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Regularity conditions play a pivotal role for sparse recovery in high-dimensional regression. In this paper, we present a weaker
regularity condition and further discuss the relationships with other regularity conditions, such as restricted eigenvalue condition.
We study the behavior of our new condition for design matrices with independent random columns uniformly drawn on the unit
sphere. Moreover, the present paper shows that, under a sparsity scenario, the Lasso estimator and Dantzig selector exhibit similar
behavior. Based on both methods, we derive, in parallel, more precise bounds for the estimation loss and the prediction risk in the
linear regression model when the number of variables can be much larger than the sample size.

1. Introduction

In the recent years, the problems of statistical inference in
high-dimensional setting, in which the dimension of the
data 𝑝 exceeds the sample size 𝑛, have attracted a great deal
of attention. One concrete instance of a high-dimensional
inference problem concerns the standard linear regression
model:

𝑦 = 𝑋𝛽 +𝑊, (1)

where 𝑋 ∈ R𝑛×𝑝 is called the design matrix, 𝛽 ∈ R𝑝 is an
unknown target vector, and𝑊 ∈ R𝑛 is a stochastic error term,
in which the goal is to estimate a vector 𝛽 ∈ R𝑝 based on
response 𝑦 and the vector of covariates 𝑋 = (𝑋

1
, . . . , 𝑋

𝑝
).

In the setting 𝑝 ≫ 𝑛, the classical linear regression model
is unidentifiable, so that it is not meaningful to estimate the
parameter vector 𝛽 ∈ R𝑝.

However, many high-dimensional regression problems
exhibit special structure that can lead to an identifiable
model. In particular, sparsity in the regression vector 𝛽 is
an archetypal example of such structure; that is, only a few
components of 𝛽 are different from zero, say 𝑠-sparsity; 𝛽 is
then said to be 𝑠-sparsity, and there has been a great interest

in the study of this problem recently. The use of the ℓ
1
-

norm penalty to enforce sparsity has been very successful
and there have been several methods, such as the Lasso [1]
or basis pursuit [2], and the Dantzig selector [3]. Sparsity
has also been exploited in a number of other questions, for
instance, instrumental variable regression in the presence of
endogeneity [4].

There is now a well-developed theory on what conditions
are required on the designmatrix𝑋 ∈ R𝑛×𝑝 for such ℓ

1
-based

relaxations to reliably estimate 𝛽; for example, see [5–16].The
restricted eigenvalue (RE) condition due to Bickel et al. [10] is
a weaker one of the conditions mentioned above. Wang and
Su [7, 13] presented some equivalent conditions with them,
respectively, and there is also a large body of work in the high-
dimensional setting; for example, see [3, 6, 12, 17–19], which
showed a uniform uncertainty principle (UUP, a condition
that is stronger than the RE condition; see [10, 20]). In this
paper, we consider a restricted eigenvalue condition that is
weaker than the RE conditions in [7, 10, 13] under certain
setting.

Thus, in the setting of high-dimensional linear regression,
the interesting question is accurately estimating the regres-
sion vector 𝛽 and the response 𝑋𝛽 from few and corrupted
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observations. In the standard form, under assumptions on the
matrix 𝑋 and with high probability, the estimation bounds
are of the form𝐶‖𝛽‖

0
(log(𝑝)/𝑛)𝑞/2 (e.g., see [7, 8, 13, 21]), and

the prediction errors are bounded by 𝐶 log(𝑝)‖𝛽‖
0
(e.g., see

[1, 7, 21]), where 𝐶 is a positive constant.
The main contribution of this paper is the following: we

present a restricted eigenvalue assumption that is weaker than
the RE conditions in previous paper under certain setting.
Using the ℓ

1
-norm penalty, our results are more precise than

the existing ones. There is an open question that is finding
a weaker assumption and obtaining better results no matter
under what circumstances.

The remainder of this paper is organized as follows. We
begin in Section 2 with some notations and definitions. In
Section 3, we introduce some assumptions and discuss the
relation between our assumptions and the existing ones.
Section 4 contains our main results, and we also show the
approximate equivalence between the Lasso and the Dantzig
selector.We give three lemmas and the proofs of the theorems
in Section 5.

2. Preliminaries

In this section, we introduce some notations and definitions.
Let a vector 𝛽 ∈ R𝑝. We denote by

𝑀(𝛽) =

𝑝

∑

𝑗=1

𝐼
{𝛽𝑗 ̸=0}

=
󵄨󵄨󵄨󵄨𝐽 (𝛽)

󵄨󵄨󵄨󵄨 (2)

the number of nonzero coordinates of 𝛽, where 𝐼
{⋅}

denotes
the indicator function

𝐽 (𝛽) = {𝑗 ∈ {1, . . . , 𝑝} : 𝛽
𝑗
̸= 0} (3)

and |𝐽| the cardinality of 𝐽. We use the standard notation

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩𝑞 = (

𝑝

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨
𝑞

)

1/𝑞

(4)

to stand for the ℓ
𝑞
-norm of the vector of 𝛽. Moreover, a

vector 𝛽 is said to be 𝑘-sparse if ‖𝛽‖
0
≤ 𝑘; that is, it has at

most 𝑘 nonzero entries. For a vector Δ ∈ R𝑝 and a subset
𝐽 ⊂ {1, . . . , 𝑝}, we denote by Δ

𝐽
the vector in R𝑝 that has

the same coordinates as Δ on 𝐽 and zero coordinates on the
complement 𝐽𝑐 of 𝐽.

For linear regression model (1), regularized estimation
with the ℓ

1
-norm penalty, also known as the Lasso [1] or the

basis pursuit [2], refers to the following convex optimization
problem:

𝛽 ∈ arg min
𝛽∈R𝑝

{
1

𝑛

󵄩󵄩󵄩󵄩𝑋𝛽 − 𝑦
󵄩󵄩󵄩󵄩
2

2
+ 𝜆

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1} , (5)

where 𝜆 > 0 is a penalization parameter.TheDantzig selector
has been introduced by Candes and Tao [3] as

𝛽 ∈ arg min
𝛽∈R𝑝

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1 subject to 󵄩󵄩󵄩󵄩󵄩𝑋

𝑇

(𝑦 − 𝑋𝛽)
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝜆, (6)

where 𝜆 > 0 is a tuning parameter. It is known that it can be
recast as a linear program. Hence, it is also computationally
tractable.

For an integer 1 ≤ 𝑠 ≤ 𝑝/2 and 𝑠-sparse vector 𝛽 ∈ R𝑝,
let 𝛽
𝐽0
∈ R|𝐽0| be a subvector of 𝛽 ∈ R𝑝 confined to 𝐽

0
. One of

the common properties of the Lasso and the Dantzig selector
is that, for an appropriately chosen 𝜆 and a vector 𝛿 = 𝛽 − 𝛽,
where 𝛽 is the solution from either the Lasso or the Dantzig
selector, it holds with high probability (cf. Lemmas 11 and 12):

󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽
𝑐
0

󵄩󵄩󵄩󵄩󵄩1
≤ 𝑐
0

󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1
, (7)

with 𝑐
0
= 1 for the Dantzig selector by Candes and Tao [3]

and with 𝑐
0
= 3 for the Lasso by Bickel et al. [9], where 𝑐

0
> 0

and

𝐽
0
= 𝐽 (𝛽) ⊂ {1, 2, . . . , 𝑝} (8)

is the set of nonzero coefficients of the true parameter 𝛽 of
the model.

Finally, for any 𝑛 ≥ 1, 𝑝 ≥ 2, we consider the Gram
matrix:

Ψ
𝑛
=
1

𝑛
𝑋
𝑇

𝑋, (9)

where 𝑋 is the designed matrix in model (1) and 𝑋𝑇 ∈ R𝑝×𝑛

denotes the transpose matrix of𝑋.

3. Discussion of the Assumption

Under the sparsity scenario, we are typically interested in the
case where 𝑝 > 𝑛, and even 𝑝 ≫ 𝑛. Here, sparsity specifies
that the high-dimensional vector 𝛽 has coefficients that are
mostly 0. Clearly, the matrix Ψ

𝑛
is degenerate, and ordinary

least squares does not work in this case, since it requires
positive definiteness of Ψ

𝑛
. That is,

min
𝛿∈R𝑝, 𝛿 ̸=0

‖𝑋𝛿‖
2

√𝑛‖𝛿‖
2

> 0. (10)

It turns out that the Lasso and Dantzig selector require much
weaker assumptions. The idea by Bickel et al. [10] is that
the minimum in (10) be replaced by the minimum over a
restricted set of vectors and the norm ‖𝛿‖

2
in the denominator

of the condition be replaced by the ℓ
2
-norm of only a part

of 𝛿. Note that the role of (7) is to restrict set of vectors
{𝛿 ∈ R𝑝 : 𝛿 ̸= 0} to

{𝛿 ∈ R
𝑝

: 𝛿 ̸= 0,
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽
𝑐
0

󵄩󵄩󵄩󵄩󵄩1
≤ 𝑐
0

󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1
} . (11)

Assumption 1 (RE(𝑠, 𝑐
0
) (Bickel et al. [10])). For some integer

𝑠 such that 1 ≤ 𝑠 ≤ 𝑝 and a positive number 𝑐
0
, the following

condition holds:

𝜅 (𝑠, 𝑐
0
) ≜ min
𝐽0⊆{1,2,...,𝑝},|𝐽0|≤𝑠

min
𝛿 ̸=0,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
𝛿
𝑐
𝐽0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩1
≤𝑐0

󵄩
󵄩
󵄩
󵄩
󵄩
𝛿𝐽0

󵄩
󵄩
󵄩
󵄩
󵄩1

‖𝑋𝛿‖
2

√𝑛
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩2

> 0. (12)

Bickel et al. [10] showed that the bounds of estima-
tion error and prediction error are 𝐶‖𝛽‖

0
(log(𝑝)/𝑛)𝑞/2 and
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𝐶 log(𝑝)‖𝛽‖
0
, respectively, for both the Lasso and Dantzig

selector, where𝐶 is a positive constant and ‖𝛽‖
0
is the sparsity

level. Next, we describe the RE𝜏
2
(𝑠, 𝑐
0
) assumption presented

by Wang and Su [7], which is obtained by replacing ‖𝛿‖
2
by

its upper bound ‖𝛿‖
1
in (10).

Assumption 2 (RE𝜏
2
(𝑠, 𝑐
0
) (Wang and Su [7])). For some

integer 𝑠 such that 1 ≤ 𝑠 ≤ 𝑝 and a positive number 𝑐
0
, the

following condition holds:

𝜏
2
(𝑠, 𝑐
0
) ≜ min
𝐽0⊆{1,2,...,𝑝},|𝐽0|≤𝑠

min
𝛿 ̸=0,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
𝛿
𝑐
𝐽0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩1
≤𝑐0

󵄩
󵄩
󵄩
󵄩
󵄩
𝛿𝐽0

󵄩
󵄩
󵄩
󵄩
󵄩1

‖𝑋𝛿‖
2

√𝑛‖𝛿‖
1

> 0. (13)

The two conditions are very similar. The only difference
is the ℓ

1
- versus ℓ

2
-norm of a part of 𝛿 in the denominator.

The RE𝜏
2
(𝑠, 𝑐
0
) condition is equivalent to RE(𝑠, 𝑐

0
); see [7, 13]

for the discussion on equivalence. The results of [7, 13] are
more precise for the bounds of estimation and prediction
than those derived in Bickel et al. [10] and do not lie on the
sparsity level ‖𝛽‖

0
.

In order to obtain our regularity condition in this paper,
we decompose 𝛿 into a set of vectors 𝛿

𝑆0
, 𝛿
𝑆1
, 𝛿
𝑆2
, . . . , 𝛿

𝑆𝐾
, such

that 𝑆
0
corresponds to locations of the 𝑠 largest coefficient of

𝛿 in absolute values, 𝑆
1
corresponds to locations of the next 𝑠

largest coefficient of 𝛿
𝑆
𝑐
0
in absolute values, and so on. Hence,

we have 𝑆𝑐
0
= ⋃
𝐾

𝑘=1
𝑆
𝑘
, where 𝐾 ≥ 1, |𝑆

𝑘
| = 𝑠, for all 𝑘 =

1, . . . , 𝐾 − 1, and |𝑆
𝐾
| ≤ 𝑠.

Now for each 𝑗 ≥ 1, we have

󵄩󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆𝑗

󵄩󵄩󵄩󵄩󵄩󵄩2
≤ √𝑠

󵄩󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆𝑗

󵄩󵄩󵄩󵄩󵄩󵄩∞
≤

1

√𝑠

󵄩󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆𝑗−1

󵄩󵄩󵄩󵄩󵄩󵄩1
, (14)

where vector ‖ ⋅ ‖
∞

represents the largest entry in absolute
value in the vector, and hence

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
𝑐
0

󵄩󵄩󵄩󵄩󵄩2
≤ ∑

𝑘≥1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆𝑘

󵄩󵄩󵄩󵄩󵄩2

≤ 𝑠
−1/2

(
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆0

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆1

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆2

󵄩󵄩󵄩󵄩󵄩1
+ ⋅ ⋅ ⋅ )

≤ 𝑠
−1/2

(
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆0

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
𝑐
0

󵄩󵄩󵄩󵄩󵄩1
) = 𝑠
−1/2

‖𝛿‖
1
.

(15)

Replacing ‖𝛿‖
1
by √𝑠‖𝛿

𝑆
𝑐
0
‖
2

in (13), we get the following
assumption.

Assumption 3 (LR𝜑
1
(𝑠, 𝑐
0
)). For some integer 𝑠 such that 1 ≤

𝑠 ≤ 𝑝 and a positive number 𝑐
0
, the following condition holds:

𝜑
1
(𝑠, 𝑐
0
) ≜ min
𝐽0⊆{1,2,...,𝑝},|𝐽0|≤𝑠

min
𝛿 ̸=0,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
𝛿
𝑐
𝐽0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩1
≤𝑐0

󵄩
󵄩
󵄩
󵄩
󵄩
𝛿𝐽0

󵄩
󵄩
󵄩
󵄩
󵄩1

‖𝑋𝛿‖
2

√𝑛√𝑠
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽
𝑐
0

󵄩󵄩󵄩󵄩󵄩2

> 0.

(16)

The inequality √𝑠‖𝛿
𝑆
𝑐
0
‖
2

≤ ‖𝛿‖
1
immediately implies that

the assumption LR𝜑
1
(𝑠, 𝑐
0
) is weaker than the assumptions

RE𝜏
2
(𝑠, 𝑐
0
) and RE(𝑠, 𝑐

0
). Noting the norm ‖𝛿

𝐽
𝑐
0
‖
2

in the
denominator of (16), it makes the proof become more com-
plicated. We need an equivalent condition of LR𝜑

1
(𝑠, 𝑐
0
) for

the sake of simplicity, as similarly discussed on equivalence
(cf. [7, 13]).

Assumption 4 (LR𝜑
2
(𝑠, 𝑐
0
)). For some integer 𝑠 such that 1 ≤

𝑠 ≤ 𝑝 and a positive number 𝑐
0
, the following condition holds:

𝜑
2
(𝑠, 𝑐
0
) ≜ min
𝐽0⊆{1,2,...,𝑝},|𝐽0|≤𝑠

min
𝛿 ̸=0,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
𝛿
𝑐
𝐽0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩1
≤𝑐0

󵄩
󵄩
󵄩
󵄩
󵄩
𝛿𝐽0

󵄩
󵄩
󵄩
󵄩
󵄩1

‖𝑋𝛿‖
2

√𝑠√𝑛
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1

> 0.

(17)

The two conditions above can be used to solve all the
problems of sparse recovery in high-dimensional regression.
Due to technical reasons, we only give the results when the
LR𝜑
2
(𝑠, 𝑐
0
) is satisfied.

4. Main Results of Sparse Recovery for
Regression Model

In order to provide performance guarantees for ℓ
1
-norm

penalty applied to sparse linear models, it is sufficient to
assume that the regularity conditions are satisfied. In this
section,we showmain resultswhen the LR𝜑

2
(𝑠, 𝑐
0
) is satisfied.

In particular, for convenience, we assume that all the diagonal
elements of the matrix𝑋𝑇𝑋/𝑛 are equal to 1.

We firstly prove a type of approximate equivalence
between the Lasso and theDantzig selector. Similar results on
equivalence can be found in [7, 10, 13]. It is expressed as close-
ness of the prediction losses ‖𝑋𝛽 − 𝑋𝛽

𝐷
‖
2

2
and ‖𝑋𝛽 − 𝑋𝛽

𝐿
‖
2

2

when the number of nonzero components of the Lasso or the
Dantzig selector is small as compared to the sample size.

Theorem 5. For linear model (1), let 𝑊
𝑖
∼ 𝑁(0, 𝜎

2

) be
independent random variables with 𝜎2 > 0. Consider the Lasso
estimator 𝛽

𝐿
and Dantzig estimator 𝛽

𝐷
defined by (5) and (6)

with the same 𝜆. If LR𝜑
2
(𝑠, 𝑐
0
) is satisfied, where 𝑐

0
> 0, then,

with probability of at least 1 − 𝑝1−𝐴
2
/8, one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑛

󵄩󵄩󵄩󵄩𝑋𝛽 − 𝑋𝛽𝐷
󵄩󵄩󵄩󵄩
2

2
−
1

𝑛

󵄩󵄩󵄩󵄩𝑋𝛽 − 𝑋𝛽𝐿
󵄩󵄩󵄩󵄩
2

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
16𝜆
2

𝑠𝜑2
2

. (18)

Next, we get the bounds on the rate of convergence of
Lasso and Dantzig selector.

Theorem 6. For linear model (1), let 𝑊
𝑖
∼ 𝑁(0, 𝜎

2

) be
independent random variables with 𝜎2 > 0. Consider the Lasso
estimator 𝛽

𝐿
defined by (5) with 𝜆 > 2𝜆

0
> 0. If LR𝜑

2
(𝑠, 3)

is satisfied, where 𝑐
0
> 0, then, with probability of at least

1 − 𝑝 exp(2𝜆2𝑛/𝜎2), one has

󵄩󵄩󵄩󵄩󵄩
𝛽
𝐿
− 𝛽

󵄩󵄩󵄩󵄩󵄩1
≤

4𝜆

𝑠𝜑2
2
(𝑠, 𝑐
0
)
, (19)

󵄩󵄩󵄩󵄩󵄩
𝛽
𝐿
− 𝛽

󵄩󵄩󵄩󵄩󵄩2
≤
4𝜆

𝑠𝜑2
2

(
3

5
+
1

√𝑠
) , (20)

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋 (𝛽
𝐿
− 𝛽)

󵄩󵄩󵄩󵄩󵄩

2

2

≤
144𝜆
2

25𝑠𝜑2
2
(𝑠, 𝑐
0
)
, (21)

where 𝜑
2
= 𝜑
2
(𝑠, 3).

Theorem 7. For linear model (1), let 𝑊
𝑖
∼ 𝑁(0, 𝜎

2

) be
independent random variables with 𝜎

2

> 0. Consider the
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Dantzig selector 𝛽
𝐷

defined by (6) with 𝜆 > 𝜆
0
> 0. If

LR𝜑
2
(𝑠, 1) is satisfied, where 𝑐

0
> 0, then, with probability of at

least 1 − 𝑝 exp(𝜆2𝑛/2𝜎2), one has

󵄩󵄩󵄩󵄩󵄩
𝛽
𝐷
− 𝛽

󵄩󵄩󵄩󵄩󵄩1
≤
8𝜆

𝑠𝜑2
2

, (22)

󵄩󵄩󵄩󵄩󵄩
𝛽
𝐷
− 𝛽

󵄩󵄩󵄩󵄩󵄩2
≤
4𝜆

𝑠𝜑2
2

(1 +
2

√𝑠
) , (23)

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋 (𝛽
𝐷
− 𝛽)

󵄩󵄩󵄩󵄩󵄩

2

2

≤
16𝜆
2

𝑠𝜑2
2

, (24)

where 𝜑
2
= 𝜑
2
(𝑠, 1).

Remark 8. We have no conditions on the parameter 𝜆. As in
[10], we can rewrite 𝜆 in terms of another parameter 𝐴 in
order to clarify the notation:

𝜆 = 𝐴𝜎√
log𝑝
𝑛

, 𝐴 > √2. (25)

Then, the results of Theorems 5–7 are as follows:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑛

󵄩󵄩󵄩󵄩𝑋𝛽 − 𝑋𝛽𝐷
󵄩󵄩󵄩󵄩
2

2
−
1

𝑛

󵄩󵄩󵄩󵄩𝑋𝛽 − 𝑋𝛽𝐿
󵄩󵄩󵄩󵄩
2

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
16𝐴
2

𝜎
2 log𝑝

𝑛𝜑2
2
𝑠

, (26)

󵄩󵄩󵄩󵄩󵄩
𝛽
𝐿
− 𝛽

󵄩󵄩󵄩󵄩󵄩1
≤

4𝐴𝜎

𝑠𝜑2
2
(𝑠, 3)

√
log𝑝
𝑛

, (9
󸀠

)

󵄩󵄩󵄩󵄩󵄩
𝛽
𝐿
− 𝛽

󵄩󵄩󵄩󵄩󵄩2
≤
4𝐴𝜎

𝑠𝜑2
2

(
3

5
+
1

√𝑠
)√

log𝑝
𝑛

, (10
󸀠

)

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋 (𝛽
𝐿
− 𝛽)

󵄩󵄩󵄩󵄩󵄩

2

2

≤
144𝐴
2

25𝜑2
2
(𝑠, 3)

𝜎
2 log𝑝
𝑠𝑛

, (11
󸀠

)

󵄩󵄩󵄩󵄩󵄩
𝛽
𝐷
− 𝛽

󵄩󵄩󵄩󵄩󵄩1
≤

8𝐴𝜎

𝑠𝜑2
2
(𝑠, 1)

√
log𝑝
𝑛

, (12
󸀠

)

󵄩󵄩󵄩󵄩󵄩
𝛽
𝐷
− 𝛽

󵄩󵄩󵄩󵄩󵄩2
≤
4𝐴𝜎

𝑠𝜑2
2

(1 +
2

√𝑠
)√

log𝑝
𝑛

, (13
󸀠

)

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋 (𝛽
𝐷
− 𝛽)

󵄩󵄩󵄩󵄩󵄩

2

2

≤
16𝐴
2

𝜑2
2
(𝑠, 1)

𝜎
2 log𝑝
𝑠𝑛

. (14
󸀠

)

The results of Theorems 7.1 and 7.2 in Bickel et al. [10] are

󵄩󵄩󵄩󵄩󵄩
𝛽
𝐿
− 𝛽

󵄩󵄩󵄩󵄩󵄩1
≤

4𝐴𝜎𝑠

𝜑2
2
(𝑠, 3)

√
log𝑝
𝑛

,

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋 (𝛽
𝐿
− 𝛽)

󵄩󵄩󵄩󵄩󵄩

2

2

≤
144𝐴
2

25𝜑2
2
(𝑠, 3)

𝜎
2

𝑠 log𝑝
𝑛

,

󵄩󵄩󵄩󵄩󵄩
𝛽
𝐷
− 𝛽

󵄩󵄩󵄩󵄩󵄩1
≤

8𝐴𝜎𝑠

𝜑2
2
(𝑠, 1)

√
log𝑝
𝑛

,

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋 (𝛽
𝐷
− 𝛽)

󵄩󵄩󵄩󵄩󵄩

2

2

≤
16𝐴
2

𝜑2
2
(𝑠, 1)

𝜎
2

𝑠 log𝑝
𝑛

.

(27)

Comparing the results above, our results greatly improve
those in Bickel et al. [10].

Additionally, the similar results for Lasso can be found in
Wang and Su [7]. They are

󵄩󵄩󵄩󵄩󵄩
𝛽
𝐿
− 𝛽

󵄩󵄩󵄩󵄩󵄩1
≤

4𝐴

𝜏2
1
(𝑠, 1)

𝜎√
log𝑝
𝑛

,

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋 (𝛽
𝐿
− 𝛽)

󵄩󵄩󵄩󵄩󵄩

2

2

≤
144𝐴
2

25𝜏2
1
(𝑠, 1)

𝜎
2 log𝑝
𝑛

.

(28)

It is clear that our results are more precise than those in
the existing results, for example, [7, 10].

Remark 9. The assumptions LR𝜑
1
(𝑠, 𝑐
0
) and LR𝜑

2
(𝑠, 𝑐
0
) are

weaker than assumptions RE𝜏
2
(𝑠, 𝑐
0
) and RE(𝑠, 𝑐

0
), since

√𝑠‖𝛿
𝑆
𝑐
0
‖
2

≤ ‖𝛿‖
1
. Note that the inequality √𝑠‖𝛿

𝑆
𝑐
0
‖
2

≤ ‖𝛿‖
1

holds under the setting discussed in Section 3. That is, our
weaker assumptions hold under certain condition, but they
cannot be considered to be better than those in previous
paper at any time.

5. Lemmas and the Proofs of the Results

In this section, we give three lemmas and the proofs of the
theorems.

Lemma 10. Let 𝑊
𝑖
∼ 𝑁(0, 𝜎

2

) be independent random
variables with 𝜎2 > 0. Then, for any 𝜆

0
> 0,

𝑃(
1

𝑛

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑇

𝑊
󵄨󵄨󵄨󵄨󵄨∞

≥ 𝜆
0
) ≤ 𝑝 exp(

𝜆
2

0
𝑛

2𝜎2
) . (29)

Proof. Since𝑊
𝑖
∼ 𝑁(0, 𝜎

2

), it immediately follows that

𝑃(
1

𝑛

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑇

𝑊
󵄨󵄨󵄨󵄨󵄨∞

≥ 𝜆
0
)

≤ ∑

𝑗

𝑃(
1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑖

𝑥
𝑖,𝑗
𝑤
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝜆
0
)

≤ 𝑝∑

𝑗

𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛
−1/2

𝜎
−1

∑

𝑖

𝑥
𝑖,𝑗
𝑤
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥
𝜆
0
√𝑛

(𝜎)
)

≤ 𝑝∑

𝑗

𝑃(
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨 ≥

𝜆
0
√𝑛

(𝜎)
) ,

≤ 𝑝 exp(
𝜆
2

0
𝑛

2𝜎2
) ,

(30)

where 𝜂 ∼ 𝑁(0, 1).

Lemma 11. Let 𝑊
𝑖
∼ 𝑁(0, 𝜎

2

) be independent random
variables with 𝜎2 > 0. Let 𝛽

𝐿
be the Lasso estimator defined



Journal of Applied Mathematics 5

by (5). Then, with probability of at least 1 − 𝑝 exp(2𝜆2𝑛/𝜎2),
one has, simultaneously for all 𝛽 ∈ R𝑝 and 𝜆 > 2𝜆

0
,

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋𝛽
𝐿
− 𝑋𝛽

󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
− 𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 4𝜆 ∑

𝑗∈𝐽(𝛽)

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
− 𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨
,

(31)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛
𝑋
𝑇

𝑋(𝛽 − 𝛽
𝐿
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤
3𝜆

2
. (32)

Proof. By the definition of 𝛽
𝐿
,

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑌 − 𝑋𝛽

𝐿

󵄩󵄩󵄩󵄩󵄩

2

2

+ 2𝜆
󵄩󵄩󵄩󵄩󵄩
𝛽
𝐿

󵄩󵄩󵄩󵄩󵄩1
≤
1

𝑛

󵄩󵄩󵄩󵄩𝑌 − 𝑋𝛽
󵄩󵄩󵄩󵄩
2

2
+ 2𝜆

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1 (33)

for all 𝛽 ∈ R𝑝, which is equivalent to

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋𝛽
𝐿
− 𝑋𝛽

󵄩󵄩󵄩󵄩󵄩

2

2

+ 2𝜆
󵄩󵄩󵄩󵄩󵄩
𝛽
𝐿

󵄩󵄩󵄩󵄩󵄩1
≤ 2𝜆

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1 +

2

𝑛
𝑊
𝑇

𝑋(𝛽
𝐿
− 𝛽) .

(34)

From Lemma 10, we have that

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋𝛽
𝐿
− 𝑋𝛽

󵄩󵄩󵄩󵄩󵄩

2

2

≤ 2𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨

− 2𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨
+ 𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
− 𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨

(35)

holds with probability of at least 1 − 𝑝 exp(2𝜆2𝑛/𝜎2).
Adding the term ∑

𝑝

𝑗=1
𝜆|𝛽
𝑗,𝐿
− 𝛽
𝑗
| to both sides of this

inequality, it yields that

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋𝛽
𝐿
− 𝑋𝛽

󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
− 𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨

≤ 2𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
− 2𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨

+ 2𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
− 𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨

≤ 2

𝑝

∑

𝑗=1

𝜆 (
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
− 𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨
) .

(36)

Now, note that
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗,𝐿
− 𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗,𝐿

󵄨󵄨󵄨󵄨󵄨
= 0 (37)

since 𝑗 ∉ 𝐽(𝛽). So, we get that

1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋𝛽
𝐿
− 𝑋𝛽

󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
− 𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨

≤ 2𝜆 ∑

𝑗∈𝐽(𝛽)

(
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
− 𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
−
󵄨󵄨󵄨󵄨󵄨
𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨
)

≤ 4𝜆 ∑

𝑗∈𝐽(𝛽)

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
− 𝛽
𝐿,𝑗

󵄨󵄨󵄨󵄨󵄨
.

(38)

To prove (32), it suffices to note that, from Lemma 10 and
𝜆 > 2𝜆

0
, we have that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛
𝑋
𝑇

𝑊
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤
𝜆

2
. (39)

Then
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛
𝑋
𝑇

𝑋(𝛽 − 𝛽
𝐿
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛
𝑋
𝑇

(𝑌 −𝑊 − 𝑋𝛽
𝐿
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛
𝑋
𝑇

(𝑌 − 𝑋𝛽
𝐿
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛
𝑋
𝑇

𝑊
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ 𝜆 +
𝜆

2
=
3𝜆

2
.

(40)

Lemma 12. Let 𝛽 ∈ R𝑝satisfy the Dantzig constraint
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛
𝑋
𝑇

𝑋(𝛽
𝐷
− 𝛽)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞
≤ 2𝜆 (41)

and set 𝛿 = 𝛽
𝐷
− 𝛽, 𝐽

0
= 𝐽(𝛽). Then
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽
𝑐
0

󵄩󵄩󵄩󵄩󵄩1
≤
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1
. (42)

Further, let the assumptions of Lemma 11 be satisfied. Then,
with probability of at least 1 − 𝑝 exp(𝜆2𝑛/2𝜎2), one has, for
𝜆 > 𝜆

0
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛
𝑋
𝑇

(𝑋𝛽 − 𝑋𝛽
𝐷
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ 2𝜆. (43)

Proof. Inequality (42) immediately follows from the defini-
tion of Dantzig selector.

Next, we prove (43). From Lemma 10 and analogously to
(32), using the definition of Dantzig selector, we get that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛
𝑋
𝑇

𝑋(𝛽 − 𝛽
𝐷
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛
𝑋
𝑇

(𝑌 −𝑊 − 𝑋𝛽
𝐷
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛
𝑋
𝑇

(𝑌 − 𝑋𝛽
𝐷
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑛
𝑋
𝑇

𝑊
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ 𝜆 + 𝜆 = 2𝜆.

(44)

Proof of Theorem 5. Set 𝛿 = 𝛽
𝐿
− 𝛽
𝐷
. We start the calculation

by simple matrix equality:
󵄩󵄩󵄩󵄩󵄩
𝑋𝛽 − 𝑋𝛽

𝐷

󵄩󵄩󵄩󵄩󵄩

2

2

−
󵄩󵄩󵄩󵄩󵄩
𝑋𝛽 − 𝑋𝛽

𝐿

󵄩󵄩󵄩󵄩󵄩

2

2

= 2(𝛽
𝐿
− 𝛽
𝐷
)
𝑇

𝑋
𝑇

(𝑋𝛽 − 𝑋𝛽
𝐷
) −

󵄩󵄩󵄩󵄩󵄩
𝑋 (𝛽
𝐿
− 𝛽
𝐷
)
󵄩󵄩󵄩󵄩󵄩

2

2

≤ 2‖𝛿‖
1

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑇

(𝑋𝛽 − 𝑋𝛽
𝐷
)
󵄩󵄩󵄩󵄩󵄩∞

− ‖𝑋𝛿‖
2

2

≤ 4𝑛𝜆‖𝛿‖
1
− ‖𝑋𝛿‖

2

2
,

(45)
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where the last inequality holds with probability of at least 1 −
𝑝 exp(𝜆2𝑛/2𝜎2) from (43).

By assumption LR𝜑
2
(𝑠, 1) and (42), we get that

󵄩󵄩󵄩󵄩󵄩
𝑋𝛽 − 𝑋𝛽

𝐷

󵄩󵄩󵄩󵄩󵄩

2

2

−
󵄩󵄩󵄩󵄩󵄩
𝑋𝛽 − 𝑋𝛽

𝐿

󵄩󵄩󵄩󵄩󵄩

2

2

≤ 8𝑛𝜆
󵄩󵄩󵄩󵄩𝛿𝐽
󵄩󵄩󵄩󵄩1 − 𝜑

2

2
𝑠
󵄩󵄩󵄩󵄩𝛿𝐽
󵄩󵄩󵄩󵄩
2

1
≤
16𝑛
2

𝜆
2

𝜑2
2
𝑠
.

(46)

From (32), a nearly identical argument yields that

󵄩󵄩󵄩󵄩󵄩
𝑋𝛽 − 𝑋𝛽

𝐿

󵄩󵄩󵄩󵄩󵄩

2

2

−
󵄩󵄩󵄩󵄩󵄩
𝑋𝛽 − 𝑋𝛽

𝐷

󵄩󵄩󵄩󵄩󵄩

2

2

≤ 2‖𝛿‖
1

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑇

𝑋(𝛽 − 𝛽
𝐿
)
󵄩󵄩󵄩󵄩󵄩∞

−
󵄩󵄩󵄩󵄩󵄩
𝑋 (𝛽 − 𝛽

𝐿
)
󵄩󵄩󵄩󵄩󵄩

2

2

(47)

≤ 3𝑛𝜆‖𝛿‖
1
− ‖𝑋𝛿‖

2

2
(48)

≤
9𝑛
2

𝜆
2

𝜑2
2
𝑠
. (49)

This theorem follows from (46) and (49).

Proof of Theorem 6. Set 𝛿 = 𝛽
𝐿
−𝛽. Using (31) with probability

of at least 1 − 𝑝 exp(2𝜆2𝑛/𝜎2),

1

𝑛
‖𝑋𝛿‖
2

2
≤ 4𝜆

󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1
− 𝜆‖𝛿‖

1
. (50)

From (48), we have

2

𝑛
‖𝑋𝛿‖
2

2
≤ 3𝜆‖𝛿‖

1
. (51)

Then
1

𝑛
‖𝑋𝛿‖
2

2
≤
12

5
𝜆
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1
. (52)

By assumption LR𝜑
2
(𝑠, 3), we obtain that

𝜑
2

2
𝑠
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩

2

1

≤
1

𝑛
‖𝑋𝛿‖
2

2
≤
12

5
𝜆
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1
, (53)

where 𝜑
2
= 𝜑
2
(𝑠, 3). Thus,

󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1
≤

12𝜆

5𝑠𝜑2
2
(𝑠, 𝑐
0
)
, (54)

1

𝑛
‖𝑋𝛿‖
2

2
≤

144𝜆

25𝑠𝜑2
2
(𝑠, 𝑐
0
)
. (55)

From (50), we have that

𝜆‖𝛿‖
1
≤ 4𝜆

󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1
−
1

𝑛
‖𝑋𝛿‖
2

2
≤

4𝜆
2

𝑠𝜑2
2
(𝑠, 𝑐
0
)
. (56)

Thus,

‖𝛿‖
1
≤

4𝜆

𝑠𝜑2
2
(𝑠, 𝑐
0
)
. (57)

Inequalities (55) and (57) coincide with (19) and (21), respec-
tively.

Finally, to prove (20) we decompose 𝛿 into a set of vectors
𝛿
𝐽0
, 𝛿
𝐽1
, 𝛿
𝐽2
, . . . , 𝛿

𝐽𝐾
, such that 𝐽

0
corresponds to locations of

the 𝑠 largest coefficient of 𝛿 in absolute values, 𝐽
1
corresponds

to locations of the next 𝑠 largest coefficient of 𝛿
𝐽
𝑐
0
in absolute

values, and so on. Hence we have that 𝐽𝑐
0
= ∪
𝐾

𝑘=1
𝐽
𝑘
, where

𝐾 ≥ 1, |𝐽
𝑘
| = 𝑠, for all 𝑘 = 1, . . . , 𝐾 − 1, and |𝐽

𝐾
| ≤ 𝑠.

It immediately follows that

󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽
𝑐
0

󵄩󵄩󵄩󵄩󵄩2
≤

1

√𝑠
‖𝛿‖
1
. (58)

On the other hand, from (54), we have that

󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩2
≤
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1
≤

12𝜆

5𝑠𝜑2
2
(𝑠, 𝑐
0
)
. (59)

Therefore,

‖𝛿‖
2
≤
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽
𝑐
0

󵄩󵄩󵄩󵄩󵄩2

≤
12𝜆

5𝑠𝜑2
2
(𝑠, 𝑐
0
)
+
1

√𝑠
‖𝛿‖
1

≤
12𝜆

5𝑠𝜑2
2
(𝑠, 𝑐
0
)
+

4𝜆

√𝑠𝑠𝜑2
2
(𝑠, 𝑐
0
)

≤
4𝜆

𝑠𝜑2
2
(𝑠, 𝑐
0
)
(
3

5
+
1

√𝑠
) ,

(60)

and the theorem follows.

Proof of Theorem 7. Set 𝛿 = 𝛽
𝐷
−𝛽. Using (42) and (43), with

probability of at least 1 − 𝑝 exp(𝜆2𝑛/2𝜎2), we have that

1

𝑛
‖𝑋𝛿‖
2

2
=
1

𝑛
𝛿
𝑇

𝑋
𝑇

𝑋𝛿

≤
1

𝑛

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑇

𝑋𝛿
󵄩󵄩󵄩󵄩󵄩∞
‖𝛿‖
1

≤ 2𝑟 (
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽
𝑐
0

󵄩󵄩󵄩󵄩󵄩1
) ≤ 4𝑟

󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1
.

(61)

From assumption LR𝜑
2
(𝑠, 1), we get that

1

𝑛
‖𝑋𝛿‖
2

2
≥ 𝑠𝜑
2

2

󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩

2

1

, (62)

where 𝜑
2
= 𝜑
2
(𝑠, 1). This and (61) yield that

1

𝑛
‖𝑋𝛿‖
2

2
≤
16𝜆
2

𝑠𝜑2
2

,
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩1
≤
4𝜆

𝑠𝜑2
2

. (63)

The first inequality in (63) implies (24). Next, (22) is
straightforward in view of the second inequality in (63) and
of relation (42). The proof of (23) follows from (20) in
Theorem 6. From (22) and (58), we get that

󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽
𝑐
0

󵄩󵄩󵄩󵄩󵄩2
≤

1

√𝑠

8𝜆

𝑠𝜑2
2

. (64)
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Then
‖𝛿‖
2
≤
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽0

󵄩󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝐽
𝑐
0

󵄩󵄩󵄩󵄩󵄩2

≤
4𝜆

𝑠𝜑2
2

+
1

√𝑠

8𝜆

𝑠𝜑2
2

≤
4𝜆

𝑠𝜑2
2

(1 +
2

√𝑠
) ,

(65)

where the second inequality holds from the second inequality
in (63) and the inequality ‖𝛿

𝐽0
‖
2

≤ ‖𝛿
𝐽0
‖
1

.
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