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The effective utilization rate of exploited renewable resources affects the final total revenue and the further exploitation of renewable
resources. Considering the effective utilization rate, we propose an optimal control model for the exploitation of the renewable
resources in this study. Firstly, we can prove that the novel model is nonsingular compared with the singular basic model. Secondly,
we solve the novel model and obtain the optimal solution by Bang-Bang theory. Furthermore, we can determine the optimal total
resources and the maximal total revenue. Finally, a numerical example is provided to verify the obtained theoretical results.

1. Introduction

Renewable resources (such as fisheries resources) are consid-
ered to be “inexhaustible” at all times, but excessive exploita-
tion will actually exhaust them. Thus, it is useful to study
the reasonable exploitation of renewable resources and their
effective utilization to obtain the maximum revenue.
Various optimum exploitation schemes for renewable
resources have been studied in recent decades. In a pioneer-
ing study, Gordon [1, 2] proposed the Gordon-Schaefer bioe-
conomic model by introducing the concept of economic effi-
ciency and cost management. Although this model included a
large number of unrealistic assumptions, it exhibited a certain
degree of concordance with the histories of empirical fish-
eries [3]. Subsequently, further economic control models of
renewable resources [4-10] were proposed based on the work
of Gordon. Clark and Munro [11] extended the static version
of the fisheries economics model to nonautonomous and
nonlinear cases. Indeed, the models proposed by Gordon and
other researchers were all static until the 1980s when Clark
[12] established a dynamic bioeconomic model based on the
Gordon-Schaefer biological model. In addition to the classi-
cal model of Clark, another study [13] provided a nonlinear
optimal control bioeconomic model that used the variation
in the fishing effort rate as the control. In the 1990s, Defeo
and Seijo [14] developed a bioeconomic model using a yield-
mortality model. Later, based on the Beverton-Holt age

structure model [15], Beverton and Holt [16] constructed a
dynamic bioeconomic model that considered interactions
among populations, which was not based on the Gordon-
Schaefer bioeconomic model.

In recent years, various bioeconomic models of fisheries
resources have also been proposed. Smith [17] established a
Bayesian bioeconomic dynamic model by introducing the
Bayesian statistical method. Domiguez-Torreiro and Suris-
Regueiro [18] introduced game theory into a bioeconomic
model of fishery resources and proposed a management strat-
egy that addressed fishery issues. Das et al. [19] proposed a
new bioeconomic model that combined a predator-prey
ecological model with marine environmental factors. Other
studies [20-22] introduced the fundamentals of control
parameterization, which is a popular numerical technique for
solving optimal control problems. At the same time, a
switched autonomous system was proposed to formulate a
fed-batch culture process where the switching instants bet
ween the feed and batch processes were used as control
variables, which is similar to the method proposed in the
present study. The Food and Agriculture Organization also
produced a series of bioeconomic models [23, 24] to provide a
theoretical basis for policy to facilitate the sustainable use of
fisheries resources.

However, all of these bioeconomic models and optimal
exploitation schemes did not consider the effective utiliza-
tion rate, especially for renewable resources. Indeed, if the
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exploited renewable resources are not utilized fully, they will
be wasted, but they may also pollute the environment. Given
the impact on the expected revenue of the effective utilization
rate for renewable resources, we introduce the concept of
effective utilization into a renewable resources development
model and we propose an optimal control model to ensure
that it approximates the actual situation.

In Section 2, we introduce the basic bioeconomic model
and propose an optimal control bioeconomic model based
on the effective utilization rate. In Section 3, the singularity
of this novel model is analyzed based on the maximal
principle. Using the Bang-Bang theory, we obtain the opti-
mal exploitation scheme and the optimal total renewable
resources subject to the maximum total revenue. In Section 4,
a numerical example is given that verifies the results.

2. Optimal Control Model Based on
the Effective Utilization Rate

2.1. The Basic Model. It is well known that renewable resour-
ces have their own life cycles, even if they are not exploited
or consumed. In general, we expect that the natural growth
rate is greater than the natural mortality rate for renewable
resources. However, the maximum amount of resources can-
not exceed the environmental carrying capacity. In general,
it is considered that the growth of resources satisfies the
following logistic equation [4]:

x(t)=rx(t)(1—%), )

where x(t) denotes the resource biomass, N is the carrying
capacity of the ecosystem, and r is the intrinsic growth rate
of resources. If we let u(t) be the exploitation amount, then
model (1) becomes

X(t):rx(t)<1—%)—u(t). 2)

Let the total revenue from the exploited resources in unit time
be expressed as

(p-cu®e”, (3)

where p is the revenue per unit, ¢ is the cost per unit, and p
is the instantaneous social rate of discount. In this case, the
objective function of the total revenue can be stated as
follows:

T
J= j (p-c)u)edt. (4)
0

Thus, the optimal control problem involving the basic
model of renewable resources can be expressed as follows:

T
max ] = JO (p-c)u)edt,

, x (t)
x (1) =rx(t)<1—T)—u(f)) (5)
0<u(t)<u,

x (0) = x,, x(T) = xp.
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2.2. The Proposed Model Based on the Effective Utilization
Rate. Let s(t) be the effective utilization rate at time t; then
s(t) should satisfy the following three assumptions.

(A1) The effective utilization rate s(¢) will increase grad-
ually with respect to ¢ (i.e., with the development of
technology); that is, ds(t)/dt > 0.

(A2) The increase in s(t) will become more difficult after
it reaches a certain level; that is, s(f) must satisfy
d*s(t)/dt? < 0.

(A3) The ideal or the best utilization of resources is
achieved completely; that is, lim, , . s(¢) = 1.

By these assumptions, we take s(¢) = 1-ae™® (a,b > 0)asour
effective utilization rate, which satisfies the preceding assump-
tions. Furthermore, let the initial effective utilization rate be
s(0) = s, and the ultimate effective utilization rate be s(T) =
sp. Then, parameter a, b in s(t) can be obtained as follows:

a=1-s,

_ (6)
bzlln1 50.
T 1-sp

Thus, our improved objective function for optimal con-
trol associated with the effective utilization rate can be written
as

T
J = L (p-cu@®ye™ (1-ae™)dt (7)

and our proposed optimal control model can be established
as follows:

T
max ] = J (p—c)u(t)e_”t(l —ae_bt)dt,
0

X(t):rx(t)<l—%>—u(t), ®)
0O<u(t)<u,
x (0) = x,, x(T) = x,

where ] represents the management objective, u is the maxi-
mum amount of exploitation, and the initial and the terminal
populations of renewable resources x,, x; are assumed to be
known. In model (8), the meanings of N, r, p, ¢, p are similar
to those in model (5).

3. Solutions to the Model

In this section, we first analyze the singularity of the proposed
model (8) and we then apply the Bang-Bang approach to
obtain its solution.

3.1 Solution of the Hamiltonian Formulation. The Hamilto-
nian formulation to the optimal control problem (8) can be
written as follows:

HxAut)=(p-c)ut)e™ (1 —aeibt)

20 (e 01 %) ). ©)
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Then, we have

H(x, A, u,t) = [(p —c)e ™ (1 —ae_bt) —A(t)] u(t)

)

By the maximal principle, the Hamiltonian H(x, A, u,t)
will obtain the maximal value with respect to u(t) if the
objective function obtains the maximal value. The linear rela-
tionship between the Hamiltonian function and control u(t)
changes the computation of the maximization problem (10)
into a Bang-Bang optimal control problem, as follows:

0 )L(t)>(p—c)e_‘”(l—ae_b’)
u*(t) =
u A(t)<(p—c)e_‘”(l—ae_bt).

A <rx ) (1 - 1o

(11)

However, from the solution of (11), we cannot obtain any
information about the optimal control u” () by A(t) = (p —
e P (1 — ae ). Indeed, there are two possible solutions for
M) = (p—c)e t(1-ae™®). Firstly, if there is only a countable
timesett; = {t),t,,15,...} € [to,tf] that satisfies A(t) = (p —
c)e ' (1-ae ™), we can still use the Bang-Bang theory to solve
this model. Secondly, if there is an interval I ¢ [0,T] that
satisfies A(t) = (p — c)e P'(1 — ae™™) for Vt € I, the problem
will become more complicated and difficult to solve. Thus, to
obtain a better solution to the model, we first need to analyze
whether such an interval I exists or not. Thus, we need to
discuss the singularity [25, 26] of the optimal control model

(8).

3.2. Singularity Analysis of the Model. Based on the preceding
discussion, we can see that the singularity of model (8) will
affect the choice of method used to solve this model. In this
subsection, we discuss the singularity of model (8) by reduc-
tion to absurdity.

Assuming that the optimal control is a singularity, that is,
there is an interval I for all t € I C [0, T] that satisfies

At) = (p—c)e_Pt(l —ae_bt), (12)
the derivative of A(¢) with respect to t can be expressed as

A =(p —c)[ pe P’( _bt)+abe_”e_bt], vt € I

(13)
by the costate equation of model (8)
OH 2rx (t)
= = - 14
Mo =-5- =r0(r- 50 (14)

we obtain the following equation:

_bt) + abe_bt] =-A(t) (r - _erN(t)> ,

Vtel.
(15)

(p-c¢) [—pe_pt (1 - ae

3
By substituting (12) into (15), we obtain
—bt —bt —bt 2rx (t)
(1w ) s abe ] = (1w - 220),
[p( ae )+ae] ( ae)r N
Vt el
(16)
Equation (16) admits the positive root given by
N abe™
- — 17
*(®) Zr(r p+1—aebt) )

which indicates that if we want (16) to hold at time t € I,
then x(¢) must satisfy (17). By taking the derivative of (17)
with respect to ¢, we obtain

N —ab*e¥
% )= ——4m478M .
*(®) 2r (1 _ ae—bt)2 (18)

In fact, (18) does not equal (2). In other words, x(t) that
satisfies the condition given above does not exist. Compared
with the basic model (5), which is a singularity, our proposed
model (8) involving the effective utilization rate is a normal
model. Therefore, the optimal control of model (8) can be
solved using the Bang-Bang approach.

3.3. Existence of the Switching Time t,. In this subsection, we
discuss the existence of the switching time f,. First, we
consider A (t) < 0, which indicates that the inequality

M) < (p-c)e (1-ae™) (19)
will hold. In this case, the optimal strategy is u* = u by the
Bang-Bang method.

However, this is not a reasonable method for exploiting
renewable resources because the renewable resources will
be destroyed. Therefore, we make the following assumption:
A(t) > 0. Then, (14) is obtained if the condition that N > 2x(t)
is satisfied and A(t) is monotonically decreasing for t € [0, T].
In addition, we discuss the monotonicity of the following
function:

f)= (p—c)e_pt(l —ae_bt). (20)
By taking the derivative of (20) with respect to ¢
df (1) —pt bt —pt bt
ek (p-¢) [—pe P (l—ae )+abe e ] (21)
Then,
daf (t)

o =(p-c)e ™ (pae™ - p+abe™). (22)

It can be seen that df (t)/dt > 0 if and only if ¢ satisfies the
following condition:

1 p
t ——1 =
< bnap+b

(23)



However, this condition cannot be obtained from (22).
Thus, (20) is monotonically decreasing in time period [0, T],
which indicates that there will be an appropriate intersection
between f(t) and A(t); that is, the switching time ¢, exists.
Then we can obtain that

A(t)>(p—c)e_"t(1—ae_bt), te[o,t,),
(24)
)t(t)<(p—c)e_Pt(1—ae_bt), telt,T].

3.4. Solution to Model (8). After obtaining the switching time
t, and proving the nonsingularity of model (8), the optimal
control strategy to (8) can be expressed by the Bang-Bang
approach as follows:

" 0 0<t<ty
" (t)_{‘ t,<t<T. (25)

Next, we find the expressions of ¢, and the optimal renewable
resources function x* (¢). First, if welet 0 < ¢ < f,and u™ () =
0, we obtain

x(t)—rx(t)(l N), o6

x(0)=xp 0<t<t,

By solving the ordinary differential equation (26), we obtain

. N
x ()= —,
® 1+ N¢e™ @7
where ¢, is expressed as follows:
¢ = L1 (28)
'"x, N’

Second, if we lett, <t < T and u” () = u, we can obtain

x(t):rx(t)<l—%>—ﬁ, o)

x(T)=xp t,<t<T.

Unlike (26), we cannot solve the ordinary differential equa-
tion (29) directly using the Bernoulli equation. However,
if there are suitable parameters p, g, the following formula
holds; that is,

dlx®)-p] 1
dt N

Then, we can solve (29) by the Bernoulli equation. In fact, by
(29) and (30), we have

[x(t) - p]2 +q[x@t)-p]. (30)

zp+q—r—0
N (31)

ro oo —
——p = =0;
NP qp +u
that is, the following quadratic equation holds:

W+ op’ = pr=0. (32)
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Irrespective of whether (32) is positive or 0, that is,
A=r2—4ia=r2<1—4i>zo, (33)
N Nr

the suitable parameters p, q will be obtained, which indicates
that (29) can be solved by the Bernoulli equation. It is known
that N is the environmental carrying capacity, which is a very
large number; thus the formula 1 — 4(z1/Nr) > 0 holds. Then,
we can obtain

A >0. (34)

Therefore, we can solve (31), where the parameters p, g are

given as follows:
L TN )
p= 2 Nr )’

4u
=r—r|1-41-=— ).
q r 7’( \/ Nr)

Moreover, we can obtain the solution of (29) by the Bernoulli
equation:

(35)

_ r _
(x()-p) " = Ng T ™. (36)
That is,
£ Nq
X (t) = TW + P, (37)
where ¢, is expressed as
1 r T
6= ( - —) el (38)
xr—p Ngq

To summarize, in the interval [0, T], the optimal renewable
resources function can be expressed as

N
S — 0<t<t,
. 1+ N¢e™
x () = Ng (39)
——1 _4p £ <t<T.
r+ Ngc,e™ 1

The total amount of resources is continuous with respect to
time ¢, even with ¢ = t; that is,

1 Ng

= + p. 40
1+ Nge™s  r+ Ngce s P (40)

We can determine the time t, by (40). Thus, we obtain the
optimal exploitation and the optimal level of total resources
under the maximum revenue:

* 0 0<t<t
u(t):{ $

u t,<t<T,

_ N 0<t<t, (41)
1+ N¢e™

Nq
r+ Ngce

x"(t) =
+p t;<t<T.
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TABLE 1: Initial parameters for model (8).

Parameter Parameter value Unit

N 100,000 Tons

r 4.4 /

p 38 Dollars per ton
c 20 Dollars per ton
P 0.1 /

u 20000 Tons

T 1 Year

x(T) 70000 Tons

S, 0.6 /

Sy 0.62 /

In summary, the optimal management strategy can be
interpreted as follows. At the beginning of a time period
[0, £,), we should not exploit the renewable resources to reach
a certain number. At time [¢,, T], we can exploit the renewable
resources at the maximum capacity. Finally, we obtain the
total benefit as follows:

ts
]*:J (p—c)xOxe_P’(l—ae_bt)dt
° (42)

+ JT (p-c)ue** (1 - ae_ht)dt.

s

4. Numerical Example

Based on the solution to the proposed model (8), we now
present an example that verifies the model. The initial param-
eters for the fisheries resources are specified in Table 1, that is,
the carrying capacity of the ecosystem N, the intrinsic growth
rate of the renewable resources r, the revenue per unit p, the
cost per unit ¢, the instantaneous social rate of discount p,
the maximum amount of exploitation #, the time interval
[0, T], the ultimate amount of renewable resources x(T'), the
initial effective utilization rate s, and the ultimate effective
utilization rate sy. Thus, by (6), (28), (35), and (38), we can
obtain the remaining parameters: a = 0.4, b = 0.05, ¢, =
1.9x107, p = 4775,q = 3.9799,and ¢, = 2.288x10™*, respec-
tively. By substituting parameters N,r,¢,c,, p,q into (38),
the switching time ¢; = 0.33999 = 0.34 is obtained (note that
in another example t, = 0.80487 for & = 70000 tons based on
the same calculation used for u = 20000). Finally, we obtain
the expressions for optimal exploitation #* (t) and the optimal
level x* (t) of total resources under the maximum revenue as
follows (we omit the case where u = 70000):

. 0 0<t<0.34
u (t) =
20000 034<t<l,
_ 100000 0<t<034 B
e ] 1419t
x () = 90450

+4775 034<t<1,

1 + 20.6969¢3-979%t

5
x10* Optimal control u(t)
2.5 T T T T
21
=
3 15+
b=}
=
]
vl
=
E 1r
o
o
0.5
0 L
0 0.2 0.4 0.6 0.8 1
t
— u(t)=0
— u(t) = 20000
o t,=034

F1GURE 1: Optimal control u(t) = 20000.

which are shown in Figures 1 and 2, respectively. The total
maximum revenue for the cases where # = 20000 and u =
70000, respectively, can also be obtained from (42) as follows:

tS
T 20000 = J (p-c)x0xe™” (1 - ae_bt) dt
0

T
+ J (p-c)ue™ (1 —ae_bt)dt
ts

~ 136254.85,
(44)

tS
T 0000 = J (p-c)x0xe (1 - ae_bt) dt
0

T
+ J (p-c)ue™ (1 —ae_bt)dt
t

s

=~ 138753.7.

In Figure 2, for the case where 7 = 20000, the switching
time is t; = 0.34, which indicates that we should allow the
renewable resources to grow naturally for about 4 months of
1year. Subsequently, the renewable resources can be exploited
optimally where u = 20000 and the final total maximum
revenue is 136,254 dollars. Figure 2 also shows that the renew-
able resources retain approximately the same growth rate as
before. However, when the optimal exploitation is % = 70000
with the development of exploitation technology, we should
delay the exploitation time; that is, ¢, = 0.80487, which is
about 10 months of 1 year. In this case, the total maximum
revenue is about 138,753 dollars, which is greater than that for
u = 20000 and the renewable resources continue to grow, but
at a slower growth rate.
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Optimal renewable resources x(t)

0 0.2 0.4 0.6 0.8 1
Times t

—— x(t) whenu(t) =0
—— x(t) when u(t) = 20000 e
—.— x(t) whenu(t) =0 )

-—.— x(t) when u(t) = 70000
t, = 0.34 when u(t) = 20000
t, = 0.80487 when u(t) = 70000

FIGURE 2: Optimal renewable resources x(t).

5. Conclusion

In this study, we considered a model for the optimal control
of renewable resources, which is affected by the effective
utilization rate. We analyzed the singularity of the model. If
the model is a singularity, the problem is difficult because
the maximal principle cannot identify an optimal candidate
explicitly. Indeed, we proved that our proposed optimal
control model involving the effective utilization rate is normal
and we solved the model with the aid of the maximal princi-
ple. Finally, we determined the optimal exploitation rate and
the optimal level of the total renewable resources under the
maximum revenue. This study may provide reference values
to facilitate the development of renewable resources. How-
ever, itis clear that u(t) is not related directly to x(¢) according
to the present study. Thus, further research is required to
address the case where u(t) and x(t) have a linear relationship.
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