
Research Article
Applications of Multivalued Contractions on Graphs
to Graph-Directed Iterated Function Systems

T. Dinevari and M. Frigon
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We apply a fixed point result for multivalued contractions on complete metric spaces endowed with a graph to graph-directed
iterated function systems.More precisely, we construct a suitablemetric space endowedwith a graphG and a suitableG-contraction
such that its fixed points permit us to obtain more information on the attractor of a graph-directed iterated function system.

1. Introduction

Based on the work of Hutchinson [1] and being popularized
by Barnsley [2], themethod of iterated function systems (IFS)
permits us to generate fractals by iterating a collection of
transformations {𝑇

𝑖
: 𝑖 = 1, . . . , 𝑝}. If each 𝑇

𝑖
is a contraction

on a complete metric space𝑀, it was shown in [1] that there
exists a unique nonempty compact set 𝐾 ⊂ 𝑀 which is
invariant with respect to {𝑇

𝑖
: 𝑖 = 1, . . . , 𝑝}; that is,

𝐾 =

𝑝

⋃
𝑖=1

𝑇
𝑖 (𝐾) . (1)

This attractor𝐾 is such that, for every compact 𝐴 ⊂ 𝑀,

𝑔
𝑛
(𝐴) 󳨀→ 𝐾 with respect to the Hausdorff metric, (2)

where

𝑔 (𝐴) =

𝑝

⋃
𝑖=1

𝑇
𝑖 (𝐴) . (3)

The existence of 𝐾 can be deduced from the Banach fixed
point theorem.

A fixed point result which is, in some sense, a com-
bination of the Banach contraction principle and the

Knaster-Tarski fixed point theorem in a partially ordered
set was obtained by Ran and Reurings [3] in 2004. They
considered a monotone, order preserving single-valued map
𝑓 defined on a complete metric space endowed with a
partial ordering. They assumed that 𝑓 satisfies a contraction
condition not necessarily for all 𝑥 and 𝑦, but for those
such that 𝑥 ≤ 𝑦. Subsequently, their result was generalized
by many authors, in particular by Nieto, Rodŕıguez-López,
Pouso, Petruşel, and Rus [4–7]. In 2008, Jachymski [8]
presented a nice unification of most of the previous results by
considering complete metric spaces endowed with a graph𝐺.
He introduced the notion of single-valued 𝐺-contraction for
which he obtained fixed point results.

Using those fixed point results, Gwóźdź-Łukawska and
Jachymski [9] developed the Hutchinson-Barnsley theory on
complete metric space endowed with a graph 𝐺 for iterated
function systems of single-valued 𝐺-contractions.

Different extensions of the concept of single-valued 𝐺

contractions on complete metric spaces endowed with a
graph to multivalued maps were presented by Dinevari and
Frigon [10] and by Nicolae et al. [11]. Those extensions led to
generalizations of Jachymski’s fixed point results and of the
Nadler fixed point theorem for multivalued contractions.

In 1988,Mauldin andWilliams [12] introduced the notion
of geometric graph-directed construction.
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Definition 1. A geometric graph-directed construction in R𝑚

consists of

(i) a collection of𝑝 nonoverlapping, compact, nonempty
subsets of R𝑚, 𝐽

1
, . . . , 𝐽

𝑝
with nonempty interior;

(ii) a directed-graph 𝐻 = (𝑉(𝐻), 𝐸(𝐻)) such that
𝑉(𝐻) = {1, . . . , 𝑝} is the set of its vertices, and, for
each 𝑖 ∈ 𝑉(𝐻), there exists some edge (𝑖, 𝑗) ∈ 𝐸(𝐻);

(iii) for each (𝑖, 𝑗) ∈ 𝐸(𝐻), there is a similarity map 𝑇
𝑖,𝑗
:

R𝑚 → R𝑚 with similarity ratios 𝑟
𝑖,𝑗
such that

⋃
(𝑖,𝑗)∈𝐸(𝐻)

𝑇
𝑖,𝑗
(𝐽
𝑗
) ⊂ 𝐽
𝑖
; (4)

(iv) for each 𝑖, {𝑇
𝑖,𝑗
(𝐽
𝑗
) : (𝑖, 𝑗) ∈ 𝐸(𝐻)} is a nonoverlapping

family of sets;
(v) if [𝑖

1
, . . . , 𝑖

𝑞−1
, 𝑖
𝑞
= 𝑖
1
] is a cycle in𝐻, then

𝑞

∏
𝑘=1

𝑟
𝑖𝑘−1,𝑖𝑘

< 1. (5)

They showed that a geometric graph-directed construc-
tion has an attractor.

Theorem 2 (Mauldin and Williams [12]). For a geometric
graph-directed construction as above, there exists 𝐾

1
, . . . , 𝐾

𝑝

a unique collection of nonempty compact sets such that

∀𝑖 ∈ {1, . . . , 𝑝} , 𝐾
𝑖
⊂ 𝐽
𝑖
, 𝐾
𝑖
= ⋃
(𝑖,𝑗)∈𝐸(𝐻)

𝑇
𝑖,𝑗
(𝐾
𝑗
) . (6)

The set

𝐾 =

𝑝

⋃
𝑖=1

𝐾
𝑖

(7)

is called the attractor of this geometric graph-directed construc-
tion.

Geometric graph-directed constructions have been stud-
ied and generalized by many authors; see [13–16]. In partic-
ular, it was shown in [13] that with an appropriate rescaling,
condition (v) can be replaced by

(v)󸀠 for each (𝑖, 𝑗) ∈ 𝐻, 𝑟
𝑖,𝑗
< 1.

Also, in some of those generalizations, similarities on R𝑚

were replaced by contractions on complete metric spaces
and the terminology of graph-directed iterated function
system was used. Again, the existence of an attractor 𝐾 was
established.

In this paper, we take into account the graph𝐻 to obtain
more information on the attractor𝐾 of a graph-directed iter-
ated function system. To do so, we apply a fixed point result
obtained by the authors [10] for multivalued contractions on
complete metric spaces endowed with a graph.

The paper is organized as follows. In Section 2, we present
some notations and we recall some results. In Section 3, we

consider a space 𝑋 such that 𝐾 ∈ 𝑋 and on which we define
a suitable graph 𝐺 and a suitable metric. In Section 4, we
define an appropriatemultivalued𝐺-contraction𝐹. In the last
three sections, taking into account the maximal connected
component of the graph 𝐻, we obtain more information on
the attractor𝐾 from some fixed points of 𝐹.

2. 𝐻-Iterated Function System

First of all, we introduce the notion of MW-directed graph
and we consider iterated function systems which takes into
account the structure of an MW-directed graph.

Definition 3. A directed-graph 𝐻 = (𝑉(𝐻), 𝐸(𝐻)) is called
anMW-directed graph if𝑉(𝐻) = {1, . . . , 𝑝},𝐻 has no parallel
edges, and for every 𝑖 ∈ 𝑉(𝐻), there exists 𝑗 ∈ 𝑉(𝐻) such that
(𝑖, 𝑗) ∈ 𝐸(𝐻).

Definition 4. Let 𝐻 = (𝑉(𝐻), 𝐸(𝐻)) be an MW-directed
graph. A graph-directed iterated function system over the graph
𝐻 (𝐻-IFS) is a collection of 𝑝 nonempty, bounded, complete
metric spaces, (𝑋

1
, 𝑑
1
), . . . , (𝑋

𝑝
, 𝑑
𝑝
), and, for each (𝑖, 𝑗) ∈

𝐸(𝐻), a contraction 𝑇
𝑖,𝑗

: 𝑋
𝑗

→ 𝑋
𝑖
with constant of

contraction 𝜆
𝑖,𝑗
. An𝐻-IFS is denoted {𝑇

𝑖,𝑗
}
𝐻
.

Definition 5. Let {𝑇
𝑖,𝑗
}
𝐻
be an 𝐻-IFS. An attractor 𝐾 of the

𝐻-IFS is a collection of nonempty compact sets 𝐾 = {𝐾
𝑖
}
𝐻

such that𝐾
𝑖
⊂ 𝑋
𝑖
and

𝐾
𝑖
= ⋃
(𝑖,𝑗)∈𝐸(𝐻)

𝑇
𝑖,𝑗
(𝐾
𝑗
) ∀𝑖 ∈ {1, . . . , 𝑝} . (8)

The Banach contraction principle insures the existence
of an attractor of an 𝐻-IFS. We present the proof for sake
of completeness. For more information on graph-directed
iterated function systems, the reader is referred to [12, 15].

Theorem 6. An𝐻-IFS, {𝑇
𝑖,𝑗
}
𝐻
, has a unique attractor 𝐾.

Proof. Consider

𝑌 = {(𝑆
1
, . . . , 𝑆

𝑝
) ⊂

𝑝

∏
𝑖=1

𝑋
𝑖
: 𝑆
𝑖
is a compact

nonempty subset of 𝑋
𝑖
}

(9)

endowed with the metric

𝜌 (𝑆, 𝑆) = max {𝐷
𝑖
(𝑆
𝑖
, 𝑆
𝑖
) : 𝑖 = 1, . . . , 𝑝} , (10)

where𝐷
𝑖
is the Hausdorff metric on𝑋

𝑖
; that is,

𝐷
𝑖
(S
𝑖
, 𝑆
𝑖
) = inf {𝜀 > 0 : 𝑆

𝑖
⊂ 𝐵 (𝑆

𝑖
, 𝜀) , 𝑆

𝑖
⊂ 𝐵 (𝑆

𝑖
, 𝜀)} , (11)

where

𝐵 (𝑆
𝑖
, 𝜀) = {𝑦 ∈ 𝑋

𝑖
: ∃𝑥 ∈ 𝑆

𝑖
such that 𝑑

𝑖
(𝑥, 𝑦) < 𝜀} . (12)

Let us define 𝑓 : 𝑌 → 𝑌 by

𝑓
𝑖 (𝑆) = ⋃

(𝑖,𝑗)∈𝐸(𝐻)

𝑇
𝑖,𝑗
(𝑆
𝑗
) . (13)
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Using the fact that every 𝑇
𝑖,𝑗
is a contraction, one verifies that

𝑓 is a contraction with constant of contraction

𝜃 = max {𝜆
𝑖,𝑗
: (𝑖, 𝑗) ∈ 𝐸 (𝐻)} . (14)

TheBanach contraction principle insures the existence of𝐾 ∈

𝑌 a unique fixed point of 𝑓. Thus,𝐾 is the unique attractor of
{𝑇
𝑖,𝑗
}
𝐻
.

More information on 𝐾 will be obtained by applying a
fixed point result for multivalued contractions on complete
metric spaces endowed with a graph. We recall the notion of
𝐺-contraction introduced in [10].

For (𝑋, 𝑑) a complete metric space, we consider 𝐺 =

(𝑉(𝐺), 𝐸(𝐺)) a directed graph such that 𝑋 = 𝑉(𝐺), the
diagonal in𝑋×𝑋 is contained in 𝐸(𝐺), and𝐺 has no parallel
edges.

Definition 7. Let 𝐹 : 𝑋 → 𝑋 be a multivalued map with
nonempty values. We say that 𝐹 is a 𝐺-contraction if there
exists 𝛼 ∈]0, 1[ such that

(C
𝐺
) for all (𝑥, 𝑦) ∈ 𝐸(𝐺) and all 𝑢 ∈ 𝐹(𝑥), there exists V ∈
𝐹(𝑦) such that (𝑢, V) ∈ 𝐸(𝐺) and 𝑑(𝑢, V) ≤ 𝛼𝑑(𝑥, 𝑦).

We consider suitable trajectories in𝑋.

Definition 8. Let 𝐹 : 𝑋 → 𝑋 be a multivalued mapping and
𝑥
0
∈ 𝑋. We say that a sequence {𝑥

𝑛
} is a 𝐺

1
-Picard trajectory

from 𝑥
0
if 𝑥
𝑛
∈ 𝐹(𝑥

𝑛−1
) and (𝑥

𝑛−1
, 𝑥
𝑛
) ∈ 𝐸(𝐺) for all 𝑛 ∈ N.

The set of all such 𝐺
1
-Picard trajectories from 𝑥

0
is denoted

by 𝑇
1
(𝐹, 𝐺, 𝑥

0
).

The reader is referred to [10] for the proof of the following
fixed point result for multivalued 𝐺-contractions.

Theorem 9. Let 𝐹 : 𝑋 → 𝑋 be a multivalued 𝐺-contraction
such that there exists (𝑥

0
, 𝑥
1
) ∈ 𝐸(𝐺) such that 𝑥

1
∈ 𝐹(𝑥

0
). In

addition, assume that one of the following conditions holds.

(i) 𝐹 is 𝐺
1
-Picard continuous from 𝑥

0
; that is, the limit of

any convergent sequence {𝑥
𝑛
} ∈ 𝑇
1
(𝐹, 𝐺, 𝑥

0
) is a fixed

point of 𝐹.
(ii) 𝐹 has closed values and, for every {𝑥

𝑛
} in 𝑇

1
(𝐹, 𝐺, 𝑥

0
)

converging to some 𝑥 ∈ 𝑋, there exists a subsequence
{𝑛
𝑘
} such that (𝑥

𝑛𝑘
, 𝑥) ∈ 𝐸(𝐺) for all 𝑘 ∈ N.

Then, there exists a 𝐺
1
-Picard trajectory from 𝑥

0
, {𝑥
𝑛
}, con-

verging to 𝑥 a fixed point of 𝐹. Moreover, every converging 𝐺
1
-

Picard trajectory from 𝑥
0
converges to a fixed point of 𝐹.

In what follows, we consider 𝐻 an MW-directed graph.
We will use the following definitions and notations.

A path from 𝑖 to 𝑗 in𝐻 is denoted by [𝑖
𝑘
]
𝑁

0
= [𝑖
0
, . . . , 𝑖

𝑁
],

where 𝑖 = 𝑖
0
, 𝑗 = 𝑖

𝑁
, and (𝑖

𝑘−1
, 𝑖
𝑘
) ∈ 𝐸(𝐻) for every 𝑘 =

1, . . . , 𝑁.
We say that a subgraph 𝐶 = (𝑉(𝐶), 𝐸(𝐶)) of 𝐻 is

connected if for every 𝑖, 𝑗 ∈ 𝑉(𝐶) there exists a path from 𝑖 to
𝑗 in 𝐶. A connected component of𝐻 is a maximal connected
subgraph of𝐻. We denote

𝐶 (𝐻) = {𝐶 : 𝐶 is a connected component of 𝐻} . (15)

It follows from the definition of MW-directed graph that

0 ̸= 𝐶 (𝐻)= {𝐶𝛼 : 𝛼 ∈ Λ} , where Λ has finite cardinality.
(16)

We can define a partial order on 𝐶(𝐻) as follows:

𝐶
𝛼
⪯ 𝐶
𝛽
⇐⇒ ∃[𝑖

𝑘
]
𝑁

0
a path in 𝐻 such that

𝑖
0
∈ C
𝛼
, 𝑖
𝑁
∈ C
𝛽
.

(17)

We write 𝐶
𝛼
≺ 𝐶
𝛽
to mean 𝐶

𝛼
⪯ 𝐶
𝛽
and 𝐶

𝛼
̸= 𝐶
𝛽
. We say

that 𝐶
𝛼
and 𝐶

𝛽
are incomparable if 𝐶

𝛼
󳠢 𝐶
𝛽
and 𝐶

𝛽
󳠢 𝐶
𝛼
.

We denote the set of vertices from which there is a path
in𝐻 reaching 𝑖 ∈ 𝐻 by

[𝑖]← = {𝑗 ∈ 𝑉 (𝐻) : there is a path from 𝑗 to 𝑖 in 𝐻} .
(18)

Similarly, for 𝐶 ∈ 𝐶(𝐻), we denote the set of vertices from
which there is a path in𝐻 reaching 𝑉(𝐶) by

[𝐶]← = ⋃
𝑖∈𝑉(𝐶)

[𝑖]← . (19)

3. A Suitable Metric Space Endowed with
a Directed Graph

Let𝐻 be an MW-directed graph with 𝑉(𝐻) = {1, . . . , 𝑝}. For
𝑖 ∈ 𝑉(𝐻), let (𝑋

𝑖
, 𝑑
𝑖
) be a bounded complete metric space.

In this section, using 𝐻 and the spaces 𝑋
𝑖
, we define

a complete metric space endowed with a suitable directed
graph. Let us recall that

𝐶 (𝐻) = {𝐶 : 𝐶 is a connected component of 𝐻} . (20)

We consider the space 𝑋 of 𝑝-tuples 𝐴 = (𝐴
1
, . . . , 𝐴

𝑝
)

satisfying the following properties:

(Xi) 𝐴
𝑖
⊂ 𝑋
𝑖
is compact for every 𝑖 = 1, . . . , 𝑝;

(Xii) if 𝐴
𝑖

̸= 0 for some 𝑖 ∈ 𝑉(𝐶) and 𝐶 ∈ 𝐶(𝐻), then
𝐴
𝑗

̸= 0 for all 𝑗 ∈ 𝑉(𝐶);

(Xiii) there exists 𝐶 ∈ 𝐶(𝐻) and 𝑖 ∈ 𝑉(𝐶) such that 𝐴
𝑖
̸= 0.

It is important to point out that, for 𝐴 = (𝐴
1
, . . . , 𝐴

𝑝
) ∈ 𝑋,

some 𝐴
𝑖
can be empty.

We endow𝑋 with the metric

𝑑 (𝐴, 𝐵) = max
𝑖∈{1,...,𝑝}

𝐷
𝑖
(𝐴
𝑖
, 𝐵
𝑖
) , (21)

where

𝐷
𝑖
(𝐴
𝑖
, 𝐵
𝑖
) =

{{

{{

{

𝐷
𝑖
(𝐴
𝑖
, 𝐵
𝑖
) , if 𝐴

𝑖
̸= 0, 𝐵
𝑖
̸= 0,

0, if 𝐴
𝑖
= 0 = 𝐵

𝑖
,

𝑅
𝑖
, otherwise,

(22)
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where 𝐷
𝑖
is the Hausdorff metric in 𝑋

𝑖
and 𝑅

𝑖
> 𝑅 is a

constant which will be fixed later, with

𝑅 = max {diam (𝑋
𝑖
) : 𝑖 = 1, . . . , 𝑝} . (23)

It is clear that (𝑋, 𝑑) is a complete metric space.
Taking into account the graph 𝐻, we want to endow 𝑋

with a directed graph. To do so, we distinguish vertices of𝐻
which are in a connected component from the others. We set

𝑉
𝑐
= ⋃
𝐶∈𝐶(𝐻)

𝑉 (𝐶) , (24)

𝑉
𝑒
= 𝑉 (𝐻) \ 𝑉

𝑐
. (25)

We define the graph 𝐺 as follows: 𝑉(𝐺) = 𝑋, and for
𝐴, 𝐵 ∈ 𝑋, (𝐴, 𝐵) ∈ 𝐸(𝐺) if and only if

(G) for every 𝑖 ∈ {1, . . . , 𝑝}, one of the following properties
holds:

(i) 𝐴
𝑖
= 𝐵
𝑖
= 0, or 𝐴

𝑖
̸= 0 and 𝐵

𝑖
̸= 0;

(ii) 𝐴
𝑖
= 0, 𝐵

𝑖
̸= 0, and one of the following

statements is true:
(a) 𝑖 ∈ 𝑉𝑒 and there exists 𝑗 ∈ 𝑉(𝐻) such that

(𝑖, 𝑗) ∈ 𝐸(𝐻) and 𝐴
𝑗

̸= 0;
(b) 𝑖 ∈ 𝑉(𝐶) for some𝐶 ∈ 𝐶(𝐻) and there exist

𝑘 ∈ 𝑉(𝐶) and 𝑗 ∈ 𝑉(𝐻) such that (𝑘, 𝑗) ∈
𝐸(𝐻) and 𝐴

𝑗
̸= 0;

(iii) 𝐴
𝑖
̸= 0, 𝐵
𝑖
= 0, 𝑖 ∈ 𝑉𝑒, and one of the following

properties is satisfied:
(a) there is no 𝑗 ∈ 𝑉(𝐻) such that (𝑗, 𝑖) ∈

𝐸(𝐻);
(b) for every 𝑗 ∈ 𝑉(𝐻) such that (𝑗, 𝑖) ∈ 𝐸(𝐻),

one has 𝐵
𝑗

̸= 0.

Example 10. Let𝐻 be theMW-graph of Figure 1.We consider
𝑋 the associated metric space satisfying (Xi)–(Xiii) endowed
with the graph 𝐺 satisfying the condition (G). Let 𝐴𝑘

𝑖
be

nonempty compact subsets of 𝑋
𝑖
for all 𝑖 ∈ {1, . . . , 9} and

𝑘 ∈ {1, . . . , 7}. We consider the following elements of𝑋:

𝐴
1
= (0, 0, 𝐴

1

3
, 𝐴
1

4
, 𝐴
1

5
, 0, 0, 0, 0) ,

𝐴
2
= (0, 0, 𝐴

2

3
, 𝐴
2

4
, 𝐴
2

5
, 𝐴
2

6
, 0, 0, 0) ,

𝐴
3
= (0, 0, 0, 0, 0, 0, 𝐴

3

7
, 𝐴
3

8
, 𝐴
3

9
) ,

𝐴
4
= (0, 0, 0, 0, 0, 𝐴

4

6
, 𝐴
4

7
, 𝐴
4

8
, 𝐴
4

9
) ,

𝐴
5
= (0, 0, 𝐴

5

3
, 𝐴
5

4
, 𝐴
5

5
, 0, 𝐴
5

7
, 𝐴
5

8
, 𝐴
5

9
) ,

𝐴
6
= (𝐴
6

1
, 0, 𝐴
6

3
, 𝐴
6

4
, 𝐴
6

5
, 0, 0, 0, 0) ,

𝐴
7
= (0, 𝐴

7

2
, 𝐴
7

3
, 𝐴
7

4
, 𝐴
7

5
, 0, 0, 0, 0) .

(26)

Here is the list of all edges of 𝐺 between them:

{(𝐴
1
, 𝐴
7
) , (𝐴
2
, 𝐴
1
) , (𝐴
2
, 𝐴
7
) , (𝐴
3
, 𝐴
4
) , (𝐴
3
, 𝐴
4
) ,

(𝐴
4
, 𝐴
5
) , (𝐴
6
, 𝐴
1
) , (𝐴
6
, 𝐴
7
) , (𝐴
7
, 𝐴
6
)} ⊂ 𝐸 (𝐺) .

(27)

1 2 3 4 6 7 8

5 9

C1 C2

Figure 1: An MW-graph𝐻.

Now, we want to fix 𝑅
𝑖
in (22) in such a way that we

will be able to define a suitable multivalued𝐺-contraction on
𝑋 in the next section. To this aim, we decompose 𝑉(𝐻) in
appropriate subsets 𝑉

𝜇
with 𝜇 ∈ 𝐼 a totally ordered set.

Lemma 11. Let𝐻 be an MW-directed graph. Then there exist
𝐼 a totally ordered set and {𝑉

𝜇
: 𝜇 ∈ 𝐼} a family of nonempty

disjoint subsets, and, for every 𝑖 ∈ {1, . . . , 𝑝}, there exists𝑅
𝑖
> 𝑅

such that
(1) 𝑉(𝐻) = ∪

𝜇∈𝐼
𝑉
𝜇
;

(2) if 𝑉(𝐶) ∩ 𝑉
𝜇

̸= 0 for some 𝜇 ∈ 𝐼 and some 𝐶 ∈ 𝐶(𝐻),
then 𝑉(𝐶) ⊂ 𝑉

𝜇
;

(3) if 𝜇 < ] in 𝐼, for all 𝑖 ∈ 𝑉
𝜇
, and 𝑗 ∈ 𝑉], then 𝑗 ∉ [𝑖]←;

(4) for every 𝜇 ∈ 𝐼, one has 𝑅
𝑖
= 𝑅
𝑗
for every 𝑖, 𝑗 ∈ 𝑉

𝜇
;

(5) for every 𝜇 < ] ∈ 𝐼, one has 𝑅
𝑖
< 𝑅
𝑗
for every 𝑖 ∈ 𝑉

𝜇
,

𝑗 ∈ 𝑉].

Proof. We want to separate vertices of 𝐻 in suitable subsets.
Let us recall that some vertices are in a connected component,
and some others are not:

𝑉 (𝐻) = 𝑉
𝑐
∪ 𝑉
𝑒
, (28)

where 𝑉𝑐 and 𝑉𝑒 are defined in (24) and (25), respectively.
First of all, we examine vertices in 𝑉𝑐. Let

𝐿 = max {𝑛 ∈ N : there exists a chain

𝐶
𝛼1
≺ ⋅ ⋅ ⋅ ≺ 𝐶

𝛼𝑛
in 𝐶 (𝐻)} .

(29)

We denote
𝐶 (𝐻)1 = {𝐶 ∈ 𝐶 (𝐻) : ∄𝐶 ∈ 𝐶 (𝐻) such that 𝐶 ≺ 𝐶} ,

𝐶 (𝐻)2 = {𝐶 ∈ 𝐶 (𝐻) \ 𝐶 (𝐻)1 : ∄𝐶 ∈ 𝐶 (𝐻) \ 𝐶 (𝐻)1

such that 𝐶 ≺ 𝐶} ,

...

𝐶 (𝐻)𝐿 = {𝐶 ∈ 𝐶 (𝐻) \

𝐿−1

⋃
𝑘=1

𝐶 (𝐻)𝑘 : ∄𝐶 ∈ 𝐶 (𝐻) \

𝐿−1

⋃
𝑘=1

𝐶 (𝐻)𝑘

such that 𝐶 ≺ 𝐶} .

(30)

We define
𝑉
𝑘,0
= ⋃
𝐶∈𝐶(𝐻)𝑘

𝑉 (𝐶) for 𝑘 = 1, . . . , 𝐿. (31)

Observe that

𝑉
𝑐
=

𝐿

⋃
𝑘=1

𝑉
𝑘,0
, 𝑉
𝑘,0
∩ 𝑉
𝑗,0
= 0 if 𝑘 ̸= 𝑗. (32)
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Now, we separate vertices in 𝑉𝑒 in suitable subsets. We
first separate them in two sets: those which can be reached by
a path starting from a vertex in a connected component, and
those which cannot. This last set is denoted:

𝑉
0
= {𝑗 ∈ 𝑉

𝑒
: 𝑉
𝑐
∩ [𝑗]
←
= 0} . (33)

If 𝑉0 ̸= 0, let

𝑁
0
= max {𝑛 : there is a path [𝑖

𝑘
]
𝑛

1
such that 𝑖

𝑘
∈ 𝑉
0

for every 𝑘 = 1, . . . , 𝑁
0
} .

(34)

We define

𝑉
0,1
= {𝑖 ∈ 𝑉

0
: �∃𝑗 ∈ 𝑉

0 such that (𝑗, 𝑖) ∈ 𝐸 (𝐻)} ,

𝑉
0,2
={𝑖 ∈ 𝑉

0
\ 𝑉
0,1
: �∃𝑗 ∈ 𝑉

0
\ 𝑉
0,1

such that (𝑗, 𝑖)∈𝐸 (𝐻)} ,

...

𝑉
0,𝑁0

= {𝑖 ∈ 𝑉
0
\

𝑁0−1

⋃
𝑘=1

𝑉
0,𝑘
: �∃𝑗 ∈ 𝑉

0
\

𝑁0−1

⋃
𝑘=1

𝑉
0,𝑘

such that (𝑗, 𝑖) ∈ 𝐸 (𝐻)} .

(35)

Observe that

𝑉
0
=

𝑁0

⋃
𝑘=1

𝑉
0,𝑘
, 𝑉
0,𝑘
∩ 𝑉
0,𝑗
= 0 if 𝑘 ̸= 𝑗. (36)

If 𝑉𝑒 \ 𝑉0 ̸= 0, it follows from Definition 3 that, for every
𝑗 ∈ 𝑉
𝑒
\ 𝑉
0, there exist 𝐶

𝛼
, 𝐶
𝛽
∈ 𝐶(𝐻) such that

𝐶
𝛼
≺ 𝐶
𝛽
, 𝑉 (𝐶

𝛼
) ⊂ [𝑗]

←
, 𝑗 ∈ [𝐶

𝛽
]
←
. (37)

In other words, 𝑗 is on a path from 𝐶
𝛼
to 𝐶
𝛽
. Hence, 𝐿 > 1,

where 𝐿 is defined in (29).
If 𝐿 ≥ 2, we first examine vertices on a path from some

𝑖 ∈ 𝑉
1,0

to some 𝑗 ∈ 𝑉
2,0
. Let

𝑁
1
= max {𝑛 : there is a path [𝑖

𝑘
]
1+𝑛

0
such that

𝑖
0
∈ 𝑉
1,0
, 𝑖
1+𝑛

∈ 𝑉
2,0

and

𝑖
𝑘
∈ 𝑉
𝑒
∀𝑘 = 1, . . . , 𝑛} .

(38)

If𝑁
1
≥ 1, we define

𝑉
1,1
= {𝑖 ∈ 𝑉

𝑒
: ∃ [𝑖
𝑘
]
1+𝑁1

0
with 𝑖 = 𝑖

1
, 𝑖
0
∈ 𝑉
1,0
,

𝑖
1+𝑁1

∈ 𝑉
2,0
, 𝑖
𝑘
∈ 𝑉
𝑒 for 𝑘 = 1, . . . , 𝑁

1
} .

(39)

If𝑁
1
≥ 2, we define

𝑉
1,2
= {𝑖 ∈ 𝑉

𝑒
\ 𝑉
1,1
: ∃ [𝑖
𝑘
]
1+𝑁1

1
with 𝑖 = 𝑖

2
, 𝑖
1
∈ 𝑉
1,0
∪ 𝑉
1,1
,

𝑖
1+𝑁1

∈ 𝑉
2,0
, 𝑖
𝑘
∈ 𝑉
𝑒
\ 𝑉
1,1

for 𝑘 = 2, . . . , 𝑁
1
} .

(40)

We define inductively 𝑉
1,1
, . . . , 𝑉

1,𝑁1
.

We denote the set of vertices on a path from 𝑉
1,0

to 𝑉
2,0

by

𝑉
1
= 𝑉
1,0
∪ 𝑉
2,0
∪

𝑁1

⋃
𝑘=1

𝑉
1,𝑘
. (41)

If 𝐿 ≥ 3, we examine vertices on a path from some 𝑖 ∈ 𝑉1
to some 𝑗 ∈ 𝑉

3,0
. Let

𝑁
2
= max {𝑛 : there is a path [𝑖

𝑘
]
1+𝑛

0
such that

𝑖
0
∈ 𝑉
1
, 𝑖
1+𝑛

∈ 𝑉
3,0

and

𝑖
𝑘
∈ 𝑉
𝑒
\ 𝑉
1
∀𝑘 = 1, . . . , 𝑛} .

(42)

If𝑁
2
≥ 1, we define

𝑉
2,1
= {𝑖 ∈ 𝑉

𝑒
\ 𝑉
1
: ∃ [𝑖
𝑘
]
1+𝑁2

0
with 𝑖 = 𝑖

1
, 𝑖
0
∈ 𝑉
1
,

𝑖
1+𝑁2

∈ 𝑉
3,0
, 𝑖
𝑘
∈ 𝑉
𝑒
\ 𝑉
1 for 𝑘 = 1, . . . , 𝑁

2
} .

(43)

If𝑁
2
≥ 2, we define

𝑉
2,2
= {𝑖 ∈ 𝑉

𝑒
\ (𝑉
1
∪ 𝑉
2,1
) : ∃ [𝑖

𝑘
]
1+𝑁2

1
with 𝑖 = 𝑖

2
,

𝑖
1
∈ 𝑉
1
∪ 𝑉
2,1
, 𝑖
1+𝑁2

∈ 𝑉
3,0
, and

𝑖
𝑘
∈ 𝑉
𝑒
\ (𝑉
1
∪ 𝑉
2,1
) for 𝑘 = 2, . . . , 𝑁

2
} .

(44)

Similarly, we define 𝑉
2,𝑗

for 𝑗 ≤ 𝑁
2
.

So, inductively, we define the following subsets of𝑉𝑒 \𝑉0:

𝑉
1,1
, . . . , 𝑉

1,𝑁1
, 𝑉
2,1
, . . . , 𝑉

2,𝑁2
, . . . , 𝑉

𝐿−1,1
, . . . , 𝑉

𝐿−1,𝑁𝐿−1
. (45)

Each vertex in one of those sets is on a path from one
connected component to another.

We have decomposed𝑉(𝐻) in a collection of disjoint sets:

𝑉
0,1
, . . . , 𝑉

0,𝑁0
, 𝑉
1,0
, 𝑉
1,1
, . . . , 𝑉

1,𝑁1
, 𝑉
2,0
, . . . , 𝑉

𝐿−1,𝑁𝐿−1
, 𝑉
𝐿,0
.

(46)

We denote

𝐼 = {(𝑘, 0) : 1 ≤ 𝑘 ≤ 𝐿} ∪ {(𝑘, 𝑙) : 0 ≤ 𝑘 ≤ 𝐿 − 1, 1 ≤ 𝑙 ≤ 𝑁𝑘} .

(47)

We endow 𝐼 with the order

(𝑘
1
, 𝑙
1
) ≤ (𝑘

2
, 𝑙
2
) ⇐⇒ 𝑘

1
< 𝑘
2
, or 𝑘

1
= 𝑘
2
, 𝑙
1
≤ 𝑙
2
. (48)

By construction,

𝑉 (𝐻) = ⋃
𝜇∈𝐼

𝑉
𝜇
, 𝑉
𝜇
∩ 𝑉] = 0 if 𝜇 ̸= ]. (49)
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Figure 2: An MW-graph𝐻 with 𝐶(𝐻) = {𝐶
1
, . . . , 𝐶

6
}.

Also, for every 𝐶 ∈ 𝐶(𝐻), there exists 𝜇 ∈ 𝐼 such that𝑉(𝐶) ⊂
𝑉
𝜇
. Moreover, for 𝜇, ] ∈ 𝐼 such that 𝜇 < ], one has 𝑗 ∉ [𝑖]

←

for every 𝑖 ∈ 𝑉
𝜇
, and 𝑗 ∈ 𝑉].

Finally, we choose 𝜎 : 𝐼 → ]1,∞[ a strictly increasing
map. We define

𝑅
𝑖
= 𝜎 (𝜇) 𝑅 for 𝑖 ∈ {1, . . . , 𝑝} ∩ 𝑉

𝜇
, 𝜇 ∈ 𝐼. (50)

By construction, statements (4) and (5) are satisfied.

Remark 12. Let (𝐴, 𝐵) ∈ 𝐸(𝐺). From the definition of
the graph 𝐺 and Lemma 11, we can make the following
observations.

(1) If for some 𝑖 ∈ 𝑉(𝐻), (G)(ii) holds with some 𝑗 ∈

𝑉(𝐻) such that 𝐴
𝑗

̸= 0; let 𝜇
𝑖
, 𝜇
𝑗
∈ 𝐼 be such that

𝑖 ∈ 𝑉
𝜇𝑖
and 𝑗 ∈ 𝑉

𝜇𝑗
. Then, 𝜇

𝑖
< 𝜇
𝑗
.

(2) If for some 𝑖 ∈ 𝑉(𝐻), (G)(iii)(b) holds, let 𝜇
𝑖
∈ 𝐼 be

such that 𝑖 ∈ 𝑉
𝜇𝑖
. Then, for all 𝑗 ∈ 𝑉(𝐻) such that

(𝑗, 𝑖) ∈ 𝐸(𝐻), there is 𝜇
𝑗
∈ 𝐼 such that 𝑗 ∈ 𝑉

𝜇𝑗
and one

has 𝜇
𝑗
< 𝜇
𝑖
.

Example 13. We consider 𝐻 the MW-graph of Figure 2 for
which we describe the collection of subsets𝑉

𝜇
constructed as

in the proof of Lemma 11. In this graph,

𝐶 (𝐻) = {𝐶1, . . . , 𝐶6} ,

𝑉
𝑐
= {2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15,

18, 19, 20, 26, 27, 28} ,

𝑉
𝑒
= {1, 8, 9, 16, 17, 21, 22, 23, 24, 25, 29} .

(51)

Since 𝐶
2
≺ 𝐶
4
≺ 𝐶
6
≺ 𝐶
5
, one has 𝐿 = 4, and

𝑉
1,0
= {2, 3, 4, 5, 6, 7} ,

𝑉
2,0
= {10, 11, 12, 13, 14, 15} ,

𝑉
3,0
= {18, 19, 20} ,

𝑉
4,0
= {26, 27, 28} .

(52)

By considering the paths from𝑉
1,0

to𝑉
2,0
, one sees that𝑁

1
=

2, and

𝑉
1,1
= {8} , 𝑉

1,2
= {9} . (53)

By considering the paths from 𝑉
1,0
∪ 𝑉
1,1
∪ 𝑉
1,2
∪ 𝑉
2,0

to 𝑉
3,0
,

one sees that𝑁
2
= 2, and

𝑉
2,1
= {16} , 𝑉

2,2
= {17} . (54)

Similarly, one has𝑁
3
= 3, and

𝑉
3,1
= {23} , 𝑉

3,2
= {24} , 𝑉

3,3
= {25, 29} . (55)

So, the vertices which are not in one of the previous sets are
in 𝑉0 = {1, 21, 22}. Similarly,𝑁

0
= 2, and

𝑉
0,1
= {1, 21} , 𝑉

0,2
= {22} . (56)

So, 𝐼 is the totally ordered set:

(0, 1) < (0, 2) < (1, 0) < (1, 1) < (1, 2) < (2, 0) < (2, 1)

< (2, 2) < (3, 0) < (3, 1) < (3, 2) < (3, 3) < (4, 0) ,

𝑉 (𝐻) = {1, . . . , 29} = ⋃
𝜇∈𝐼

𝑉
𝜇
.

(57)

4. A 𝐺-Contraction

In this section, we consider a graph-directed iterated func-
tion system over the graph 𝐻, {𝑇

𝑖,𝑗
}
𝐻
. We will define an

appropriate multivalued 𝐺-contraction on 𝑋, where 𝐺 and
𝑋 are, respectively, the graph and the metric space endowed
with this graph and defined in the previous section. This
𝐺-contraction will be used to get more information on the
attractor of this𝐻-IFS.

Let 𝐴 ∈ 𝑋. For each 𝑗 such that 𝐴
𝑗

̸= 0, 𝑇
𝑖,𝑗
(𝐴
𝑗
) ̸=

0 for all 𝑖 such that (𝑖, 𝑗) ∈ 𝐸(𝐻). So, it is important to
distinguish all those edges. To this aim, we introduce the
following notations.

Let 𝑉𝑒 be the subset of vertices in 𝑉(𝐻) which are not
in connected components of 𝐻 and defined in (25). So, for
𝑖 ∈ 𝑉
𝑒, we denote

𝐸
𝑖 (𝐴) = {(𝑖, 𝑗) ∈ 𝐸 (𝐻) : 𝐴𝑗 ̸= 0} . (58)

For 0 ̸= 𝑃 ⊂ 𝐸
𝑖
(𝐴), we define

𝑈
𝑒

𝑖
(𝐴, 𝑃) = ⋃

(𝑖,𝑗)∈𝑃

𝑇
𝑖,𝑗
(𝐴
𝑗
) . (59)

Let 𝑉𝑐 be the subset of vertices in 𝑉(𝐻) which are in
connected components of 𝐻 and defined in (24). So, for 𝑖 ∈
𝑉
𝑐, there exists 𝐶 ∈ 𝐶(𝐻) such that 𝑖 ∈ 𝑉(𝐶). We consider

the set of edges from a vertex of 𝐶 to a vertex outside of 𝐶 for
which the component of 𝐴 is nonempty:

𝐸
𝐶 (𝐴) = {(𝑘, 𝑗) ∈ 𝐸 (𝐻) : 𝑘 ∈ 𝑉 (𝐶) , 𝑗 ∉ 𝑉 (𝐶) , 𝐴𝑗 ̸= 0} .

(60)

For 𝑘 ∈ 𝑉(𝐶), we denote

{𝑖
𝐶

󳨀→ 𝑘} = {[𝑖
𝑘
]
𝑁

0
which is a path in 𝐶 from 𝑖 = 𝑖

0

to 𝑘 = 𝑖
𝑁

and containing no cycle} ,
(61)
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and we define 𝑇
𝑖→𝑘

: 𝑋
𝑘
→ 𝑋
𝑖
by

𝑇
𝑖→𝑘 (𝑥) = ⋃

[𝑖𝑘]
𝑁

0
∈{𝑖

𝐶

󳨀→𝑘}

𝑇
𝑖0 ,𝑖1

∘ ⋅ ⋅ ⋅ ∘ 𝑇
𝑖𝑁−1,𝑖𝑁

(𝑥) .
(62)

We define

𝑈
𝑐

𝑖
(𝐴, 𝑃) =

{

{

{

0, if 𝑃 = 0,
⋃
(𝑘,𝑗)∈𝑃

𝑇
𝑖→𝑘

∘ 𝑇
𝑘,𝑗
(𝐴
𝑗
) , if 0 ̸= 𝑃 ⊂ 𝐸

𝐶 (𝐴) .

(63)

We also define

𝑊
𝑖 (𝐴) =

{

{

{

0, if 𝐴
𝑖
= 0,

⋃
(𝑖,𝑗)∈𝐸(𝐶)

𝑇
𝑖,𝑗
(𝐴
𝑗
) , if 𝐴

𝑖
̸= 0, (64)

where 𝐸(𝐶) = {(𝑘, 𝑗) ∈ 𝐸(𝐻) : 𝑘, 𝑗 ∈ 𝑉(𝐶)}.
We have all the ingredients to define themultivaluedmap

𝐹 : 𝑋 → 𝑋. For 𝐴 ∈ 𝑋,

𝑈 = (𝑈
1
, . . . , 𝑈

𝑝
) ∈ 𝐹 (𝐴) ⇐⇒ 𝑈

𝑖
∈ 𝐹
𝑖 (𝐴) , (65)

where 𝐹
𝑖
(𝐴) is defined as follows.

For 𝑖 ∈ 𝑉𝑒,

𝐹
𝑖 (𝐴) = {

0, if 𝐸
𝑖 (𝐴) = 0,

{𝑈
𝑒

𝑖
(𝐴, 𝑃) : 0 ̸= 𝑃 ⊂ 𝐸

𝑖 (𝐴)} , if 𝐸
𝑖 (𝐴) ̸= 0.

(66)

For 𝑖 ∈ 𝑉(𝐶) for some 𝐶 ∈ 𝐶(𝐻),

𝐹
𝑖 (𝐴) =

{{{{{{{

{{{{{{{

{

0, if 𝐴
𝑖
= 0,

𝐸
𝐶 (𝐴) = 0,

{𝑈
𝑐

𝑖
(𝐴, 𝑃) : 0 ̸= 𝑃 ⊂ 𝐸

𝐶 (𝐴)} , if 𝐴
𝑖
= 0,

𝐸
𝐶 (𝐴) ̸= 0,

{𝑊
𝑖 (𝐴) ∪ 𝑈

𝑐

𝑖
(𝐴, 𝑃) : 𝑃 ⊂ 𝐸𝐶 (𝐴)} , if 𝐴

𝑖
̸= 0.

(67)

Observe that𝐹 is well defined. Indeed, if𝑈 ∈ 𝐹(𝐴) is such
that 𝑈

𝑖
̸= 0 for 𝑖 in some 𝑉(𝐶), then 𝑈

𝑗
̸= 0 for all 𝑗 ∈ 𝑉(𝐶).

Also, there exists 𝐶 ∈ 𝐶(𝐻) such that 𝑈
𝑖
̸= 0 for all 𝑖 ∈ 𝑉(𝐶).

Moreover, the values of 𝐹 are finite and hence closed.
We show that 𝐹 is a multivalued 𝐺-contraction.

Proposition 14. Let 𝐹 : 𝑋 → 𝑋 be the multivalued map
defined above. Then 𝐹 is a 𝐺-contraction.

Proof. We want to show that 𝐹 is a 𝐺-contraction with
constant of contraction:

𝜆 = max{max {𝜆
𝑖,𝑗
: (𝑖, 𝑗) ∈ 𝐸 (𝐻)} ,

max{ 𝑅
𝑅
𝑖

: 𝑖 ∈ {1, . . . , 𝑝}} ,

max{
𝑅
𝑖

𝑅
𝑗

: 𝑖 ∈ 𝑉
𝜇𝑖
, 𝑗 ∈ 𝑉

𝜇𝑗
for 𝜇
𝑖
, 𝜇
𝑗
∈ 𝐼

such that 𝜇
𝑖
< 𝜇
𝑗
}} ,

(68)

where 𝑅
𝑖
, 𝐼, and𝑉

𝜇
for 𝜇 ∈ 𝐼 are given in Lemma 11. For 𝑖, 𝑘 ∈

𝑉(𝐶) for some 𝐶 ∈ 𝐶(𝐻), we denote

𝜆
𝑖→𝑘

= max {𝜆
𝑖0 ,𝑖1

⋅ ⋅ ⋅ 𝜆
𝑖𝑁−1,𝑖𝑁

: [𝑖
𝑘
]
𝑁

0
∈ {𝑖
𝐶

󳨀→ 𝑘}} , (69)

where {𝑖 𝐶󳨀→ 𝑘} is given in (61). Observe that 𝜆
𝑖→𝑘

≤ 𝜆.
Let 𝐴, 𝐵 ∈ 𝑋 be such that (𝐴, 𝐵) ∈ 𝐸(𝐺) and 𝑈 ∈ 𝐹(𝐴).

We look for 𝑈̂ ∈ 𝐹(𝐵) such that (𝑈, 𝑈̂) ∈ 𝐸(𝐺) and 𝑑(𝑈, 𝑈̂) ≤
𝜆𝑑(𝐴, 𝐵).

Step 1 (𝑖 ∈ 𝑉𝑒). Let 𝜇 ∈ 𝐼 be such that 𝑖 ∈ 𝑉
𝜇
.

Case 1 (𝑈
𝑖
= 0 and 𝑈̃

𝑖
̸= 0 for every 𝑈̃ ∈ 𝐹(𝐵)). In this case,

𝐸
𝑖
(𝐴) = 0 and 𝐸

𝑖
(𝐵) ̸= 0 by (66). Choose some (𝑖, 𝑗) ∈ 𝐸

𝑖
(𝐵).

Therefore, 𝐴
𝑗
= 0, 𝐵

𝑗
̸= 0, and for ] ∈ 𝐼 such that 𝑗 ∈ 𝑉], one

has 𝜇 < ].
By condition (G)(ii)(a), if 𝑗 ∈ 𝑉

𝑒, there exists 𝑙 ∈ 𝑉(𝐻)

such that (𝑗, 𝑙) ∈ 𝐸(𝐻) and 𝐴
𝑙
̸= 0. So, (𝑗, 𝑙) ∈ 𝐸

𝑗
(𝐴).

On the other hand, if 𝑗 ∈ 𝑉(𝐶) for some 𝐶 ∈ 𝐶(𝐻), by
condition (G)(ii)(b), there exist 𝑘 ∈ 𝑉(𝐶) and 𝑙 ∈ 𝑉(𝐻) such
that (𝑘, 𝑙) ∈ 𝐸(𝐻) and 𝐴

𝑙
̸= 0. So, (𝑘, 𝑙) ∈ 𝐸

𝐶
(𝐴) and 𝑗, 𝑘 ∈

𝑉(𝐶).
So, for the case 𝑗 ∈ 𝑉𝑒 and the case 𝑗 ∈ 𝑉𝑐, we obtain by

(66) and (67),

𝑈
𝑖
= 0, 𝑈̃

𝑖
̸= 0, 𝑈

𝑗
̸= 0 for some (𝑖, 𝑗) ∈ 𝑉 (𝐻) .

(70)

Moreover, by (21), (22), and (68),

𝐷
𝑖
(𝑈
𝑖
, 𝑈̃
𝑖
)

= 𝑅
𝑖
=
𝑅
𝑖

𝑅
𝑗

𝐷
𝑗
(𝐴
𝑗
, 𝐵
𝑗
) ≤ 𝜆𝑑 (𝐴, 𝐵) ∀𝑈̃ ∈ 𝐹 (𝐵) .

(71)

Case 2 (𝑈
𝑖
̸= 0 and 𝑈̃

𝑖
= 0 for every 𝑈̃ ∈ 𝐹(𝐵)). In this case,

𝐸
𝑖
(𝐴) ̸= 0 and 𝐸

𝑖
(𝐵) = 0 by (66). Choose some (𝑖, 𝑗) ∈ 𝐸

𝑖
(𝐴).

Therefore, 𝐴
𝑗

̸= 0, 𝐵
𝑗
= 0, and for ] ∈ 𝐼 such that 𝑗 ∈ 𝑉], one

has 𝜇 < ]. By conditions (G)(i) and (G)(iii), one has 𝑗 ∈ 𝑉𝑒
and 𝐵

𝑖
̸= 0. By (66), (67) and since 𝐵

𝑖
̸= 0, one has

𝑈
𝑖
̸= 0, 𝑈̃

𝑖
= 0 and one of the following situations hold:

(i) there is no 𝑘 ∈ 𝑉 (𝐻) such that (𝑘, 𝑖) ∈ 𝐸 (𝐻) ;

(ii) ∀𝑘 ∈ 𝑉 (𝐻) such that (𝑘, 𝑖) ∈ 𝐸 (𝐻) ,

𝑈̃
𝑘

̸= 0 ∀𝑈̃ ∈ 𝐹 (𝐵) .

(72)

Also, by (21), (22), and (68),

𝐷
𝑖
(𝑈
𝑖
, 𝑈̃
𝑖
)

= 𝑅
𝑖
=
𝑅
𝑖

𝑅
𝑗

𝐷
𝑗
(𝐴
𝑗
, 𝐵
𝑗
) ≤ 𝜆𝑑 (𝐴, 𝐵) ∀𝑈̃ ∈ 𝐹 (𝐵) .

(73)
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Case 3 (𝑈
𝑖
̸= 0 and 𝑈̃

𝑖
̸= 0 for every 𝑈̃ ∈ 𝐹(𝐵)). In this case,

𝑈
𝑖
= 𝑈
𝑒

𝑖
(𝐴, 𝑃) for some 0 ̸= 𝑃 ⊂ 𝐸

𝑖
(𝐴), and𝐸

𝑖
(𝐵) ̸= 0 by (66).

If 𝑃 ⊂ 𝐸
𝑖
(𝐵), one has by (21), (59), and (68),

𝐷
𝑖
(𝑈
𝑒

𝑖
(𝐴, 𝑃) , 𝑈

𝑒

𝑖
(𝐵, 𝑃))

= 𝐷
𝑖
( ⋃
(𝑖,𝑗)∈𝑃

𝑇
𝑖,𝑗
(𝐴
𝑗
) , ⋃
(𝑖,𝑗)∈𝑃

𝑇
𝑖,𝑗
(𝐵
𝑗
))

≤ max
(𝑖,𝑗)∈𝑃

𝐷
𝑖
(𝑇
𝑖,𝑗
(𝐴
𝑗
) , 𝑇
𝑖,𝑗
(B
𝑗
))

≤ max
(𝑖,𝑗)∈𝑃

𝜆
𝑖,𝑗
𝐷
𝑗
(𝐴
𝑗
, 𝐵
𝑗
) ≤ 𝜆𝑑 (𝐴, 𝐵) .

(74)

If 𝑃 ̸⊂ 𝐸
𝑖
(𝐵), choose some (𝑖, 𝑗) ∈ 𝑃 \ 𝐸

𝑖
(𝐵). So, 𝐴

𝑗
̸= 0,

𝐵
𝑗
= 0, and, for ] ∈ 𝐼 such that 𝑗 ∈ 𝑉], one has 𝜇 < ]. Thus,

by (21), (22), and (68),

𝐷
𝑖
(𝑈
𝑖
, 𝑈̃
𝑖
) ≤ 𝑅 =

𝑅

𝑅
𝑗

𝐷
𝑗
(𝐴
𝑗
, 𝐵
𝑗
) ≤ 𝜆𝑑 (𝐴, 𝐵) ∀𝑈̃ ∈ 𝐹 (𝐵) .

(75)

Combining (74) and (75), for𝑈
𝑖
= 𝑈
𝑒

𝑖
(𝐴, 𝑃) for some 𝑃 ⊂

𝐸
𝑖
(𝐴), we choose 𝑈̃

𝑖
∈ 𝐹
𝑖
(𝐵) such that

𝑈̃
𝑖
= {

𝑈
𝑒

𝑖
(𝐵, 𝑃) , if 𝑃 ⊂ 𝐸

𝐶 (𝐴) ∩ 𝐸𝐶 (𝐵) ,

𝑈̃
𝑖
, otherwise, with some 𝑈̃

𝑖
∈ 𝐹
𝑖 (𝐵) ;

(76)

and we get

𝐷
𝑖
(𝑈
𝑖
, 𝑈̃
𝑖
) ≤ 𝜆𝑑 (𝐴, 𝐵) . (77)

Step 2 (𝑖 ∈ 𝑉(𝐶) for some 𝐶 ∈ 𝐶(𝐻)). Let 𝜇 ∈ 𝐼 be such that
𝑖 ∈ 𝑉
𝜇
.

Case 4 (𝑈
𝑖
= 0 and 𝑈̃

𝑖
̸= 0 for every 𝑈̃ ∈ 𝐹(𝐵)). In this case,

𝐴
𝑖
= 𝐸
𝐶
(𝐴) = 0 and 𝐵

𝑖
∪ 𝐸
𝐶
(𝐵) ̸= 0 by (67).

If 𝐵
𝑖

̸= 0, by condition (G)(ii)(b), there exist 𝑘 ∈ 𝑉(𝐶)

and 𝑗 ∈ 𝑉(𝐻) such that (𝑘, 𝑗) ∈ 𝐸(𝐻) and𝐴
𝑗

̸= 0. So, (𝑘, 𝑗) ∈
𝐸
𝐶
(𝐴). This contradicts the fact that 𝐸

𝐶
(𝐴) = 0.

If 𝐸
𝐶
(𝐵) ̸= 0, by (60), there exist 𝑘 ∈ 𝑉(𝐶) and 𝑗 ∈ 𝑉(𝐻)\

𝑉(𝐶) such that (𝑘, 𝑗) ∈ 𝐸(𝐻) and 𝐵
𝑗

̸= 0 and, for ] ∈ 𝐼 such
that 𝑗 ∈ 𝑉], one has 𝜇 < ]. Since 𝐸

𝐶
(𝐴) = 0, 𝐴

𝑗
= 0. If

𝑗 ∈ 𝑉
𝑒, by condition (G)(ii)(a), there exists 𝑙 ∈ 𝑉(𝐻) such

that (𝑗, 𝑙) ∈ 𝐸(𝐻) and 𝐴
𝑙

̸= 0. So, 𝐸
𝑗
(𝐴) ̸= 0, and 𝑈

𝑗
̸= 0

by (66). On the other hand, if 𝑗 ∈ 𝑉(𝐶) for some 𝐶 ∈ 𝐶(𝐻),
by condition (G)(ii)(b), there exist𝑚 ∈ 𝑉(𝐶), 𝑙 ∈ 𝑉(𝐻) such
that (𝑚, 𝑙) ∈ 𝐸(𝐻) and 𝐴

𝑙
̸= 0. So, 𝐸

𝐶̂
(𝐴) ̸= 0 and 𝑈

𝑗
̸= 0 by

(67). Thus, for the case 𝑗 ∈ 𝑉𝑒 and the case 𝑗 ∈ 𝑉𝑐, we obtain

𝑈
𝑖
= 0, 𝑈̃

𝑖
̸= 0, 𝑈

𝑗
̸= 0 for some (𝑘, 𝑗) ∈ 𝐸

𝐶 (𝐵) .

(78)

Moreover, by (21), (22), and (68),

𝐷
𝑖
(𝑈
𝑖
, 𝑈̃
𝑖
)

= 𝑅
𝑖
=
𝑅
𝑖

𝑅
𝑗

𝐷
𝑗
(𝐴
𝑗
, 𝐵
𝑗
) ≤ 𝜆𝑑 (𝐴, 𝐵) ∀𝑈̃ ∈ 𝐹 (𝐵) .

(79)

Case 5 (𝑈
𝑖
̸= 0 and 𝑈̃

𝑖
= 0 for every 𝑈̃ ∈ 𝐹(𝐵)). In this case,

𝐴
𝑖
∪ 𝐸
𝐶
(𝐴) ̸= 0 and 𝐵

𝑖
∪ 𝐸
𝐶
(𝐵) = 0 by (67). From condition

(G)(iii), we deduce that 𝐴
𝑖
= 𝐵
𝑖
= 0. Let (𝑘, 𝑗) ∈ 𝐸

𝐶
(𝐴). One

has 𝐴
𝑗

̸= 0 and 𝐵
𝑗
= 0 since (𝑘, 𝑗) ∉ 𝐸

𝐶
(𝐵). By condition

(G)(iii), 𝑗 ∈ 𝑉𝑒 and 𝐵
𝑘

̸= 0 since (𝑘, 𝑗) ∈ 𝐸(𝐻). This implies
that 𝐵

𝑖
̸= 0 by condition (Xii) since 𝑖, 𝑘 ∈ 𝑉(𝐶). This is a

contradiction. Thus,

𝑈
𝑖
̸= 0, 𝑈̃

𝑖
= 0 ∀𝑈̃ ∈ 𝐹 (𝐵) is impossible. (80)

Case 6 (𝑈
𝑖
̸= 0 and 𝑈̃

𝑖
̸= 0 for every 𝑈̃ ∈ 𝐹(𝐵)). In this case,

𝐴
𝑖
∪ 𝐸
𝐶
(𝐴) ̸= 0 and 𝐵

𝑖
∪ 𝐸
𝐶
(𝐵) ̸= 0 by (67).

If 𝐴
𝑖

̸= 0, by condition (G)(iii), 𝐵
𝑖

̸= 0. So 𝑊
𝑖
(𝐴) ̸= 0,

𝑊
𝑖
(𝐵) ̸= 0, and, by (21), (64), and (68),

𝐷
𝑖
(𝑊
𝑖 (𝐴) ,𝑊𝑖 (𝐵))

= 𝐷
𝑖
( ⋃
(𝑖,𝑗)∈𝐸(𝐶)

𝑇
𝑖,𝑗
(𝐴
𝑗
) , ⋃
(𝑖,𝑗)∈𝐸(𝐶)

𝑇
𝑖,𝑗
(𝐵
𝑗
))

≤ max
(𝑖,𝑗)∈𝐸(𝐶)

𝐷
𝑖
(𝑇
𝑖,𝑗
(𝐴
𝑗
) , 𝑇
𝑖,𝑗
(𝐵
𝑗
))

≤ max
(𝑖,𝑗)∈𝐸(𝐶)

𝜆
𝑖,𝑗
𝐷
𝑗
(𝐴
𝑗
, 𝐵
𝑗
)

≤ 𝜆 max
(𝑖,𝑗)∈𝐸(𝐶)

𝐷
𝑗
(𝐴
𝑗
, 𝐵
𝑗
) ≤ 𝜆𝑑 (𝐴, 𝐵) .

(81)

If 𝐸
𝐶
(𝐴) ̸= 0, for 0 ̸= 𝑃 ⊂ 𝐸

𝐶
(𝐴) such that 𝑃 ⊂ 𝐸

𝐶
(𝐵),

one has by (21), (62), (63), (68), and (69),

𝐷
𝑖
(𝑈
𝑐

𝑖
(𝐴, 𝑃) , 𝑈

𝑐

𝑖
(𝐵, 𝑃))

= 𝐷
𝑖
( ⋃
(𝑘,𝑗)∈𝑃

𝑇
𝑖→𝑘

∘ 𝑇
𝑘,𝑗
(𝐴
𝑗
) , ⋃
(𝑘,𝑗)∈𝑃

𝑇
𝑖→𝑘

∘ 𝑇
𝑘,𝑗
(𝐵
𝑗
))

≤ max
(𝑘,𝑗)∈𝑃

𝜆
𝑖→𝑘

𝐷
𝑘
(𝑇
𝑘,𝑗
(𝐴
𝑗
) , 𝑇
𝑘,𝑗
(𝐵
𝑗
))

≤ max
(𝑘,𝑗)∈𝑃

𝜆
𝑖→𝑘

𝜆
𝑘,𝑗
𝐷
𝑗
(𝐴
𝑗
, 𝐵
𝑗
)

≤ 𝜆 max
(𝑘,𝑗)∈𝑃

𝐷
𝑗
(𝐴
𝑗
, 𝐵
𝑗
) ≤ 𝜆𝑑 (𝐴, 𝐵) .

(82)

If 𝑃 ⊂ 𝐸
𝐶
(𝐴) and 𝑃 ̸⊂ 𝐸

𝐶
(𝐵), there exists (𝑘, 𝑗) ∈ 𝑃 such that

𝐴
𝑗

̸= 0, 𝐵
𝑗
= 0 and, for ] ∈ 𝐼 such that 𝑗 ∈ 𝑉], one has 𝜇 < ].

Hence, by (21), (22), and (68),

𝐷
𝑖
(𝑈
𝑖
, 𝑈̃
𝑖
) ≤ 𝑅 =

𝑅

𝑅
𝑗

𝐷
𝑗
(𝐴
𝑗
, 𝐵
𝑗
) ≤ 𝜆𝑑 (𝐴, 𝐵) ∀𝑈̃ ∈ 𝐹 (𝐵) .

(83)
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Combining (67), (81), (82), and (83), we choose 𝑈̃
𝑖
∈ 𝐹
𝑖
(𝐵)

such that

𝑈̃
𝑖
=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑊
𝑖 (𝐵) , if 𝑈

𝑖
= 𝑊
𝑖 (𝐴) ,

𝑈
𝑐

𝑖
(𝐵, 𝑃) , if 𝑈

𝑖
= 𝑈
𝑐

𝑖
(𝐴, 𝑃)

for 0 ̸= 𝑃 ⊂ 𝐸
𝐶 (𝐴) ∩ 𝐸𝐶 (𝐵) ,

𝑊
𝑖 (𝐵) ∪ 𝑈

𝑐

𝑖
(𝐵, 𝑃) , if 𝑈

𝑖
= 𝑊
𝑖 (𝐴) ∪ 𝑈

𝑐

𝑖
(𝐴, 𝑃)

for 0 ̸= 𝑃 ⊂ 𝐸
𝐶 (𝐴) ∩ 𝐸𝐶 (𝐵) ,

𝑈̃
𝑖
, otherwise,

with some 𝑈̃
𝑖
∈ 𝐹
𝑖 (𝐵) ;

(84)

and we get

𝐷
𝑖
(𝑈
𝑖
, 𝑈̃
𝑖
) ≤ 𝜆𝑑 (𝐴, 𝐵) . (85)

Step 3 (choice of an appropriate 𝑈̃ ∈ 𝐹(𝐵)). Finally, we choose
𝑈̃ ∈ 𝐹(𝐵) as follows:

𝑈̃
𝑖
=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

0, if 𝑖 ∈ 𝑉𝑒, 𝐸
𝑖 (𝐵) = 0,

some 𝑈̃
𝑖
∈ 𝐹
𝑖 (𝐵) , if 𝑖 ∈ 𝑉𝑒, 𝑈

𝑖
= 0,

𝐸
𝑖 (𝐵) ̸= 0,

𝑈̃
𝑖
given by (76) , if 𝑖 ∈ 𝑉𝑒, 𝑈

𝑖
̸= 0,

𝐸
𝑖 (𝐵) ̸= 0,

0, if 𝑖 ∈ 𝑉 (𝐶) ,
𝐵
𝑖
∪ 𝐸
𝐶 (𝐵) = 0,

some 𝑈̃
𝑖
∈ 𝐹
𝑖 (𝐵) , if 𝑖 ∈ 𝑉 (𝐶) , 𝑈𝑖 = 0,

𝑈̃
𝑖
given by (84) , if 𝑖 ∈ 𝑉 (𝐶) , 𝑈𝑖 ̸= 0,

𝐵
𝑖
∪ 𝐸
𝐶 (𝐵) ̸= 0.

(86)

It follows from (70), (72), (78), and (80) that

(𝑈, 𝑈̃) ∈ 𝐸 (𝐺) . (87)

Finally, from (71), (73), (77), (79), and (85), we deduce that

𝑑 (𝑈, 𝑈̃) ≤ 𝜆𝑑 (𝐴, 𝐵) . (88)

Therefore, 𝐹 is a 𝐺-contraction.

Here is another property satisfied by themultivaluedmap
𝐹.

Lemma 15. Let 𝐹 : 𝑋 → 𝑋 be the multivalued map defined
above. Then, for every 𝐴0 ∈ 𝑋 and every {𝐴𝑛} 𝐺

1
-Picard

trajectory from 𝐴
0 converging to some 𝐴 ∈ 𝑋, there exists

𝑁 ∈ N such that (𝐴𝑛, 𝐴) ∈ 𝐸(𝐺) for all 𝑛 > 𝑁.

Proof. Let 𝐴0 ∈ 𝑋 and {𝐴
𝑛
} a 𝐺

1
-Picard trajectory from

𝐴
0 such that 𝐴𝑛 → 𝐴. Thus, there exists 𝑁 ∈ N such

that 𝑑(𝐴𝑛, 𝐴) < 𝑅 for all 𝑛 > 𝑁. So, by (21) and (22),
𝐴
𝑛
= (𝐴
𝑛

1
, . . . , 𝐴

𝑛

𝑝
) and 𝐴 = (𝐴

1
, . . . , 𝐴

𝑝
) are such that, for

all 𝑛 > 𝑁 and all 𝑖 ∈ 𝑉(𝐻),𝐴𝑛
𝑖
= 0 if and only if𝐴

𝑖
= 0. Thus,

(G)(i) is satisfied and (𝐴𝑛, 𝐴) ∈ 𝐸(𝐺) for all 𝑛 > 𝑁.

5. Attractor of an 𝐻-IFS and Elements of 𝐶(𝐻)

For𝐻 = (𝑉(𝐻), 𝐸(𝐻)) an MW-directed graph, and {𝑇
𝑖,𝑗
}
𝐻
a

graph-directed iterated function system over the graph𝐻, we
consider𝐾 the attractor of this𝐻-IFS insured byTheorem 6.
Wewant to getmore information on𝐾 by taking into account
the connected components of𝐻.

Theorem 16. Let 𝐻 = (𝑉(𝐻), 𝐸(𝐻)) be an MW-directed
graph. Let {𝑇

𝑖,𝑗
}
𝐻
be an 𝐻-IFS and 𝐾 its attractor. Then the

following statements hold.

(1) For every 𝐶 ∈ 𝐶(𝐻), there exists 𝐾+(𝐶) ⊂ 𝐾 such that

(a) 𝐾+
𝑖
(𝐶) ̸= 0 for every 𝑖 ∈ 𝑉(𝐶);

(b) 𝐾+
𝑖
(𝐶) ̸= 0 for every 𝑖 ∈ [𝐶]

←
, where [𝐶]

←
is

defined in (19).
(c) 𝐾+
𝑖
(𝐶) = 0 for every 𝑖 ∉ [𝐶]

←
.

(2) If𝐶
1
, 𝐶
2
∈ 𝐶(𝐻) are such that𝐶

1
⪯ 𝐶
2
, then𝐾+(𝐶

1
) ⊂

𝐾
+
(𝐶
2
).

(3) If 𝐶
1
, 𝐶
2
∈ 𝐶(𝐻) are incomparable, then

𝐾
+

𝑖
(𝐶
1
) ∩ 𝐾
+

𝑖
(𝐶
2
) = 0 ∀𝑖 ∉ ([𝐶

1
]
←
) ∩ ([𝐶

2
]
←
) . (89)

(4) There exists 𝐾− ∈ 𝑋 such that 𝐾− ⊂ 𝐾 and

(a) for every 𝐶 ∈ 𝐶(𝐻), 𝐾−
𝑖
= 𝐾
+

𝑖
(𝐶) for every 𝑖 ∈

𝑉(𝐶) and 𝐾−
𝑖
⊂ 𝐾
+

𝑖
(𝐶) for every 𝑖 ∈ [𝐶]

←
;

(b) if 𝐶
1
, 𝐶
2
∈ 𝐶(𝐻) are such that 𝐶

1
⪯ 𝐶
2
, then

𝐾
−

𝑖
⊂ 𝐾
+

𝑖
(𝐶
1
) ⊂ 𝐾

+

𝑖
(𝐶
2
) ∀𝑖 ∈ [𝐶

1
]
←
; (90)

(c) if 𝐶
1
, 𝐶
2
∈ 𝐶(𝐻) are incomparable, then,

𝐾
−

𝑖
⊂ 𝐾
+

𝑖
(𝐶
1
) ∩ 𝐾
+

𝑖
(𝐶
2
) ∀𝑖 ∈ ([𝐶

1
]
←
) ∩ ([𝐶

2
]
←
) . (91)

Proof. (1) Let 𝐹 : 𝑋 → 𝑋 be the multivalued map defined
in (65), (66), and (67). We know that 𝐹 is a 𝐺-contraction by
Proposition 14. Also, it follows from Lemma 15 that 𝐹 satisfies
condition (ii) of Theorem 9.

Theorem 6 and the definition of 𝐹 imply that fixed points
of 𝐹 are included in𝐾.

Let 𝐶 ∈ 𝐶(𝐻). We want to show that there exists𝐾+(𝐶) a
fixed point of 𝐹 satisfying the required properties. Fix

𝐴
0
= (𝐴
0

1
, . . . , 𝐴

0

𝑝
) ∈ 𝑋 such that 𝐴0

𝑖
̸= 0 ⇐⇒ 𝑖 ∈ 𝑉 (𝐶) .

(92)

For 𝑛 ∈ N ∪ {0}, we choose inductively

𝐴
𝑛+1

∈ 𝐹 (𝐴
𝑛
) the biggest element of 𝐹 (𝐴𝑛) . (93)

That is, by (66) and (67), 𝐴𝑛+1 = (𝐴𝑛+1
1
, . . . , 𝐴

𝑛+1

𝑝
) ∈ 𝐹(𝐴

𝑛
) is

chosen as follows.



10 Abstract and Applied Analysis

For 𝑖 ∈ 𝑉𝑒,

𝐴
𝑛+1

𝑖
= {

0, if 𝐸
𝑖
(𝐴
𝑛
) = 0;

𝑈
𝑒

𝑖
(𝐴
𝑛
, 𝐸
𝑖
(𝐴
𝑛
)) , if 𝐸

𝑖
(𝐴
𝑛
) ̸= 0,

(94)

where 𝐸𝑒
𝑖
and 𝑈𝑒

𝑖
are defined in (58) and (59), respectively.

For 𝑖 ∈ 𝑉(𝐶) for some 𝐶 ∈ 𝐶(𝐻),

𝐴
𝑛+1

𝑖

=

{{

{{

{

0, if 𝐴𝑛
𝑖
= 𝐸
𝐶̂
(𝐴
𝑛
) = 0;

𝑈
𝑐

𝑖
(𝐴
𝑛
, 𝐸
𝐶̂
(𝐴
𝑛
)) , if 𝐴𝑛

𝑖
= 0, 𝐸

𝐶̂
(𝐴
𝑛
) ̸= 0;

𝑊
𝑖
(𝐴
𝑛
) ∪ 𝑈
𝑐

𝑖
(𝐴
𝑛
, 𝐸
𝐶̂
(𝐴
𝑛
)) , if 𝐴𝑛

𝑖
̸= 0,

(95)

where 𝐸
𝐶̂
, 𝑈𝑐
𝑖
, and 𝑊

𝑖
are defined in (60), (63), and (64),

respectively.
Arguing as in the proof of Proposition 14, one has that

(𝐴
𝑛−1
, 𝐴
𝑛
) ∈ 𝐸(𝐺) and

𝑑 (𝐴
𝑛
, 𝐴
𝑛+1
) ≤ 𝜆𝑑 (𝐴

𝑛−1
, 𝐴
𝑛
) ∀𝑛 ∈ N. (96)

By Theorem 9, {𝐴𝑛} is a 𝐺
1
-Picard trajectory converging to

some𝐾+(𝐶) ∈ 𝑋 a fixed point of 𝐹.
Observe that, for every 𝑛 ∈ N and every 𝑖 ∈ 𝑉(𝐶),𝐴𝑛

𝑖
̸= 0.

Therefore,

𝐾
+

𝑖
(𝐶) ̸= 0 ∀𝑖 ∈ 𝑉 (𝐶) . (97)

Similarly, observe that, by construction, 𝐴𝑛
𝑖
= 0 for every 𝑖 ∉

[𝐶]
←
. Indeed, for such 𝑖, 𝐸

𝑖
(𝐴
𝑛−1
) = 0 if 𝑖 ∈ 𝑉𝑒, and 𝐴𝑛−1

𝑖
=

𝐸
𝐶̂
(𝐴
𝑛−1
) = 0 if 𝑖 ∈ 𝑉(𝐶) for some 𝐶 ∈ 𝑉(𝐶). Thus,

𝐾
+

𝑖
(𝐶) = 0 ∀𝑖 ∉ [𝐶]← . (98)

On the other hand, let

𝑁
𝐶
= max
𝑖∈[𝐶]←

{min {𝑁 : 𝑖 = 𝑖
0
, 𝑖
𝑁
∈ 𝑉 (𝐶) ,

[𝑖
𝑘
]
𝑁

0
is a path in 𝐻 from 𝑖 to 𝑖

𝑁
}} .

(99)

Again by construction,𝐴𝑛
𝑖
̸= 0 for all 𝑛 > 𝑁

𝐶
, for all 𝑖 ∈ [𝐶]

←
.

So,

𝐾
+

𝑖
(𝐶) ̸= 0 ∀𝑖 ∈ [𝐶]← . (100)

Finally, observe that 𝐾+(𝐶) is independent of 𝐴0 ⊂ 𝑋

chosen as in (92). Indeed, for

𝐴
0
= (𝐴
0

1
, . . . , 𝐴

0

𝑝
) ∈ 𝑋 such that 𝐴0

𝑖
̸= 0 ⇐⇒ 𝑖 ∈ 𝑉 (𝐶) ,

(101)

we define inductively 𝐴𝑛+1 ∈ 𝐹(𝐴
𝑛
) as in (93). Observe

that (𝐴𝑛, 𝐴𝑛) ∈ 𝐸(𝐺) for all 𝑛 ∈ N ∪ {0}. Arguing as in
Proposition 14, one has

𝑑 (𝐴
𝑛+1
, 𝐴
𝑛+1
) ≤ 𝜆𝑑 (𝐴

𝑛
, 𝐴
𝑛
) ∀𝑛 ∈ N. (102)

This inequality combined with the fact that 𝐴𝑛 → 𝐾
+
(𝐶)

implies that 𝐴𝑛 → 𝐾
+
(𝐶).

(2) Let 𝐶
1
, 𝐶
2
∈ 𝐶(𝐻) be such that 𝐶

1
⪯ 𝐶
2
. One has

{𝑖 ∈ [𝐶
1
]
←
} ⊂ {𝑖 ∈ [𝐶

2
]
←
} . (103)

Let 𝐵0 = (𝐵0
1
, . . . , 𝐵

0

𝑝
) ∈ 𝑋 be such that

𝐵
0

𝑗
= {

𝐾
+

𝑗
(𝐶
2
) , if 𝑗 ∈ [𝐶

1
]
←
,

0, if 𝑗 ∉ [𝐶
1
]
←
.

(104)

By (1) and (G)(i), one has (𝐾+(𝐶
1
), 𝐵
0
) ∈ 𝐸(𝐺) and𝐾+(𝐶

1
) ∈

𝐹(𝐾
+
(𝐶
1
)). Let 𝐵1 be the biggest element in 𝐹(𝐵

0
); that is,

𝐵
1 is chosen similarly to (94) and (95). Observe that 𝐵1 ⊂
𝐾
+
(𝐶
2
), since 𝐵0 ⊂ 𝐾

+
(𝐶
2
), 𝐾+(𝐶

2
) ∈ 𝐹(𝐾

+
(𝐶
2
)), and by

the definitions of 𝐹 and 𝐾+(𝐶
2
). Arguing as in the proof of

Proposition 14, one has (𝐾+(𝐶
1
), 𝐵
1
) ∈ 𝐸(𝐺) and

𝑑 (𝐾
+
(𝐶
1
) , 𝐵
1
) ≤ 𝜆𝑑 (𝐾

+
(𝐶
1
) , 𝐵
0
) . (105)

Repeating this argument, we obtain {𝐵𝑛} a 𝐺
1
-Picard trajec-

tory from 𝐵
0 such that

𝐵
𝑛
⊂ 𝐾
+
(𝐶
2
) , 𝑑 (𝐾

+
(𝐶
1
) , 𝐵
𝑛
) ≤ 𝜆
𝑛
𝑑 (𝐾
+
(𝐶
1
) , 𝐵
0
)

∀𝑛 ∈ N.

(106)

Therefore, 𝐵𝑛 → 𝐾
+
(𝐶
1
) and

𝐾
+
(𝐶
1
) ⊂ 𝐾

+
(𝐶
2
) . (107)

(3) If 𝐶
1
, 𝐶
2
∈ 𝐶(𝐻) are incomparable, it follows directly

from (1)(c) that

𝐾
+

𝑖
(𝐶
1
) ∩ 𝐾
+

𝑖
(𝐶
2
) = 0 ∀𝑖 ∉ ([𝐶

1
]
←
) ∩ ([𝐶

2
]
←
) . (108)

(4) For every 𝐶 ∈ 𝐶(𝐻), 𝐶 = (𝑉(𝐶), 𝐸(𝐶)) is an MW-
directed graph and

{𝑇
𝑖,𝑗
: (𝑖, 𝑗) ∈ 𝐸 (𝐶)} (109)

is a graph-directed iterated function system over the graph𝐶.
Let

𝐾
−
(𝐶) = (𝐾

−

𝑖
)
𝑖∈𝑉(𝐶)

(110)

be the attractor of this graph-directed iterated system insured
byTheorem 6.

We define 𝐾− ∈ 𝑋 by

𝐾
−
= (𝐾
−

1
, . . . , 𝐾

−

𝑝
) , where

𝐾
−

𝑖
= {

𝐾
−

𝑖
(𝐶) , if 𝑖 ∈ 𝑉 (𝐶) for some 𝐶 ∈ 𝐶 (𝐻) ,

0, if 𝑖 ∈ 𝑉𝑒.

(111)
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Figure 3: An MW-graph𝐻 with 𝐶(𝐻) = {𝐶
1
, 𝐶
2
}.

Let 𝐶 ∈ 𝐶(𝐻) and {𝐴𝑛} the 𝐺
1
-Picard trajectory from 𝐴

0

defined in (92) and (93). By (95), for all 𝑛 ∈ N, 𝐸
𝐶
(𝐴
𝑛−1
) = 0

and 𝐴𝑛
𝑖
= 𝑊
𝑖
(𝐴
𝑛−1
) for all 𝑖 ∈ 𝑉(𝐶). So, using (64) and (67)

and the fact that 𝐴𝑛
𝑖
→ 𝐾

+

𝑖
(𝐶) ∈ 𝐹

𝑖
(𝐾
+
(𝐶)) for every 𝑖 ∈

𝑉(𝐶), we deduce that

𝐾
+

𝑖
(𝐶) = ⋃

(𝑖,𝑗)∈𝐸(𝐶)

𝑇
𝑖,𝑗
(𝐾
+

𝑗
(𝐶)) ∀𝑖 ∈ 𝑉 (𝐶) . (112)

By definition of 𝐾−,

𝐾
−

𝑖
= ⋃
(𝑖,𝑗)∈𝐸(𝐶)

𝑇
𝑖,𝑗
(𝐾
−

𝑗
) ∀𝑖 ∈ 𝑉 (𝐶) . (113)

The uniqueness of the fixed point of this operator implies that

𝐾
+

𝑖
(𝐶) = 𝐾

−

𝑖
∀𝑖 ∈ 𝑉 (𝐶) . (114)

On the other hand, if 𝑖 ∈ 𝑉
𝑒
∩ [𝐶]
←
, one has 0 = 𝐾

−

𝑖
⊂

𝐾
+

𝑖
(𝐶). If 𝑖 ∈ 𝑉(𝐶) ∩ [𝐶]

←
for some 𝐶 ̸= 𝐶 ∈ 𝐶(𝐻), then 𝐶 ⪯

𝐶. It follows from (114) and (2) that𝐾−
𝑖
= 𝐾
+

𝑖
(𝐶) ⊂ 𝐾

+

𝑖
(𝐶).

The properties (4)(b) and (4)(c) follow directly from (2)

and (4)(a).

Example 17. Let𝐻 be the MW-graph of Figure 3.
We consider the𝐻-IFS, {𝑇

𝑖,𝑗
}
𝐻
, with the metric spaces:

𝑋
1
= [1, 2] × [0, 1] , 𝑋

2
= [2, 3] × [0, 1] ,

𝑋
3
= [1, 2] × [1, 2] , 𝑋

4
= [2, 3] × [1, 2] ,

𝑋
5
= [0, 1] × [0, 1] , 𝑋

6
= [−1, 0] × [0, 1] ,

𝑋
7
= [0, 1] × [1, 2] , 𝑋

8
= [−1, 0] × [1, 2] ,

(115)

X6 X5 X1 X2

X8 X7
X3

X4

Figure 4: The set 𝐾+(𝐶
2
).

and the contractions:

𝑇
1,2 (𝑥) = 𝑀1𝑥 + (

−2

5
,
1

5
) , 𝑇

1,3 (𝑥) = 𝑀1𝑥 + (
1

5
,
−4

5
) ,

𝑇
1,4 (𝑥) = 𝑀3𝑥 + (

−1

3
,
−1

3
) , 𝑇

2,1 (𝑥) = 𝑀2𝑥 + (
14

8
,
3

8
) ,

𝑇
3,1 (𝑥) = 𝑀2𝑥 + (

3

8
, 1) , 𝑇

4,1 (𝑥) = 𝑀4𝑥 + (
5

4
,
5

4
) ,

𝑇
5,1 (𝑥) = 𝑀4𝑥 + (

−2

4
,
1

4
) , 𝑇

5,2 (𝑥) = 𝑀3𝑥 + (−1, 0) ,

𝑇
5,6 (𝑥) = 𝑀1𝑥 + (1, 0) , 𝑇

5,7 (𝑥) = 𝑀1𝑥 + (0,
−3

5
) ,

𝑇
5,8 (𝑥) = 𝑀3𝑥 + (

2

3
,
−2

3
) , 𝑇

6,5 (𝑥) = 𝑀2𝑥 + (
−5

8
, 0) ,

𝑇
7,5 (𝑥) = 𝑀2𝑥 + (0,

11

8
) , 𝑇

8,5 (𝑥) = 𝑀4𝑥 + (−1, 1) ,

(116)

where

𝑀
1
= (

4

5
0

0
4

5

) , 𝑀
2
= (

5

8
0

0
5

8

) ,

𝑀
3
= (

2

3
0

0
2

3

) , 𝑀
4
= (

3

4
0

0
3

4

) .

(117)

Figures 4 and 5 present𝐾+(𝐶
2
) and𝐾−, respectively.

6. Attractor of an 𝐻-IFS and Subsets of 𝐶(𝐻)

We obtain other pieces of information on the attractor of
the graph-directed iterated function system by considering
subsets of 𝐶(𝐻).
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X6 X5 X1 X2

X8 X7 X3 X4

Figure 5: The set 𝐾−.

Theorem 18. Let 𝐻 = (𝑉(𝐻), 𝐸(𝐻)) be an MW-directed
graph. Let {𝑇

𝑖,𝑗
}
𝐻
be an 𝐻-IFS and 𝐾 its attractor. Then the

following statements hold:

(1) for every S ⊂ 𝐶(𝐻), there exists 𝐾+(S) ⊂ 𝐾 such that

(a) 𝐾+(𝐶) ⊂ 𝐾+(S) for every 𝐶 ∈ S;
(b) 𝐾+
𝑖
(𝐶) = 𝐾

+

𝑖
(S) for every 𝑖 ∈ 𝑉(𝐶) and every

maximal element 𝐶 ∈ S;
(c) 𝐾+
𝑖
(S) ̸= 0 if and only if 𝑖 ∈ ⋃

𝐶∈S[𝐶]←

(2) if S
1
,S
2
⊂ 𝐶(𝐻) are such that, for every 𝐶

1
∈ S
1
,

there exists𝐶
2
∈ S
2
such that𝐶

1
⪯ 𝐶
2
, then𝐾+(S

1
) ⊂

𝐾
+
(S
2
),

(3) for S
1
,S
2
⊂ 𝐶(𝐻), one has

𝐾
+
(S
1
) ∩ 𝐾
+
(S
2
) = 0

𝑖𝑓 ( ⋃
𝐶∈S1

[𝐶]←) ∩ ( ⋃
𝐶∈S2

[𝐶]←) = 0
(118)

(4) the attractor 𝐾 is such that 𝐾 = 𝐾
+
(𝐶(𝐻)).

Proof. (1) By Proposition 14 and Lemma 15, the map 𝐹 :

𝑋 → 𝑋 defined in (65), (66), and (67) is a 𝐺-contraction
satisfying condition (ii) of Theorem 9. Also, from the proof
ofTheorem 16, we know that fixed points of 𝐹 are included in
𝐾.

Let S ⊂ 𝐶(𝐻). We want to show that there exists 𝐾+(S)
a fixed point of 𝐹 satisfying the required properties. Fix

𝐴
0
= (𝐴
0

1
, . . . , 𝐴

0

𝑝
) ∈ 𝑋 such that 𝐴0

𝑖
̸= 0 ⇐⇒ 𝑖 ∈ ⋃

𝐶∈S

𝑉 (𝐶) ,

𝐴
0

𝑖
= 𝐴
0

𝑖
if 𝑖 ∈ 𝑉 (𝐶) for 𝐶 ∈ S, where

𝐴
0 is defined in (92) .

(119)

For 𝑛 ∈ N ∪ {0}, we choose inductively

𝐴
𝑛+1

∈ 𝐹 (𝐴
𝑛
) the biggest element of 𝐹 (𝐴𝑛) . (120)

Arguing as in the proof ofTheorem 16, one deduces that {𝐴𝑛}
is a 𝐺

1
-Picard trajectory converging to some 𝐾+(S) ∈ 𝑋

a fixed point of 𝐹. Also, 𝐾+(S) is independent of 𝐴0 chosen
as in (119).

For 𝐶 ∈ S, observe that 𝐴𝑛 ⊂ 𝐴
𝑛 for all 𝑛 ∈ N ∪ {0},

where 𝐴𝑛 is defined in (92) and (93). Since 𝐴𝑛 → 𝐾
+
(S)

and 𝐴𝑛 → 𝐾
+
(𝐶), we deduce that

𝐾
+
(𝐶) ⊂ 𝐾

+
(S) . (121)

It follows from this inclusion andTheorem 16(1)(b) that

𝐾
+

𝑖
(S) ̸= 0 ∀𝑖 ∈ ⋃

𝐶∈S

[𝐶]← . (122)

On the other hand,

𝐴
𝑛

𝑖
= 0 ∀𝑖 ∉ ⋃

𝐶∈S

[𝐶]← , ∀𝑛 ∈ N. (123)

Thus, (1)(c) holds.
In the particular case where 𝐶 ∈ S is maximal, one has

𝐴
𝑛

𝑖
= 𝐴
𝑛

𝑖
∀𝑖 ∈ 𝑉 (𝐶) , ∀𝑛 ∈ N ∪ {0} , (124)

where 𝐴𝑛 is defined in (93). Since

𝐴
𝑛

𝑖
󳨀→ 𝐾

+

𝑖
(𝐶) , 𝐴

𝑛

𝑖
󳨀→ 𝐾

+

𝑖
(S) , (125)

one has

𝐾
+

𝑖
(𝐶) = 𝐾

+

𝑖
(S) ∀𝑖 ∈ 𝑉 (𝐶) . (126)

((2) and (3)) The proofs are, respectively, analogous to
those of (2) and (3) in Theorem 16.

(4) Let S = 𝐶(𝐻). Since 𝐾+(𝐶(𝐻)) is independent of the
choice of 𝐴0 in (119), we can fix

𝐴
0
= (𝐴
0

1
, . . . , 𝐴

0

𝑝
) ∈ 𝑋 such that

𝐴
0

𝑖
= {

𝐾
𝑖
, if 𝑖 ∈ 𝑉𝑐,

0, if 𝑖 ∈ 𝑉𝑒,

(127)

where𝑉𝑐 and𝑉𝑒 are defined in (24) and (25), respectively. Let
𝐴
𝑛 be defined as in (120).Weknow that𝐴𝑛 → 𝐾

+
(𝐶(𝐻)). On

the other hand, since 𝐾 is the unique attractor of this𝐻-IFS
obtained inTheorem 6, we deduce that𝐾 = 𝐾

+
(𝐶(𝐻)).

In the following result, we see that the maximal elements
of 𝐶(𝐻) play a key role.

Corollary 19. Let 𝐻 = (𝑉(𝐻), 𝐸(𝐻)) be an MW-directed
graph and {𝑇

𝑖,𝑗
}
𝐻
an 𝐻-IFS. Then, for every S

1
,S
2
⊂ 𝐶(𝐻)

such that

{𝐶 ∈ S
1
: 𝐶 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 S

1
}

= {𝐶 ∈ S
2
: 𝐶 𝑖𝑠 𝑎 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 S

2
} ,

(128)

one has

𝐾
+
(S
1
) = 𝐾

+
(S
2
) . (129)
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Proof. Let S ⊂ 𝐶(𝐻) and let

S
𝑚
= {𝐶 ∈ S : 𝐶 is a maximal element of S} . (130)

To conclude, it is sufficient to show that

𝐾
+
(S) = 𝐾

+
(S
𝑚
) . (131)

It follows fromTheorem 18(2) that

𝐾
+
(S) ⊂ 𝐾

+
(S
𝑚
) , 𝐾

+
(S
𝑚
) ⊂ 𝐾

+
(S) . (132)

7. Other Fixed Points of Our 𝐺-Contraction

In the proofs of Theorems 16 and 18, 𝐾+(𝐶) and 𝐾+(S) were
obtained as fixed points of the multivalued 𝐺-contraction 𝐹.
In fact, much more fixed points of 𝐹 can be obtained in order
to get more information on the attractor𝐾.

Let S ⊂ 𝐶(𝐻). For a vertex 𝑖 ∈ 𝑉𝑒, we consider the set of
edges from 𝑖 on a path to some vertex in S :

E
𝑖 (S)

=

{{{

{{{

{

0, if 𝑖 ∉ ⋃
𝐶∈S

[C]← ,

{(𝑖, 𝑗) ∈ 𝐸 (𝐻) : 𝑖, 𝑗 ∈ ⋃
𝐶∈S

[𝐶]←} , otherwise.

(133)

Similarly, for 𝐶 ∈ 𝐶(𝐻), we consider

E
𝐶̂
(S)

=

{{{{{{{{

{{{{{{{{

{

0, if 𝑉(𝐶) ̸⊂ ⋃
𝐶∈S

[C]← ,

{ (𝑖, 𝑗) ∈ 𝐸 (𝐻) : 𝑖 ∈ 𝑉 (𝐶) ,

𝑗 ∉ 𝑉 (𝐶) , 𝑗 ∈ ⋃
𝐶∈S

[𝐶]←} , otherwise.

(134)

Finally, we consider suitable subsets of edges on paths in 𝐻
reaching S, that is, subsets of E

𝑖
(S) and E

𝐶̂
(S),

Q (S) = {𝑄 = (𝑄
𝑖
)
𝑖∈𝑉
𝑒 × (𝑄𝐶̂)𝐶̂∈𝐶(𝐻) : 𝑄𝐶̂ ⊂ E

𝐶̂
(S)

∀𝐶 ∈ 𝐶 (𝐻) , ∀𝑖 ∈ 𝑉
𝑒
,

𝑄
𝑖
⊂ E
𝑖 (S) , 𝑄𝑖 ̸= 0 if E

𝑖 (S) ̸= 0} .

(135)

Using Q(S), we can obtain more information on 𝐾+(S).

Theorem 20. Let 𝐻 = (𝑉(𝐻), 𝐸(𝐻)) be an MW-directed
graph and {𝑇

𝑖,𝑗
}
𝐻

an 𝐻-IFS. Then, the following statements
hold.

(1) For every S ⊂ 𝐶(𝐻) and every 𝑄 ∈ Q(S), there exists
𝐾(S, 𝑄) ∈ 𝑋 such that

(a) 𝐾(S, 𝑄) ⊂ 𝐾+(S);
(b) 𝐾
𝑖
(S, 𝑄) ̸= 0 if and only if 𝑖 ∈ ⋃

𝐶∈S[𝐶]←;
(c) 𝐾
𝑖
(S, 𝑄) = 𝐾+

𝑖
(S) for every 𝑖 ∈ 𝑉(𝐶) and every

𝐶 ∈ Smaximal element in S.

(2) For every S ⊂ 𝐶(𝐻), if 𝑄,𝑄 ∈ Q(S) are such that
𝑄 ⊂ 𝑄, then 𝐾(S, 𝑄) ⊂ 𝐾(S, 𝑄).

(3) Let S
1
,S
2
⊂ 𝐶(𝐻) be such that S

1
⊂ S
2
. If 𝑄 ∈

Q(S
1
) ∩ Q(S

2
), then 𝐾(S

1
, 𝑄) ⊂ 𝐾(S

2
, 𝑄).

(4) Let S
1
,S
2
⊂ 𝐶(𝐻) be such that, for every 𝐶

1
∈ S
1
,

there exists 𝐶
2
∈ S
2
such that 𝐶

1
⪯ 𝐶
2
. If 𝑄1 ∈

Q(S
1
) and 𝑄2 ∈ Q(S

2
) are such that 𝑄1 ⊂ 𝑄

2, then
𝐾(S
1
, 𝑄
1
) ⊂ 𝐾(S

2
, 𝑄
2
).

(5) For every S ⊂ 𝐶(𝐻) and every 𝑄 ∈ Q(S), 𝐾−
𝑖
⊂

𝐾
𝑖
(S, 𝑄) for every 𝑖 ∈ 𝑉(𝐶) and every 𝐶 ∈ 𝐶(𝐻) such

that 𝑉(𝐶) ⊂ ⋃
𝐶∈S[𝐶]←.

Proof. (1) Let𝑄 ∈ Q(S). From Proposition 14 and Lemma 15,
𝐹 : 𝑋 → 𝑋 the multivalued map defined in (65), (66), and
(67) is a𝐺-contraction satisfying condition (ii) ofTheorem 9.
We want to show that there exists 𝐾(S, 𝑄) a fixed point of 𝐹
satisfying the required properties.

Fix

𝐴
𝑛
(S, 𝑄) = 𝐴

𝑛
∈ 𝑋 ∀𝑛 = 0, . . . , 𝑝, (136)

where 𝐴𝑛 is defined in (119) and (120). From the definition of
𝐹, we can observe that

𝐴
𝑝
(S, 𝑄) = (𝐴

𝑝

1
(S, 𝑄) , . . . , 𝐴

𝑝

𝑝
(S, 𝑄)) ∈ 𝑋 (137)

is such that

𝐴
𝑝

𝑖
(S, 𝑄) ̸= 0 ⇐⇒ 𝑖 ∈ ⋃

𝐶∈S

[𝐶]← . (138)

Moreover, for every 𝑖 ∈ 𝑉𝑒,

𝑄
𝑖
⊂ 𝐸
𝑖
(𝐴
𝑝
(S, 𝑄)) ∀𝑖 ∈ ⋃

𝐶∈S

[𝐶]← ,

𝑄
𝑖
= 𝐸
𝑖
(𝐴
𝑝
(S, 𝑄)) = 0 ∀𝑖 ∉ ⋃

𝐶∈S

[𝐶]← ,

(139)

where𝐸
𝑖
(𝐴
𝑝
(S, 𝑄)) is defined in (58). Similarly, for every𝐶 ∈

𝐶(H),

𝑄
𝐶̂
⊂ 𝐸
𝐶̂
(𝐴
𝑝
(S, 𝑄)) if 𝑉(𝐶) ⊂ ⋃

𝐶∈S

[𝐶]← ,

𝑄
𝐶̂
= 𝐸
𝐶̂
(𝐴
𝑝
(S, 𝑄)) = 0 if 𝑉(𝐶) ̸⊂ ⋃

𝐶∈S

[𝐶]← ,

(140)

where 𝐸
𝐶̂
(𝐴
𝑝
(S, 𝑄)) is defined in (60).

For 𝑛 > 𝑝, we choose inductively

𝐴
𝑛
(S, 𝑄) = (𝐴

𝑛

1
(S, 𝑄) , . . . , 𝐴

𝑛

𝑝
(S, 𝑄)) ∈ 𝐹 (𝐴

𝑛−1
(S, 𝑄))

(141)
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with

𝐴
𝑛

𝑖
(S, 𝑄)

=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

0, if 𝑖 ∉ ⋃
𝐶∈S

[𝐶]← ,

𝑈
𝑒

𝑖
(𝐴
𝑛−1

(S, 𝑄) , 𝑄𝑖) , if 𝑖 ∈ 𝑉𝑒 ∩ ⋃
𝐶∈S

[𝐶]← ,

𝑊
𝑖
(𝐴
𝑛−1

(S, 𝑄))

∪𝑈
𝑐

𝑖
(𝐴
𝑛−1

(S, 𝑄) , 𝑄
𝐶̂
) , if 𝐶 ∈ 𝐶 (𝐻) ,

𝑖 ∈ 𝑉 (𝐶) ∩ ⋃
𝐶∈S

[𝐶]← ,

(142)

where 𝑈𝑒
𝑖
, 𝑈c
𝑖
, and 𝑊

𝑖
are defined in (59), (63), and (64),

respectively.
Arguing as in the proof of Theorem 16, one deduces

that {𝐴𝑛(S, 𝑄)} is a 𝐺
1
-Picard trajectory converging to some

𝐾(S, 𝑄) ∈ 𝑋 a fixed point of 𝐹. So, 𝐾(S, 𝑄) satisfies
(1)(b). Again, it can be shown that 𝐾(S, 𝑄) is independent
of 𝐴0(S, 𝑄) chosen as in (136).

Observe that

𝐴
𝑛
(S, 𝑄)

= (𝐴
𝑛

1
(S, 𝑄) , . . . , 𝐴𝑛

𝑝
(S, 𝑄)) ⊂ 𝐴𝑛 = (𝐴𝑛

1
, . . . , 𝐴

𝑛

𝑝
) ∀𝑛,

(143)

where 𝐴𝑛 is defined in (120) and 𝐴𝑛 → 𝐾
+
(S). Moreover,

for every 𝐶maximal element in S, E
𝐶
(S) = 0 and

𝐴
𝑛

𝑖
(S, 𝑄) = 𝐴

𝑛

𝑖
∀𝑖 ∈ 𝑉 (𝐶) . (144)

Therefore, 𝐾(S, 𝑄) satisfies (1)(a),(c).
(2) Let 𝑄,𝑄 ∈ Q(S) be such that 𝑄 ⊂ 𝑄. From (141) and

(142), one sees that

𝐴
𝑛
(S, 𝑄) ⊂ 𝐴

𝑛
(S, 𝑄) ∀𝑛 ∈ N. (145)

Since 𝐴𝑛(S, 𝑄) → 𝐾(S, 𝑄) and 𝐴𝑛(S, 𝑄) → 𝐾(S, 𝑄), one
has that

𝐾 (S, 𝑄) ⊂ 𝐾 (S, 𝑄) . (146)

(3) Let S
1
,S
2
⊂ 𝐶(𝐻) be such that S

1
⊂ S
2
and let 𝑄 ∈

Q(S
1
) ∩ Q(S

2
). From (141) and (142), one sees that

𝐴
𝑛
(S
1
, 𝑄) ⊂ 𝐴

𝑛
(S
2
, 𝑄) ∀𝑛 ∈ N. (147)

Since 𝐴𝑛(S
1
, 𝑄) → 𝐾(S

1
, 𝑄) and 𝐴𝑛(S

2
, 𝑄) → 𝐾(S

2
, 𝑄),

one has that

𝐾(S
1
, 𝑄) ⊂ 𝐾 (S

2
, 𝑄) . (148)

(4) Let S
1
,S
2
⊂ 𝐶(𝐻) be such that, for every 𝐶

1
∈ S
1
,

there exists 𝐶
2
∈ S
2
such that 𝐶

1
⪯ 𝐶
2
. One has

{

{

{

𝑖 ∈ ⋃
𝐶1∈S1

[𝐶
1
]
←

}

}

}

⊂
{

{

{

𝑖 ∈ ⋃
𝐶2∈S2

[𝐶
2
]
←

}

}

}

. (149)

Let 𝑄1 ∈ Q(S
1
) and 𝑄2 ∈ Q(S

2
) be such that 𝑄1 ⊂ 𝑄2. Fix

𝐵
𝑝
(S
1
, 𝑄
1
) = (𝐵

𝑝

1
(S
1
, 𝑄
1
) , . . . , 𝐵

𝑝

𝑝
(S
1
, 𝑄
1
)) ∈ 𝑋 (150)

to be such that

𝐵
𝑝

𝑗
(S
1
, 𝑄
1
) =

{{{

{{{

{

𝐾
𝑗
(S
2
, 𝑄
2
) , if 𝑗 ∈ ⋃

𝐶1∈S1

[𝐶
1
]
←
,

0, if 𝑗 ∉ ⋃
𝐶1∈S1

[𝐶
1
]
←
.

(151)

One has (𝐾(S
1
, 𝑄
1
), 𝐵
𝑝
(S
1
, 𝑄
1
)) ∈ 𝐸(𝐺) and 𝐾(S

1
, 𝑄
1
) ∈

𝐹(𝐾(S
1
, 𝑄
1
)). For 𝑛 = 𝑝 + 1, we define

𝐵
𝑛
(S
1
, 𝑄
1
)

= (𝐵
𝑛

1
(S
1
, 𝑄
1
) , . . . , 𝐵

𝑛

𝑝
(S
1
, 𝑄
1
)) ∈ 𝐹 (𝐵

𝑝
(S
1
, 𝑄
1
))

(152)

by

𝐵
𝑛

𝑖
(S
1
, 𝑄
1
)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

0, if 𝑖 ∉ ⋃
𝐶∈S1

[𝐶]← ,

𝑈
𝑒

𝑖
(𝐵
𝑝
(S
1
, 𝑄
1
) , 𝑄
1

𝑖
) , if 𝑖 ∈ 𝑉𝑒 ∩ ⋃

𝐶∈S1

[𝐶]← ,

𝑊
𝑖
(𝐵
𝑝
(S
1
, 𝑄
1
))

∪𝑈
𝑐

𝑖
(𝐵
𝑝
(S
1
, 𝑄
1
) , 𝑄
1

𝐶̂
) , if 𝐶 ∈ 𝐶 (𝐻) ,

𝑖 ∈ 𝑉 (𝐶) ∩ ⋃
𝐶∈S1

[𝐶]← .

(153)

Since 𝐵𝑝(S
1
, 𝑄
1
) ⊂ 𝐾(S

2
, 𝑄
2
), 𝐾(S

2
, 𝑄
2
) ∈ 𝐹(𝐾(S

2
, 𝑄
2
)),

𝑄
1
⊂ 𝑄
2 and using the definitions of 𝐹 and 𝐾(S

2
, 𝑄
2
), we

deduce that 𝐵𝑝+1(S
1
, 𝑄
1
) ⊂ 𝐾(S

2
, 𝑄
2
). Also, (𝐾(S

1
, 𝑄
1
),

𝐵
𝑝+1

(S
1
, 𝑄
1
)) ∈ 𝐸(𝐺). Arguing as in the proof of Proposi-

tion 14, one has

𝑑 (𝐾 (S
1
, 𝑄
1
) , 𝐵
𝑝+1

(S
1
, 𝑄
1
))

≤ 𝜆𝑑 (𝐾 (S
1
, 𝑄
1
) , 𝐵
𝑝
(S
1
, 𝑄
1
)) .

(154)

Repeating this argument, we obtain for every 𝑛 ≥ 𝑝,
𝐵
𝑛
(S
1
, 𝑄
1
) ∈ 𝐾(S

2
, 𝑄
2
) such that 𝐵𝑛(S

1
, 𝑄
1
) → 𝐾(S

1
, 𝑄
1
).

Therefore,

𝐾(S
1
, 𝑄
1
) ⊂ 𝐾 (S

2
, 𝑄
2
) . (155)

(5) Let S ⊂ 𝐶(𝐻) and 𝐶 ∈ 𝐶(𝐻) be such that 𝑉(𝐶) ⊂
⋃
𝐶∈S[𝐶]←. Let

𝑄 = (𝑄
𝑖
)
𝑖∈𝑉
𝑒 × (𝑄𝐶)𝐶∈𝐶(𝐻) ∈ Q (S) . (156)

We define

𝑄 = (𝑄
𝑖
)
𝑖∈𝑉
𝑒
× (𝑄
𝐶
)
𝐶∈𝐶(𝐻)

(157)
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X6 X5 X1 X2

X8 X7 X3 X4

Figure 6: The set 𝐾(𝐶
2
, 𝑄
1
).

X6 X5 X1 X2

X8 X7 X3 X4

Figure 7: The set 𝐾(𝐶
2
, 𝑄
2
).

by

𝑄
𝑖
= {

𝑄
𝑖
, if 𝑖 ∈ 𝑉𝑒,E

𝑖
(𝐶) ̸= 0,

0, if 𝑖 ∈ 𝑉𝑒,E
𝑖
(𝐶) = 0;

𝑄
𝐶
= 0, for 𝐶 ∈ 𝐶 (𝐻) .

(158)

Clearly, 𝑄 ∈ Q(𝐶) and 𝑄 ⊂ 𝑄. It follows from (2), (4), and
Theorem 16(4) that

𝐾(𝐶,𝑄) ⊂ 𝐾 (S, 𝑄) ,

𝐾
𝑖
(𝐶,𝑄) = 𝐾

+

𝑖
(𝐶) = 𝐾

−

𝑖
∀𝑖 ∈ 𝑉 (𝐶) .

(159)

Example 21. Let {𝑇
𝑖,𝑗
}
𝐻
be the 𝐻-IFS considered in Exam-

ple 17. One has 𝐶(𝐻) = {𝐶
1
, 𝐶
2
}, 𝑉𝑒 = 0, E

𝐶2
(𝐶
2
) = 0, and

E
𝐶1
(𝐶
2
) = {(5, 1), (5, 2)}. For 𝑘 = 1, 2 let 𝑄𝑘 = 𝑄

𝑘

𝐶1
× 𝑄
𝑘

𝐶2
∈

Q(𝐶
2
) be given by

𝑄
1

𝐶1
= {(5, 1)} , 𝑄

2

𝐶1
= {(5, 2)} , 𝑄

1

𝐶2
= 𝑄
2

𝐶2
= 0.

(160)

Figures 6 and 7 present 𝐾(𝐶
2
, 𝑄
1
) and 𝐾(𝐶

2
, 𝑄
2
), respec-

tively. Observe that

𝐾(𝐶
2
, 𝑄
1
) ̸= 𝐾 (𝐶

2
, 𝑄
2
) , 𝐾 (𝐶

2
, 𝑄
1
) ⊊ 𝐾

+
(𝐶
2
) ,

𝐾 (𝐶
2
, 𝑄
2
) ⊊ 𝐾

+
(𝐶
2
) ,

(161)

where𝐾+(𝐶
2
) is presented in Figure 4.
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[7] A. Petruşel and I. A. Rus, “Fixed point theorems in ordered 𝐿-
spaces,” Proceedings of the American Mathematical Society, vol.
134, no. 2, pp. 411–418, 2006.

[8] J. Jachymski, “The contraction principle for mappings on
a metric space with a graph,” Proceedings of the American
Mathematical Society, vol. 136, no. 4, pp. 1359–1373, 2008.
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