp[𝐵𝑟𝜌].

By the well-known inequality for the coefficients of a power
series,

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝑀
𝑓
(𝑟)

𝑟
𝑗

≤

𝑒
𝐵𝑟
𝜌

𝑟
𝑗
. (27)

Employing the usual method for finding extrema it is easy to
see that the function 𝑟

−𝑗
𝑒
𝐵𝑟
𝜌

(𝑗 ≥ 1) takes its smallest value
in the range 𝑟 > 0 for 𝑟

0
= 𝑟
0
(𝑗) defined by

𝑟
0
= (

𝑗

𝐵𝜌

)

1/𝜌

and therefore 󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝑀
𝑓
(𝑟
0
)

𝑟
𝑗

0

≤ (

𝑒𝐵𝜌

𝑗

)

𝑗/𝜌

≤

(𝑒𝐵𝜌)
𝑗/𝜌

(𝑗!)
1/𝜌

.

(28)

Since 𝑓
𝑗
=

̂
𝑓
𝑗−𝑚

, the lemma is proved.

The solution𝑢(𝑧) to (1) can be represented as𝑢(𝑧) = V(𝑧)+
𝑤(𝑧) + 𝑦(𝑧), where V(𝑧) is the solution to (1) with V(0) = 1,
V󸀠(0) = 0, and𝐹(𝑧) ≡ 0;𝑤(𝑧) is the solution to (1) with𝑤(0) =
0, 𝑤󸀠(0) = 𝑢

1
, and 𝐹(𝑧) ≡ 0; 𝑦(𝑧) is the solution to (1) with

𝑦(0) = 𝑦
󸀠
(0) = 0.

Corollary 4 implies

𝑀V (𝑟) ≤ 𝑒
𝑠𝑃(1+𝑟

𝜌0 )
,

𝑀
𝑤
(𝑟) ≤ 𝑟

󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨
𝑒
𝑠𝑃(1+𝑟

𝜌0 )
,

𝑀
𝑦
(𝑟) ≤ 𝐴

𝐹
𝑒
𝑠𝑃
𝑟
2 exp [𝑠

𝑃
𝑟
𝜌0
+ 𝐵
𝐹
𝑟
𝜌𝐹
]

(𝑟 > 0) .

(29)

Since 𝑟𝜌𝐹 ≤ 1 + 𝑟
𝜌0 , we obtain

𝑀
𝑦
(𝑟) ≤ 𝐴

𝐹
𝑒
𝑠𝑃+𝐵𝐹

𝑟
2 exp [(𝑠

𝑃
+ 𝐵
𝐹
) 𝑟
𝜌0
] (𝑟 > 0) . (30)

Introduce the notations

𝑏 = (𝑒𝑠
𝑃
𝜌
0
)
1/𝜌0

,

𝑐 = (𝑒 (𝐵
𝐹
+ 𝑠
𝑃
) 𝜌
0
)
1/𝜌0

=

𝜁

2

.

(31)

Denote by V
𝑗
, 𝑤
𝑗
, and 𝑦

𝑗
the Taylor coefficients of V(𝑧), 𝑤(𝑧),

and 𝑦(𝑧), respectively. Then Lemma 5 yields

󵄨
󵄨
󵄨
󵄨
󵄨
V
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑒
𝑠𝑃

𝑏
𝑗

[𝑗!]
1/𝜌0

,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑤
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨
𝑒
𝑠𝑃

𝑏
𝑗−1

[(𝑗 − 1)!]
1/𝜌0

,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐴
𝐹
𝑒
𝑠𝑃+𝐵𝐹

𝑐
𝑗−2

[(𝑗 − 2)!]
1/𝜌0

(𝑗 ≥ 2) .

(32)

Let 𝑢
𝑗
be the Taylor coefficients of 𝑢. Since |𝑢

𝑗
| ≤ |V
𝑗
| + |𝑤
𝑗
| +

|𝑦
𝑗
|, we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑒
𝑠𝑃
(

𝑏
𝑗

[𝑗!]
1/𝜌0

+
󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨

𝑏
𝑗−1

[(𝑗 − 1)!]
1/𝜌0

+ 𝐴
𝐹
𝑒
𝐵𝐹

𝑐
𝑗−2

[(𝑗 − 2)!]
1/𝜌0

) (𝑗 ≥ 2) .

(33)

Let us consider the entire function

𝑓 (𝑧) =

∞

∑

𝑘=0

𝑑
𝑘
𝑧
𝑘

(𝑘!)
1/𝜌

(𝜌 ≥ 1, 𝑧 ∈ C, 𝑑
0
= 1, 𝑑

𝑘
∈ C) .

(34)

Enumerate the zeros 𝑧
𝑘
(𝑓) (𝑘 = 1, 2, . . .) of 𝑓 with their

multiplicities in order of nondecreasing absolute values and
assume that

𝜃 (𝑓)fl[

∞

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑑
𝑘

󵄨
󵄨
󵄨
󵄨

2

]

1/2

< ∞. (35)
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Lemma 6. Let 𝑓 be represented by (34) and let condition (35)
hold. Then

𝑗

∏

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
(𝑓)

󵄨
󵄨
󵄨
󵄨
>

(𝑗!)
1/𝜌

2
−1/𝜌

+ 𝜃 (𝑓)

, 𝑗 = 1, 2, . . . . (36)

This lemma is a particular case of Theorem 2.1 proved in
[18].

Furthermore, consider the function 𝑢
𝜁
(𝑧) = 𝑢(𝑧/𝜁),

where 𝑢(𝑧) is a solution to (1). Recall that 𝜁 = 2𝑐. Due to
(33), the Taylor coefficients 𝑎

𝑗
= 𝑢
𝑗
/𝜁
𝑗 of 𝑢

𝜁
(𝑧) satisfy the

inequalities

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝑒
𝑠𝑃

2
𝑗
(

𝑏
𝑗

𝑐
𝑗
[𝑗!]
1/𝜌0

+

󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨
𝑏
𝑗−1

𝑐
𝑗
[(𝑗 − 1)!]

1/𝜌0

+

𝐴
𝐹
𝑒
𝐵𝐹

𝑐
2
[(𝑗 − 2)!]

1/𝜌0

) (𝑗 ≥ 2)

(37)

and 𝑎
1
= 𝑢
1
/2𝑐. Denote

𝜃 (𝑢
𝜁
)fl[

∞

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑎
𝑘

󵄨
󵄨
󵄨
󵄨

2

(𝑘!)
2/𝜌0

]

1/2

. (38)

Clearly,

𝜃 (𝑢
𝜁
) ≤

∞

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑎
𝑘

󵄨
󵄨
󵄨
󵄨
(𝑘!)
1/𝜌0

. (39)

So due to (37)

𝜃 (𝑢
𝜁
) ≤

󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨

2𝑐

+ 𝑒
𝑠𝑃

∞

∑

𝑗=2

1

2
𝑗
((

𝑏

𝑐

)

𝑗

+
󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨

𝑗
1/𝜌0

𝑐

(

𝑏

𝑐

)

𝑗−1

+ 𝐴
𝐹
𝑒
𝐵𝐹
[𝑗 (𝑗 − 1)]

1/𝜌0

𝑐
2

) < ∞.

(40)

Now Lemma 6 implies

𝑗

∏

𝑘=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
(𝑢
𝜁
)

󵄨
󵄨
󵄨
󵄨
󵄨
>

(𝑗!)
1/𝜌0

2
−1/𝜌0 + 𝜃 (𝑢

𝜁
)

, 𝑗 = 1, 2, . . . . (41)

Since 𝑧
𝑘
(𝑢
𝜁
)/𝜁 = 𝑧

𝑘
(𝑢), we have proved the following result.

Lemma 7. Let condition (3) hold. Then

𝑗

∏

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
(𝑢)

󵄨
󵄨
󵄨
󵄨
>

(𝑗!)
1/𝜌0

𝜁
𝑗
𝐶 (𝑃, 𝐹, 𝑢

1
)

, 𝑗 = 1, 2, . . . , (42)

where

𝐶 (𝑃, 𝐹, 𝑢
1
) = 2
−1/𝜌0

+ 𝜃 (𝑢
𝜁
) . (43)

Let us estimate𝐶(𝑃, 𝐹, 𝑢
1
). Recall that 𝑏 is defined by (31).

Lemma 8. One has 𝜃(𝑢
𝜁
) ≤

̂
𝜃(𝑃, 𝐹, 𝑢

1
), where

̂
𝜃 (𝑃, 𝐹, 𝑢

1
)fl𝑒𝑠𝑃 (

𝑏
2

𝜁
2
(1 − (𝑏/𝜁))

+

3
󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨

𝜁 (1 − (𝑏/𝜁))
2

+

16𝐴
𝐹
𝑒
𝐵𝐹

𝜁
2

) ,

(44)

and therefore 𝐶(𝑃, 𝐹, 𝑢
1
) ≤ 2
−1/𝜌0

+
̂
𝜃(𝑃, 𝐹, 𝑢

1
).

Proof. Taking into account that

1

1 − 𝑥

=

∞

∑

𝑘=0

𝑥
𝑘
,

1

(1 − 𝑥)
2
=

𝑑

𝑑𝑥

1

(1 − 𝑥)

=

∞

∑

𝑘=1

𝑘𝑥
𝑘−1

,

2

(1 − 𝑥)
3
=

𝑑
2

𝑑𝑥
2

1

1 − 𝑥

=

∞

∑

𝑘=2

𝑘 (𝑘 − 1) 𝑥
𝑘−2

(0 < 𝑥 < 1) ,

(45)

we obtain
∞

∑

𝑗=2

(

𝑏

2𝑐

)

𝑗

= (

𝑏

2𝑐

)

2

(1 − (

𝑏

2𝑐

))

−1

= (

𝑏

𝜁

)

2

(1 − (

𝑏

𝜁

))

−1

,

1 +

∞

∑

𝑗=2

𝑗 (

𝑏

2𝑐

)

𝑗−1

= (1 − (

𝑏

2𝑐

))

−2

= (1 − (

𝑏

𝜁

))

−2

,

∞

∑

𝑗=2

𝑗 (𝑗 − 1)

1

2
𝑗
=

1

4

∞

∑

𝑗=2

𝑗 (𝑗 − 1)

1

2
𝑗−2

=

1

2

1

(1 − 1/2)
3
= 4.

(46)

Since 𝜌
0
≥ 1, (40) implies 𝜃(𝑢

𝜁
) ≤

̂
𝜃(𝑃, 𝐹, 𝑢

1
). This and (43)

prove the lemma.

Proof ofTheorem 1. Since 𝑏/𝜁 ≤ 1/2, from the previous lemma
we get

𝜃 (𝑢
𝜁
) ≤

̂
𝜃 (𝑃, 𝐹, 𝑢

1
)

≤ 𝑒
𝑠𝑃
(

1

2

+

12
󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨

𝜁

+

16𝐴
𝐹
𝑒
𝐵𝐹

𝜁
2

) .

(47)

But 2−1/𝜌0 ≤ 1 ≤ 𝑒
𝑠𝑃 , and therefore

2
−1/𝜌0

+ 𝜃 (𝑢
𝜁
) ≤ 𝐶 (𝑃, 𝐹, 𝑢

1
)

≤ 𝑒
𝑠𝑃
(

3

2

+

12
󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨

𝜁

+

16𝐴
𝐹
𝑒
𝐵𝐹

𝜁
2

)

= 𝐶 (𝑢
1
) .

(48)

This and Lemma 7 prove the theorem.
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4. Sums of Zeros and the Counting Function

In this section we derive a bound for sums of the zeros of
solutions. To this end we need the following.

Theorem 9. Let 𝑓 be defined by (34) and let condition (35)
hold. Then
𝑗

∑

𝑘=1

1

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
(𝑓)

󵄨
󵄨
󵄨
󵄨

< 𝜃 (𝑓) +

𝑗

∑

𝑘=1

1

(𝑘 + 1)
1/𝜌

(𝑗 = 1, 2, . . .) . (49)

This theorem is proved in [19] (see also [20, Section 5.1]).
It gives us the inequality
𝑗

∑

𝑘=1

1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
(𝑢
𝜁
)

󵄨
󵄨
󵄨
󵄨
󵄨

< 𝜃 (𝑢
𝜁
) +

𝑗

∑

𝑘=1

1

(𝑘 + 1)
1/𝜌0

(𝑗 = 1, 2, . . .) .

(50)

Since 𝑧
𝑘
(𝑢
𝜁
) = 𝜁𝑧

𝑘
(𝑢), we get

𝑗

∑

𝑘=1

1

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
(𝑢)

󵄨
󵄨
󵄨
󵄨

< 𝜁(𝜃 (𝑢
𝜁
) +

𝑗

∑

𝑘=1

1

(𝑘 + 1)
1/𝜌0

)

(𝑗 = 1, 2, . . .) .

(51)

Now (47) implies the following.

Theorem 10. Let condition (3) hold. Then the zeros of the
solution 𝑢 to problem (1) satisfy the inequality
𝑗

∑

𝑘=1

1

󵄨
󵄨
󵄨
󵄨
𝑧
𝑘
(𝑢)

󵄨
󵄨
󵄨
󵄨

< 𝜁(𝜃
0
(𝑢
1
) +

1

(𝑘 + 1)
1/𝜌0

)

(𝑗 = 1, 2, . . .) ,

(52)

where

𝜃
0
(𝑢
1
) = 𝑒
𝑠𝑃
(

1

2

+

12
󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨

𝜁

+

16𝐴
𝐹
𝑒
𝐵𝐹

𝜁
2

) . (53)

This theorem refines the main result from [16].
Furthermore, since |𝑧

𝑘
(𝑢)| ≤ |𝑧

𝑘+1
(𝑢)|,Theorem 1 implies

that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑗
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑗

>

(𝑗!)
1/𝜌0

𝐶 (𝑢
1
) 𝜁
𝑗

(𝑗 = 1, 2, . . .) . (54)

Denote by 𝑛(𝑎, 𝑓) (𝑎 > 0) the counting function of the zeros
of 𝑓 in the circle |𝑧| ≤ 𝑎. We thus get the following.

Corollary 11. With the notation

𝜂
𝑗
(𝑢)fl

1

𝜁

𝑗
√
(𝑗!)
1/𝜌0

𝐶 (𝑢
1
)

,
(55)

the inequality |𝑧
𝑗
(𝑢)| > 𝜂

𝑗
(𝑢) holds and thus𝑢(𝑧) does not have

zeros in the disc

{𝑧 ∈ C : |𝑧| ≤

1

𝐶 (𝑢
1
) 𝜁

} . (56)

Moreover, 𝑛(𝑎, 𝑢) ≤ 𝑗 − 1 for any positive 𝑎 ≤ 𝜂
𝑗
(𝑢) (𝑗 =

1, 2, . . .).
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