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This paper is concerned with the nonfragile𝐻
∞
control problem for stochastic systems with Markovian jumping parameters and

random packet losses. The communication between the physical plant and controller is assumed to be imperfect, where random
packet losses phenomenon occurs in a random way. Such a phenomenon is represented by a stochastic variable satisfying the
Bernoulli distribution. The purpose is to design a nonfragile controller such that the resulting closed-loop system is stochastically
mean square stablewith a guaranteed𝐻

∞
performance level 𝛾. By using the Lyapunov function approach, some sufficient conditions

for the solvability of the previous problem are proposed in terms of linear matrix inequalities (LMIs), and a corresponding explicit
parametrization of the desired controller is given. Finally, an example illustrating the effectiveness of the proposed approach is
presented.

1. Introduction

During the past several decades, stochastic systems have been
the main focus of research receiving much attention since
realistic models of most engineering systems involve random
exogenous disturbances [1, 2]. As a simple yet significant
mathematical model, stochastic systems have come to play a
key role inmany branches of science and engineering [3]. For
this reason, many fundamental issues have been extensively
addressed for stochastic systems, and consequently fruitful
results have been presented in the literature; see, for example,
[2, 4, 5] and the references therein.

In addition to stochastic systems, there have been great
efforts in the research of the modeling of dynamic systems
subject to random abrupt changes in their parameters [6–
8]. Such random abrupt changes may be caused by various
factors, including the switching between economic scenarios,
abrupt changes in the operation point for nonlinear plant,
and actuator/sensor failure or repairs, to name just a few.
Fortunately, Markov jump systems provide a natural frame-
work for modeling these practical systems subject to random

abrupt changes. Since the pioneering work on Markov jump
systems was introduced in [9], considerable research results
related to Markov jump systems or system with Markovian
jumping parameters have been presented in terms of a variety
ofmethods. Formore details, we refer to the literature [10–17].
When Markovian jumping parameters appear in stochastic
systems, many control issues have been studied recently by
researchers. For example, robust stability and stabilization
problems were investigated in [18], passivity-based control
problem was addressed in [19], optimal control problems
were studied in [12, 20–22], and the sliding-mode control
problem was solved in [23].

It is worth noting that the controller design methods
proposed in the previous literature require two critical
assumptions. One is that the controller can be implemented
exactly, and the other is that the communication between
the physical plant and controller is always perfect. Such
two assumptions, however, may not be unreasonable in
practice. Firstly, in the implementation of a design controller,
uncertainties or inaccuracies do occur because of round-
off errors in numerical computation. Some existing control
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synthesis methods have proven to be sensitive, or fragile,
with respect to small perturbations in controller parameters.
Therefore, it is an important question to design a controller,
which guarantees that the controller is insensitive to some
amount of errors with its gain, that is, the nonfragile or
resilient control problem [24]. Secondly, a modern control
system can hardly work without the help of the networks
and the computers and their intercommunication.They bring
a lot of advantages, but the existence of network-induced
phenomena is unavoidable [25]. For instance, packet losses
may occur due to the unreliability of the network links.
These may limit the scope of the applications of the existing
results related to stochastic systems with Markovian jumping
parameters. The main purpose of this paper, therefore, is to
shorten such a gap.

In this paper, we make the first attempt to deal with the
nonfragile𝐻

∞
control for stochastic systems withMarkovian

jumping parameters and random packet losses. The packet
losses phenomena are assumed to exist in communication
links between the physical plant and controller. Attention
is focused on the design of a nonfragile controller such
that the resulting closed-loop system is stochastically mean
square stable, and meanwhile a prescribed𝐻

∞
performance

is satisfied. Sufficient conditions for the existence of such a
controller are given in terms of LMIs. By solving a convex
optimization problem, a desired nonfragile controller can
be constructed based on the use of standard numerical
algorithms [26].

Notation. Throughout this paper, for symmetric matrices 𝑃,
the notation 𝑃 ≥ 0 (resp., 𝑃 > 0) means that the matrix 𝑃

is positive semidefinite (resp., positive definite); 𝐼 and 0 rep-
resent the identity matrix and zero matrix with appropriate
dimension. The notation𝑀

𝑇 represents the transpose of the
matrix 𝑀; diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix. In
symmetric block matrices or complex matrix expressions, we
employ an asterisk (∗) to represent a term that is induced by
symmetry;E{⋅} denotes the expectation operator with respect
to some probability measure P; (Ω,F,P) is a probability
space; Ω is the sample space, F is the 𝜎-algebra of subsets
of the sample space, and P is the probability measure on
F; 𝑙
2
[0,∞) is the space of square-summable infinite vector

sequences over [0,∞); | ⋅ | refers to the Euclidean vector
norm; ‖ ⋅ ‖

2
stands for the usual 𝑙

2
[0,∞) norm. Matrices,

if not explicitly stated, are assumed to have compatible
dimensions. 𝑍+ represents {0, 1, 2, . . .}.

2. Problem Formulations

Consider the following discrete-time stochasticMarkov jump
system over a probability space (Ω,F,P):

(Σ) : 𝑥 (𝑘 + 1) = 𝐴 (𝛿
𝑘
) 𝑥 (𝑘) + 𝐵

1
(𝛿
𝑘
) 𝑢 (𝑘) + 𝐶 (𝛿

𝑘
) 𝜐 (𝑘)

+ [𝐸 (𝛿
𝑘
) 𝑥 (𝑘) + 𝐹 (𝛿

𝑘
) 𝜐 (𝑘)] 𝜔 (𝑘) ,

𝑧 (𝑘) = 𝐷 (𝛿
𝑘
) 𝑥 (𝑘) + 𝐵

2
(𝛿
𝑘
) 𝑢 (𝑘) + 𝐺 (𝛿

𝑘
) 𝜐 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the system state vector; 𝑢(𝑘) ∈

R𝑚 is the controlled input; 𝑧(𝑘) ∈ R𝑝 is the controlled
output; 𝜐(𝑘) ∈ R𝑞 is the exogenous disturbance input that
belongs to 𝑙

2
[0,∞). For each 𝛿

𝑘
, 𝐴(𝜎
𝑘
), 𝐵
1
(𝜎
𝑘
), 𝐶(𝜎

𝑘
), 𝐸(𝜎

𝑘
),

𝐹(𝜎
𝑘
), 𝐷(𝜎

𝑘
), 𝐵
2
(𝜎
𝑘
), and 𝐺(𝜎

𝑘
) are real constant matrices

with appropriate dimensions. 𝜔(𝑘) is a one-dimensional zero
mean Gaussian white noise sequence on a probability space
(Ω,F,P) with

E {𝜔 (𝑘)} = 0; E {𝜔
2

(𝑘)} = 1;

E {𝜔 (𝑙) 𝜔 (𝑘)} = 0, 𝑙 ̸= 𝑘.

(2)

In system (Σ), the system mode switching is governed by a
discrete-time homogeneous Markov chain {𝛿

𝑘
} (𝑘 ∈ 𝑍

+

),
which takes values in a finite state space S = {1, 2, . . . ,N}

with transition probability matrix Π ≜ {𝜓
𝛼𝛽
} given by

𝜓
𝛼𝛽

≜ Pr {𝛿
𝑘+1

= 𝛽 | 𝛿
𝑘
= 𝛼} ≥ 0, ∀𝛼, 𝛽 ∈ S, 𝑘 ∈ 𝑍

+

, (3)

with 0 ≤ 𝜓
𝛼𝛽

≤ 1, for any 𝛼, 𝛽 ∈ S, and

N

∑

𝛽=1

𝜓
𝛼𝛽

= 1, 𝛼 ∈ S. (4)

In practice, it is usually of importance to require very
accurate controllers to achieve given engineering specifica-
tions. However, the resulting closed-loop systems are sensi-
tive to changes in controller gain. In this case, once there
are some small perturbations in the controller parameters,
the existence of these perturbations may cause a serious
deterioration of system performance. Hence, it is imperative
to consider the design of nonfragile controllers [24]. Con-
sequently, in this paper, we are interested in designing the
controller in the following form:

𝑢
𝑜𝑐
= (𝐾
𝛼
+ Δ𝐾
𝛼
(𝑘)) 𝑥

𝑖𝑐
(𝑘) , 𝛼 ∈ S, (5)

where 𝑥
𝑖𝑐
(𝑘) is the input of the controller; 𝑢

𝑜𝑐
is the output

of the controller; 𝐾
𝛼
are the gain matrices of the controller,

which will be determined; Δ𝐾
𝛼
(𝑘) are real-valued unknown

matrices denoting the additive gain variations as follows:

Δ𝐾
𝛼
(𝑘) = 𝑀

𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
, 𝛼 ∈ S, (6)

where 𝑀
𝛼
and 𝑁

𝛼
, 𝛼 ∈ S, are the known real constant

matrices of appropriate dimensions and𝐻
𝛼
(𝑘) are unknown

time-varying matrix functions, which satisfy the following
constraint:

𝐻
𝑇

𝛼
(𝑘)𝐻
𝛼
(𝑘) ≤ 𝐼, 𝛼 ∈ S. (7)

Remark 1. Normally, under the implicit assumption that
the communication between the plant and the controller is
perfect, one can readily get that the controlled input 𝑢(𝑘)
is equivalent to the the output of controller 𝑢

𝑜𝑐
and the

measurement state of the plant 𝑥(𝑘) is also equivalent to the
input of the controller𝑥

𝑖𝑐
(𝑘). As noted in the previous section,

such an assumption is sometimes unpractical especially
under networked environments because of the existence of
the packet losses.
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Therefore, in this paper, the packet losses phenomena
are considered in communication links. As a result, one has
𝑢(𝑘) ̸= 𝑢

𝑜𝑐
and 𝑥(𝑘) ̸= 𝑥

𝑖𝑐
(𝑘), and the relations between them

are modeled by using a stochastic method as follows:

𝑥
𝑖𝑐
(𝑘) = 𝜌

𝑘
𝑥 (𝑘) , 𝑢 (𝑘) = 𝜎

𝑘
𝑢
𝑜𝑐
. (8)

Here, {𝜌
𝑘
} and {𝜎

𝑘
} are two independent Bernoulli processes.

As shown in (8), {𝜌
𝑘
} models the unreliable communication

link from the sensor to the controller and {𝜎
𝑘
} models the

unreliable communication link from the controller to the
actuator. Inspired by [27], a natural assumption on {𝜌

𝑘
} and

{𝜎
𝑘
} can be made as follows:

Prob {𝜌
𝑘
= 1} = E {𝜌

𝑘
} = 𝜌, Prob {𝜌

𝑘
= 0} = 1 − 𝜌,

Prob {𝜎
𝑘
= 1} = E {𝜎

𝑘
} = 𝜎, Prob {𝜎

𝑘
= 0} = 1 − 𝜎,

(9)

where either 𝜌 or 𝜎 is a known constant satisfying 𝜌 ∈ [0, 1]

and 𝜎 ∈ [0, 1]. Clearly, for {𝜌
𝑘
}, when 𝜌 = 0 (resp., 𝜌 =

1), it means that the communication link from the sensor
to the controller fails (resp., successful transmission), and
{𝜎
𝑘
} also has a similar inference. Throughout this paper, we

also assume that the sequences 𝜔(𝑘), {𝛿
𝑘
}, {𝜌
𝑘
}, and {𝜎

𝑘
} are

mutually independent. Clearly, one can get

𝑢 (𝑘) = 𝜎
𝑘
𝜌
𝑘
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) 𝑥 (𝑘) . (10)

In order to address the considered problem, before
presenting further results, let us introduce a new Bernoulli
process {󰜚

𝑘
} satisfying 󰜚

𝑘
≡ 𝜎
𝑘
𝜌
𝑘
. Then, simple computation

yields

Prob {󰜚
𝑘
= 1} = E {󰜚

𝑘
} = 󰜚 = 𝜌𝜎,

Prob {󰜚
𝑘
= 0} = 1 − 𝜌𝜎,

(11)

which implies that

𝑢 (𝑘) = 𝜎
𝑘
𝜌
𝑘
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) 𝑥 (𝑘)

= 󰜚
𝑘
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) 𝑥 (𝑘)

= 󰜚 (𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) 𝑥 (𝑘)

+ (󰜚
𝑘
− 󰜚) (𝐾

𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) 𝑥 (𝑘) .

(12)

Under the control law (12), the resulting closed-loop system
can be obtained as

(Σ) : 𝑥 (𝑘 + 1) = Ω
1𝛼
(𝑘) 𝑥 (𝑘) + (󰜚

𝑘
− 󰜚)Ω

2𝛼
(𝑘) 𝑥 (𝑘)

+ 𝐶
𝛼
𝜐 (𝑘) + [𝐸

𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)] 𝜔 (𝑘) ,

𝑧 (𝑘) = Ω
3𝛼
(𝑘) 𝑥 (𝑘) + (󰜚

𝑘
− 󰜚)Ω

4𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘) ,

(13)

where
Ω
1𝛼
(𝑘) = 𝐴

𝛼
+ 󰜚𝐵
1𝛼
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) ,

Ω
2𝛼
(𝑘) = 𝐵

1𝛼
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) ,

Ω
3𝛼
(𝑘) = 𝐷

𝛼
+ 󰜚𝐵
2𝛼
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) ,

Ω
4𝛼
(𝑘) = 𝐵

2𝛼
(𝐾
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
) .

(14)

Before formulating the problem to be investigated, we
first introduce the following definition for system (Σ).

Definition 2. The closed-loop system in (13) with 𝜐(𝑘) ≡ 0 is
said to be stochastically mean square stable (SMSS) if there
exists a 𝜅 > 0 such that

E {‖𝑥 (𝑘)‖} 󳨀→ 0 as 𝑘 󳨀→ ∞, (15)

for any initial condition ‖𝑥(0)‖ < 𝜅.

Definition 3. System (Σ) is said to be SMSS with a guaranteed
𝐻
∞

performance level 𝛾, if system (Σ) is SMSS according to
Definition 2, and the prescribed disturbance attenuation level
𝛾 is made small in the feasibility of

‖𝑧 (𝑘)‖
𝐸
≤ 𝛾‖𝜐 (𝑘)‖

2
, (16)

for all nonzero 𝜔(𝑘) ∈ 𝑙
2
[0,∞) under zero initial conditions,

where

‖𝑧 (𝑘)‖
𝐸
≜ E

{

{

{

√

∞

∑

𝑘=0

𝑧
𝑇
(𝑘) 𝑧 (𝑘)

}

}

}

. (17)

Now, let us state the problems concerned in this paper,
which are listed as follows.

Problem I. Consider the stochastic system (Σ), suppose that
the controller gain matrices 𝐾

𝛼
and the additive gain varia-

tions Δ𝐾
𝛼
(𝑘) are given, and determine under what condition

the system (Σ) is SMSS with a guaranteed 𝐻
∞

performance
level 𝛾.

Problem II. Consider the system (Σ), and design a nonfragile
controller in the form of (5) such that the resulting closed-
loop system (Σ) is SMSS with a guaranteed𝐻

∞
performance

level 𝛾, in spite of the presence of packet losses phenomena.

3. Main Results

In this section, we will give an LMI approach to solving the
nonfragile 𝐻

∞
control problem formulated in the previous

section. Before proceeding further, we shall introduce the
following lemmas, whichwill be used in the proof of themain
results.

Lemma 4 (see [28]). Given constant matrices 𝑋 = 𝑋
𝑇

, 𝑌 and
𝑍 = 𝑍

𝑇

> 0 of appropriate dimensions, then

𝑋 + 𝑌
𝑇

𝑍𝑌 < 0, (18)

if and only if

[

𝑋 𝑌
𝑇

𝑌 −𝑍
−1
] < 0, (19)

or, equivalently,

[

−𝑍
−1

𝑌

𝑌
𝑇

𝑋

] < 0. (20)



4 Abstract and Applied Analysis

Lemma 5 (see [29]). Let 𝐴, 𝐿, 𝐸,𝐻, and 𝑃 be real matrices of
appropriate dimensions with𝐻𝑇𝐻 ≤ 𝐼. Then one has

(1) for any scalar 𝜖 > 0 and vectors 𝑥, 𝑦 ∈ R𝑛,

2𝑥
𝑇

𝐿𝐻𝐸𝑦 ≤ 𝜖
−1

𝑥
𝑇

𝐿𝐿
𝑇

𝑥 + 𝜖𝑦
𝑇

𝐸
𝑇

𝐸𝑦, (21)

(2) for any scalar 𝜖 > 0, such that 𝑃 − 𝜖𝐿𝐿
𝑇

> 0,

(𝐴 + 𝐿𝐻𝐸)
𝑇

𝑃
−1

(𝐴 + 𝐿𝐻𝐸) ≤ 𝐴
𝑇

(𝑃 − 𝜖𝐿𝐿
𝑇

)

−1

𝐴 + 𝜖
−1

𝐸
𝑇

𝐸.

(22)

Now, we first establish the following 𝐻
∞

performance
analysis criterion, which will play a key role in derivation of
the solution to the nonfragile𝐻

∞
control problem.

Theorem 6. Let the controller parameters in the filtering error
system (Σ), scalars 𝛾 > 0, 󰜚 > 0, be given. Then, system (Σ) is
SMSS with a guaranteed𝐻

∞
performance level 𝛾, if there exist

positive matrices 𝑃
𝛼
> 0, such that, for each 𝛼 ∈ S,

[

[

[

[

[

[

[

[

[

[

[

−𝑃
𝛼

0 Ω
𝑇

1𝛼
(𝑘) √󰜚 (1 − 󰜚)Ω

𝑇

2𝛼
(𝑘) 𝐸

𝑇

𝛼
Ω
𝑇

3𝛼
(𝑘) √󰜚 (1 − 󰜚)Ω

𝑇

4𝛼
(𝑘)

∗ −𝛾
2

𝐼 𝐶
𝑇

𝛼
0 𝐹

𝑇

𝛼
𝐺
𝑇

𝛼
0

∗ ∗ −P−1
𝛼

0 0 0 0

∗ ∗ ∗ −P−1
𝛼

0 0 0

∗ ∗ ∗ ∗ −P−1
𝛼

0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

< 0, (23)

whereP
𝛼
≜ ∑
𝛽∈S 𝜓
𝛼𝛽
𝑃
𝛽
.

Proof. Firstly, we need to establish the stochasticmean square
stability criterion of system (Σ). For this purpose, we consider
system (Σ) with 𝜐(𝑘) ≡ 0 and choose a stochastic Lyapunov
function for system (Σ) as follows:

𝑉 (𝑥 (𝑘) , 𝑘) = 𝑥
𝑇

(𝑘) 𝑃
𝛼
𝑥 (𝑘) , (24)

where 𝑃
𝛼
are the positive matrices to be determined for each

𝛼 ∈ S. Then, we have that, for each 𝛿
𝑘
= 𝛼 ∈ S and 𝛿

𝑘+1
=

𝛽 ∈ S,

E {𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) − 𝑉 (𝑥 (𝑘) , 𝑘)}

= E {[𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) − 𝑉 (𝑥 (𝑘) , 𝑘)] |

(𝑥 (𝑘) , 𝛿
𝑘
= 𝛼)}

= ∑

𝛽∈S

Pr {𝛿
𝑘+1

= 𝛽 | 𝛿
𝑘
= 𝛼} 𝑥

𝑇

(𝑘 + 1) 𝑃
𝛽
𝑥 (𝑘 + 1)

− 𝑥
𝑇

(𝑘) 𝑃
𝛼
𝑥 (𝑘)

= E {𝑥
𝑇

(𝑘 + 1)P
𝛼
𝑥 (𝑘 + 1)} − 𝑥

𝑇

(𝑘) 𝑃
𝛼
𝑥 (𝑘)

= [Ω
1𝛼
(𝑘) 𝑥 (𝑘)]

𝑇

P
𝛼
[Ω
1𝛼
(𝑘) 𝑥 (𝑘)]

+ 󰜚 (1 − 󰜚) 𝑥
𝑇

(𝑘)Ω
𝑇

2𝛼
(𝑘)P

𝛼
Ω
2𝛼
(𝑘) 𝑥 (𝑘)

+ [𝐸
𝛼
𝑥 (𝑘)]

𝑇

P
𝛼
[𝐸
𝛼
𝑥 (𝑘)] − 𝑥

𝑇

(𝑘) 𝑃
𝛼
𝑥 (𝑘) .

(25)

On the other hand, it can be deduced from (23) that

[

[

[

[

[

−𝑃
𝛼

Ω
𝑇

1𝛼
(𝑘) √󰜚 (1 − 󰜚)Ω

𝑇

2𝛼
(𝑘) 𝐸

𝑇

𝛼

∗ −P−1
𝛼

0 0

∗ ∗ −P−1
𝛼

0

∗ ∗ ∗ −P−1
𝛼

]

]

]

]

]

< 0. (26)

By applying the Schur complement formula (i.e., Lemma 4)
to (26), for system (Σ) with 𝜐(𝑘) ≡ 0, one can readily obtain
that

E {𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) − 𝑉 (𝑥 (𝑘) , 𝑘)} < 0; (27)

that is, system (Σ)with 𝜐(𝑘) ≡ 0 is SMSS according to [14, 16].
Next, we will show the 𝐻

∞
performance analysis of system

(Σ). To this end, we also obtain that each 𝛿
𝑘
= 𝛼 ∈ S and

𝛿
𝑘+1

= 𝛽 ∈ S,

E {𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) − 𝑉 (𝑥 (𝑘) , 𝑘)}

= [Ω
1𝛼
(𝑘) 𝑥 (𝑘) + 𝐶

𝛼
𝜐 (𝑘)]
𝑇

P
𝛼
[Ω
1𝛼
(𝑘) 𝑥 (𝑘) + 𝐶

𝛼
𝜐 (𝑘)]

+ 󰜚 (1 − 󰜚) 𝑥
𝑇

(𝑘)Ω
𝑇

2𝛼
(𝑘)P

𝛼
Ω
2𝛼
(𝑘) 𝑥 (𝑘)

+ [𝐸
𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)]
𝑇

P
𝛼
[𝐸
𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)]

− 𝑥
𝑇

(𝑘) 𝑃
𝛼
𝑥 (𝑘) .

(28)

Note that
E {𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2V𝑇 (𝑘) V (𝑘)}

= [Ω
3𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘)]
𝑇

[Ω
3𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘)]

+ 󰜚 (1 − 󰜚) 𝑥
𝑇

(𝑘)Ω
𝑇

4𝛼
(𝑘)Ω
4𝛼
(𝑘) 𝑥 (𝑘) − 𝛾

2V𝑇 (𝑘) V (𝑘) .
(29)
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It can be verified that

E {𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝜐
𝑇

(𝑘) 𝜐 (𝑘)

+𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) − 𝑉 (𝑥 (𝑘) , 𝑘) }

= [Ω
1𝛼
(𝑘) 𝑥 (𝑘) + 𝐶

𝛼
𝜐 (𝑘)]
𝑇

P
𝛼
[Ω
1𝛼
(𝑘) 𝑥 (𝑘) + 𝐶

𝛼
𝜐 (𝑘)]

+ 󰜚 (1 − 󰜚) 𝑥
𝑇

(𝑘)Ω
𝑇

2𝛼
(𝑘)P

𝛼
Ω
2𝛼
(𝑘) 𝑥 (𝑘)

+ [𝐸
𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)]
𝑇

P
𝛼
[𝐸
𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)]

− 𝑥
𝑇

(𝑘) 𝑃
𝛼
𝑥 (𝑘) + [Ω

3𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘)]
𝑇

× [Ω
3𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘)]

+ 󰜚 (1 − 󰜚) 𝑥
𝑇

(𝑘)Ω
𝑇

4𝛼
(𝑘)Ω
4𝛼
(𝑘) 𝑥 (𝑘) − 𝛾

2

𝜐
𝑇

(𝑘) 𝜐 (𝑘)

= [

𝑥 (𝑘)

V (𝑘)]
𝑇

[

−𝑃
𝛼

0

0 −𝛾
2

𝐼

] [

𝑥 (𝑘)

V (𝑘)]

+ [Ω
1𝛼
(𝑘) 𝑥 (𝑘) + 𝐶

𝛼
𝜐 (𝑘)]
𝑇

×P
𝛼
[Ω
1𝛼
(𝑘) 𝑥 (𝑘) + 𝐶

𝛼
𝜐 (𝑘)]

+ 󰜚 (1 − 󰜚) 𝑥
𝑇

(𝑘)Ω
𝑇

2𝛼
(𝑘)P

𝛼
Ω
2𝛼
(𝑘) 𝑥 (𝑘)

+ [𝐸
𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)]
𝑇

P
𝛼
[𝐸
𝛼
𝑥 (𝑘) + 𝐹

𝛼
𝜐 (𝑘)]

+ [Ω
3𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘)]
𝑇

[Ω
3𝛼
(𝑘) 𝑥 (𝑘) + 𝐺

𝛼
𝜐 (𝑘)]

+ 󰜚 (1 − 󰜚) 𝑥
𝑇

(𝑘)Ω
𝑇

4𝛼
(𝑘)Ω
4𝛼
(𝑘) 𝑥 (𝑘) .

(30)

Similar to the derivation of (27), we apply the Schur comple-
ment to (23) and get

E {𝑧
𝑇

(𝑘) 𝑧 (𝑘) − 𝛾
2

𝜐
𝑇

(𝑘) 𝜐 (𝑘)

+𝑉 (𝑥 (𝑘 + 1) , 𝑘 + 1) − 𝑉 (𝑥 (𝑘) , 𝑘) } < 0.

(31)

For 𝑘 = 0, 1, 2, . . ., summing up both sides of (31) under zero
initial condition and noticing 𝑉(𝑥(∞),∞) ≥ 0, it can be
verified that

E{

∞

∑

𝑘=0

𝑧
𝑇

(𝑘) 𝑧 (𝑘)} ≤ 𝛾
2

∞

∑

𝑘=0

𝜐
𝑇

(𝑘) 𝜐 (𝑘) , (32)

or, equivalently, condition (16) is satisfied.This completes the
proof.

In the following, we will present a solution to the non-
fragile 𝐻

∞
controller design problem for system (Σ) based

on Theorem 6. The following theorem proposes a sufficient
condition for the existence of such a controller for system (Σ).

Theorem 7. Consider system (Σ), let scalars 𝛾 > 0, 󰜚 > 0 be
given, and let matrices 𝐽

1𝛼
, 𝐽
2𝛼
, and 𝐽

3𝛼
be fixed. Then, there

exists an admissible controller in the form of (5) such that the
resulting closed-loop system (Σ) is SMSSwith a guaranteed𝐻

∞

performance level 𝛾, in spite of the presence of packet losses
phenomena if there exist matrices 𝑄

𝛼
> 0,𝑋 such that the

following LMIs hold for each 𝛼 ∈ S:

[

[

[

[

[

[

[

[

[

[

[

[

[

−𝑄
𝛼

0 Γ
𝑇

1𝛼
√󰜚 (1 − 󰜚)𝑌

𝑇

𝛼
𝐵
𝑇

1𝛼
𝑋
𝑇

𝐸
𝑇

𝛼
Γ
𝑇

6𝛼
√󰜚 (1 − 󰜚)𝑌

𝑇

𝛼
𝐵
𝑇

2𝛼
𝑋
𝑇

𝑁
𝑇

𝛼

∗ −𝛾
2

𝐼 𝐶
𝑇

𝛼
0 𝐹

𝑇

𝛼
𝐺
𝑇

𝛼
0 0

∗ ∗ Γ
2𝛼

Γ
3𝛼

0 Γ
7𝛼

Γ
10𝛼

0

∗ ∗ ∗ Γ
4𝛼

0 Γ
8𝛼

Γ
11𝛼

0

∗ ∗ ∗ ∗ Γ
5𝛼

0 0 0

∗ ∗ ∗ ∗ ∗ Γ
9𝛼

Γ
12𝛼

0

∗ ∗ ∗ ∗ ∗ ∗ Γ
13𝛼

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀
𝛼
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (33)

where

Γ
1𝛼

= 𝐴
𝛼
𝑋 + 󰜚𝐵

1𝛼
𝑌
𝛼
,

Γ
2𝛼

= ∑

𝛽∈S

𝜓
𝛼𝛽
𝐽
1𝛼
𝑄
𝛽
𝐽
𝑇

1𝛼
− 𝑋𝐽
𝑇

1𝛼
− 𝐽
1𝛼
𝑋
𝑇

+ 𝜀
𝛼
󰜚
2

𝐵
1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

1𝛼
,

Γ
3𝛼

= 𝜀
𝛼
󰜚√󰜚 (1 − 󰜚)𝐵

1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

1𝛼
,

Γ
4𝛼

= ∑

𝛽∈S

𝜓
𝛼𝛽
𝐽
2𝛼
𝑄
𝛽
𝐽
𝑇

2𝛼
− 𝑋𝐽
𝑇

2𝛼
− 𝐽
2𝛼
𝑋
𝑇

+ 𝜀
𝛼
󰜚 (1 − 󰜚) 𝐵

1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

1𝛼
,

Γ
5𝛼

= ∑

𝛽∈S

𝜓
𝛼𝛽
𝐽
3𝛼
𝑄
𝛽
𝐽
𝑇

3𝛼
− 𝑋𝐽
𝑇

3𝛼
− 𝐽
3𝛼
𝑋
𝑇

,

Γ
6𝛼

= 𝐷
𝛼
𝑋 + 󰜚𝐵

2𝛼
𝑌
𝛼
,

Γ
7𝛼

= 𝜀
𝛼
󰜚
2

𝐵
1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
,

Γ
8𝛼

= 𝜀
𝛼
󰜚√󰜚 (1 − 󰜚)𝐵

1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
,

Γ
9𝛼

= 𝜀
𝛼
󰜚
2

𝐵
2𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
− 𝐼,
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Γ
10𝛼

= 𝜀
𝛼
󰜚√󰜚 (1 − 󰜚)𝐵

1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
,

Γ
11𝛼

= 𝜀
𝛼
󰜚 (1 − 󰜚) 𝐵

1𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
,

Γ
12𝛼

= 𝜀
𝛼
󰜚√󰜚 (1 − 󰜚)𝐵

2𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
,

Γ
13𝛼

= 𝜀
𝛼
󰜚 (1 − 󰜚) 𝐵

2𝛼
𝑀
𝛼
𝑀
𝑇

𝛼
𝐵
𝑇

2𝛼
− 𝐼.

(34)

In this case, a suitable nonfragile𝐻
∞

controller in the form of
(5) is given by

𝐾
𝛼
= 𝑌
𝛼
𝑋
−1

, 1 ≤ 𝛼 ≤ N. (35)

Proof. Introduce the new variables 𝑄
𝛼
= 𝑋
𝑇

𝑃
𝛼
𝑋; then one

can find that

P
𝛼
≜ ∑

𝛽∈S

𝜓
𝛼𝛽
𝑃
𝛽
= ∑

𝛽∈S

𝜓
𝛼𝛽
𝑋
−𝑇

𝑄
𝛽
𝑋
−1

, (36)

which implies that

−P
−1

𝛼
= −𝑋(∑

𝛽∈S

𝜓
𝛼𝛽
𝑄
𝛽
)

−1

𝑋
𝑇

. (37)

Note that

(𝐽
𝑙𝛼
(∑

𝛽∈S

𝜓
𝛼𝛽
𝑄
𝛽
) − 𝑋)(∑

𝛽∈S

𝜓
𝛼𝛽
𝑄
𝛽
)

−1

× (𝐽
𝑙𝛼
(∑

𝛽∈S

𝜓
𝛼𝛽
𝑄
𝛽
) − 𝑋) ≥ 0, 𝑙 = 1, 2, 3.

(38)

It follows from (37) that

−P
−1

𝛼
≤ ∑

𝛽∈S

𝜓
𝛼𝛽
𝐽
𝑙𝛼
𝑄
𝛽
𝐽
𝑇

𝑙𝛼
− 𝑋𝐽
𝑇

𝑙𝛼
− 𝐽
𝑙𝛼
𝑋
𝑇

, 𝑙 = 1, 2, 3. (39)

In view of Lemma 5, one can get that

Ξ
𝑇

1𝛼
𝐻
𝛼
(𝑘) Ξ
2𝛼

+ Ξ
𝑇

2𝛼
𝐻
𝑇

𝛼
(𝑘) Ξ
1𝛼

≤ 𝜀
𝛼
Ξ
𝑇

1𝛼
Ξ
1𝛼

+ 𝜀
−1

𝛼
Ξ
𝑇

2𝛼
Ξ
2𝛼
,

(40)

where

Ξ
1𝛼

= [0 0 󰜚𝑀
𝑇

𝛼
𝐵
𝑇

1𝛼
√󰜚 (1 − 󰜚)𝑀

𝑇

𝛼
𝐵
𝑇

1𝛼
0 󰜚𝑀

𝑇

𝛼
𝐵
𝑇

2𝛼
√󰜚 (1 − 󰜚)𝑀

𝑇

𝛼
𝐵
𝑇

2𝛼
] ,

Ξ
2𝛼

= [𝑁
𝛼
𝑋 0 0 0 0 0 0] .

(41)

Using Lemma 4 and combining (33), (39), and (40) result in

[

[

[

[

[

[

[

[

[

[

[

−𝑄
𝛼

0 Γ̃
𝑇

1𝛼
√󰜚 (1 − 󰜚)Γ̃

𝑇

2𝛼
𝑋
𝑇

𝐸
𝑇

𝛼
Γ̃
𝑇

3𝛼
√󰜚 (1 − 󰜚)Γ̃

𝑇

4𝛼

∗ −𝛾
2

𝐼 𝐶
𝑇

𝛼
0 𝐹

𝑇

𝛼
𝐺
𝑇

𝛼
0

∗ ∗ −P−1
𝛼

0 0 0 0

∗ ∗ ∗ −P−1
𝛼

0 0 0

∗ ∗ ∗ ∗ −P−1
𝛼

0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]

]

]

]

]

]

]

]

]

]

]

< 0, (42)

where

Γ̃
1𝛼

= 𝐴
𝛼
𝑋 + 󰜚𝐵

1𝛼
(𝑌
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
𝑋) ,

Γ̃
2𝛼

= 𝐵
1𝛼
(𝑌
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
𝑋) ,

Γ̃
3𝛼

= 𝐷
𝛼
𝑋 + 󰜚𝐵

2𝛼
(𝑌
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
𝑋) ,

Γ̃
4𝛼

= 𝐵
2𝛼
(𝑌
𝛼
+𝑀
𝛼
𝐻
𝛼
(𝑘)𝑁
𝛼
𝑋) .

(43)

Then, by pre- and postmultiplying (42) by
diag{𝑋−𝑇, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼} and its transpose, one has that
inequality (23) holds. Therefore, in light of Theorem 6, we
can conclude that the resulting closed-loop system is SMSS

with a guaranteed 𝐻
∞

performance level 𝛾. This completes
the proof.

4. An Illustrative Example

In this section, an example is used to illustrate the effective-
ness of the presented nonfragile controller design method.
Consider the discrete-time stochastic Markov jump system
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(Σ) over a probability space (Ω,F,P) with two modes (𝛼 =

1, 2) and the following parameters:

𝐴
1
=
[

[

1.1 0.31 0

0 0.33 0.21

0 0 −0.52

]

]

,

𝐵
11

=
[

[

1 1

0 1

0 1

]

]

, 𝐶
1
=
[

[

0.1

0

0

]

]

,

𝐸
1
=
[

[

0.05 0 0

0 0.05 0

0 0 0.1

]

]

, 𝐹
1
=
[

[

0.2

0

0

]

]

,

𝐷
1
=
[

[

0.2 0 0

0 0 0

0 0 0.1

]

]

, 𝐵
21

=
[

[

0 1

0 0.1

0 0.1

]

]

,

𝐺
1
=
[

[

0

0

0.1

]

]

,

𝑀
1
= [

0.1

0.2
] , 𝑁

1
= [0.1 0.2 −0.1] ,

𝐴
2
=
[

[

0.8 −0.38 0

−0.2 0 0.21

0.1 0 −0.55

]

]

,

𝐵
12

=
[

[

1 0

0 1

0 1

]

]

, 𝐶
2
=
[

[

0

0.12

0

]

]

,

𝐸
2
=
[

[

0.5 0 0

0 0.25 0

0 0 −0.5

]

]

, 𝐹
2
=
[

[

0.1

0

0

]

]

,

𝐷
2
=
[

[

−0.12 0 0.1

0 0 0

0 0 0.1

]

]

,

𝐵
22

=
[

[

0.1 0.1

0 0.2

0 0.2

]

]

, 𝐺
2
=
[

[

0.2

0

0

]

]

,

𝑀
2
= 𝑀
1
, 𝑁

2
= 𝑁
1
.

(44)

Here, our aim is to design a nonfragile controller in the form
of (5) such that the resulting closed-loop system is SMSSwith
a guaranteed𝐻

∞
performance level 𝛾, in spite of the presence

of packet losses phenomena. To this end, we suppose that 󰜚 =

0.7, 𝛾 = 1, 𝐽
11

= 𝐽
12

= diag{0.25, 0.25, 0.25}, 𝐽
21

= 𝐽
22

=

diag{0.5, 0.5, 0.5}, and 𝐽
31

= 𝐽
32

= diag{0.05, 0.05, 0.05}, and
choose the transition probability matrix Π as Π = [

0.9 0.1

0.3 0.7
].

Then, by applying Theorem 7, one can get feasible solutions
as follows:

𝑌
1
= [

−14.5256 −10.2590 −1.2361

−1.9851 −0.9283 0.6443
] ,

𝑌
2
= [

−6.8634 6.1819 −0.9802

0.3373 −0.0477 2.2476
] ,

𝑋 =
[

[

12.7563 2.1242 0.7457

1.8940 26.0177 −1.2706

0.6125 0.1118 13.4984

]

]

.

(45)

Thus, the desired controller gains 𝐾
𝛼
(𝛼 = 1, 2,) can be given

by

𝐾
1
= [

−1.0905 −0.3050 −0.0600

−0.1548 −0.0233 0.0541
] ,

𝐾
2
= [

−0.5797 0.2850 −0.0138

0.0191 −0.0041 0.1651
] .

(46)

5. Conclusions

In this paper, we have studied the problem of nonfragile
𝐻
∞

control for stochastic systems with Markovian jumping
parameters and random packet losses. An LMI approach
has been developed to design a nonfragile controller which
ensures both the stochastic mean square stability and a
prescribed 𝐻

∞
performance level for the resulting closed-

loop systems in the presence of random packet losses. The
proposed approach has been illustrated to be effective by
an example. It should be pointed out that the states of
the system are assumed to be precisely known, but this is
difficult to achieve in practice [30–32]. Therefore, one of
our further research topics is to develop nonfragile output
feedback controller design methods for stochastic Markov
jump systems.
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