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We study the existence and uniqueness of solutions for a fractional boundary value problem involving Hadamard-type fractional
differential equations and nonlocal fractional integral boundary conditions. Our results are based on some classical fixed point
theorems. Some illustrative examples are also included.

1. Introduction

In this paper, we investigate the following Hadamard bound-
ary value problem:

𝐷
𝑞
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 1 < 𝑞 ≤ 2, 𝑡 ∈ (1, 𝑒) , (1)

𝑥 (1) = 0,

𝑚

∑

𝑖=1

𝜆𝑖𝐽
𝛼𝑖𝑥 (𝜂𝑖) =

𝑛

∑

𝑗=1

𝜇𝑗 (𝐽
𝛽𝑗𝑥 (𝑒) − 𝐽

𝛽𝑗𝑥 (𝜉𝑗)) ,

(2)

where 𝐷𝑞 denotes the Hadamard fractional derivative of
order 𝑞, 𝑓 : [1, 𝑒] × R → R is a continuous function,
𝜂𝑖, 𝜉𝑗 ∈ (1, 𝑒), 𝜆𝑖, 𝜇𝑗 ∈ R, for all 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛,
𝜂1 < 𝜂2 < ⋅ ⋅ ⋅ < 𝜂𝑚, 𝜉1 < 𝜉2 < ⋅ ⋅ ⋅ < 𝜉𝑛, and 𝐽

𝜙 is the
Hadamard fractional integral of order 𝜙 > 0 (𝜙 = 𝛼𝑖, 𝛽𝑗, 𝑖 =
1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛).

We mention that integral boundary conditions are
encountered in various applications such as population
dynamics, blood flow models, chemical engineering, cellular
systems, heat transmission, plasma physics, and thermoelas-
ticity.

Condition (2) is a general form of the integral boundary
conditions considered in [1] and covers many special cases.

For example, if 𝛼𝑖 = 𝛽𝑗 = 1, for all 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2,
. . . , 𝑛, then condition (2) reduces to

𝑥 (1) = 0,

𝜆1 ∫

𝜂1

1

𝑥 (𝑠)
𝑑𝑠

𝑠
+ ⋅ ⋅ ⋅ + 𝜆𝑚 ∫

𝜂𝑚

1

𝑥 (𝑠)
𝑑𝑠

𝑠

= 𝜇1 ∫

𝑒

𝜉1

𝑥 (𝑠)
𝑑𝑠

𝑠
+ ⋅ ⋅ ⋅ + 𝜇𝑛 ∫

𝑒

𝜉𝑛

𝑥 (𝑠)
𝑑𝑠

𝑠
.

(3)

Fractional differential equations provide appropriate
models for describing real world problems, which cannot be
described using classical integer order differential equations.
The theory of fractional differential equations has received
much attention over the past years and has become an impor-
tant field of investigation due to its extensive applications in
numerous branches of physics, economics, and engineering
sciences [2–5]. Some recent contributions to the subject can
be seen in [1, 6–20] and references cited therein.

It has been noticed that most of the work on this topic
is based on Riemann-Liouville and Caputo type fractional
differential equations. Another kind of fractional derivatives
that appears side by side to Riemann-Liouville and Caputo
derivatives in the literature is the fractional derivative due
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to Hadamard introduced in 1892 [21], which differs from the
preceding ones in the sense that the kernel of the integral (in
the definition of Hadamard derivative) contains logarithmic
function of arbitrary exponent. Details and properties of
Hadamard fractional derivative and integral can be found in
[2, 22–26]. For some recent results on Hadamard boundary
value problem we refer to [27, 28].

We establish a variety of results for the problem (1)-
(2) by using classical fixed point theorems. The first result,
Theorem 4, relies on Banach contraction mapping principle
and concerns an existence and uniqueness result for the
solutions of the problem (1)-(2). A second existence and
uniqueness result is proved inTheorem 7, via nonlinear con-
tractions and a fixed point theorem due to Boyd and Wong.
Existence results are proved in the third result, Theorem 9,
by using Krasnoselskii fixed point theorem, and in the fourth
result, Theorem 12, by using nonlinear alternative of Leray-
Schauder type.

The paper is organized as follows. In Section 2, we recall
some preliminary concepts that we need in the sequel and
prove a preliminary lemma. Section 3 contains the main
results for the problem (1)-(2). In Section 4, some illustrative
examples are discussed.

2. Preliminaries

In this section, we introduce some notations and definitions
of fractional calculus [2] and present preliminary results
needed in our proofs later.

Definition 1. The Hadamard derivative of fractional order 𝑞
for a function 𝑓: [1,∞) → R is defined as

𝐷
𝑞
𝑓 (𝑡) =

1

Γ (𝑛 − 𝑞)
(𝑡
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

1

(log 𝑡
𝑠
)

𝑛−𝑞−1𝑓 (𝑠)

𝑠
𝑑𝑠,

𝑛 − 1 < 𝑞 < 𝑛, 𝑛 = [𝑞] + 1,

(4)

where [𝑞] denotes the integer part of the real number 𝑞,
log(⋅) = log

𝑒
(⋅), and Γ is the Gamma function.

Definition 2. TheHadamard fractional integral of order 𝑞 for
a function 𝑓: [1,∞) → R is defined by

𝐽
𝑞
𝑓 (𝑡) =

1

Γ (𝑞)
∫

𝑡

1

(log 𝑡
𝑠
)

𝑞−1𝑓 (𝑠)

𝑠
𝑑𝑠, 𝑞 > 0, (5)

provided the integral exists.

For convenience, we set

Λ =

𝑚

∑

𝑖=1

𝜆𝑖

Γ (𝑞)

Γ (𝑞 + 𝛼𝑖)
(log 𝜂𝑖)

𝑞+𝛼𝑖−1

−

𝑛

∑

𝑗=1

𝜇𝑗

Γ (𝑞)

Γ (𝑞 + 𝛽𝑗)

(1 − (log 𝜉𝑗)
𝑞+𝛽𝑗−1

) .

(6)

Lemma 3. Let Λ ̸= 0, 1 < 𝑞 ≤ 2, 𝛼𝑖, 𝛽𝑗 > 0, and 𝜂𝑖, 𝜉𝑗 ∈ (1, 𝑒)
for 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, and ℎ ∈ 𝐶([1, 𝑒],R). The
unique solution of the following fractional differential equation,

𝐷
𝑞
𝑥 (𝑡) = ℎ (𝑡) , 𝑡 ∈ (1, 𝑒) , (7)

subject to the boundary condition,

𝑥 (1) = 0,

𝑚

∑

𝑖=1

𝜆𝑖𝐽
𝛼𝑖𝑥 (𝜂𝑖) =

𝑛

∑

𝑗=1

𝜇𝑗 (𝐽
𝛽𝑗𝑥 (𝑒) − 𝐽

𝛽𝑗𝑥 (𝜉𝑗)) ,

(8)

is given by the integral equation

𝑥 (𝑡) =
(log 𝑡)𝑞−1

Λ

𝑛

∑

𝑗=1

𝜇𝑗 (𝐽
𝑞+𝛽𝑗ℎ (𝑒) − 𝐽

𝑞+𝛽𝑗ℎ (𝜉𝑗))

−
(log 𝑡)𝑞−1

Λ

𝑚

∑

𝑖=1

𝜆𝑖𝐽
𝑞+𝛼𝑖ℎ (𝜂𝑖) + 𝐽

𝑞
ℎ (𝑡) .

(9)

Proof. Applying the Hadamard fractional integral of order 𝑞
to both sides of (7), we have

𝑥 (𝑡) = 𝑧1(log 𝑡)
𝑞−1
+ 𝑧2(log 𝑡)

𝑞−2
+ 𝐽
𝑞
ℎ (𝑡) , (10)

where 𝑧1, 𝑧2 ∈ R.
The condition of 𝑥(1) = 0 implies 𝑧2 = 0. Therefore,

𝑥 (𝑡) = 𝑧1(log 𝑡)
𝑞−1
+ 𝐽
𝑞
ℎ (𝑡) . (11)

For any 𝑝 > 0, by Definition 2, it follows that

𝐽
𝑝
𝑥 (𝑡) = 𝑧1

Γ (𝑞)

Γ (𝑞 + 𝑝)
(log 𝑡)𝑞+𝑝−1 + 𝐽𝑞+𝑝ℎ (𝑡) . (12)

The second condition of (8) with (12) leads to

𝑧1 =
1

Λ

𝑛

∑

𝑗=1

𝜇𝑗 (𝐽
𝑞+𝛽𝑗ℎ (𝑒) − 𝐽

𝑞+𝛽𝑗ℎ (𝜉𝑗)) −
1

Λ

𝑚

∑

𝑖=1

𝜆𝑖𝐽
𝑞+𝛼𝑖ℎ (𝜂𝑖) .

(13)

Substituting the value of a constant 𝑧1 into (11), we obtain (9)
as required. The proof is completed.

3. Main Results

Let C = 𝐶([1, 𝑒],R) denote the Banach space of all
continuous functions from [1, 𝑒] toR endowedwith the norm
defined by ‖𝑥‖ = sup

𝑡∈[1,𝑒]
|𝑥(𝑡)|. As in Lemma 3, we define an

operatorF:C → C by

(F𝑥) (𝑡) = 𝐽
𝑞
𝑓 (𝑠, 𝑥 (𝑠)) (𝑡)

−
(log 𝑡)𝑞−1

Λ

𝑚

∑

𝑖=1

𝜆𝑖𝐽
𝛼𝑖+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝜂𝑖)

+
(log 𝑡)𝑞−1

Λ

𝑛

∑

𝑗=1

𝜇𝑗 (𝐽
𝛽𝑗+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝑒)

−𝐽
𝛽𝑗+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝜉𝑗)) ,

(14)

with Λ ̸= 0. It should be noticed that problem (1)-(2) has
solutions if and only if the operatorF has fixed points.
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For the sake of convenience, we put

Φ =
1

Γ (𝑞 + 1)
+
1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)

+
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 + (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

.

(15)

The first existence and uniqueness result is based on the
Banach contraction mapping principle.

Theorem 4. Let 𝑓 : [1, 𝑒] ×R → R be a continuous function
satisfying the assumption that

(H1) there exists a constant 𝐿 > 0 such that |𝑓(𝑡, 𝑥) −
𝑓(𝑡, 𝑦)| ≤ 𝐿|𝑥 − 𝑦|, for each 𝑡 ∈ [1, 𝑒] and 𝑥, 𝑦 ∈ R.

If

𝐿Φ < 1, (16)

whereΦ is given by (15), then the boundary value problem (1)-
(2) has a unique solution on [1, 𝑒].

Proof. We transform the problem (1)-(2) into a fixed point
problem, 𝑥 = F𝑥, where the operator F is defined by (14).
By using Banach’s contraction mapping principle, we will
show that F has a fixed point which is a unique solution of
problem (1)-(2).

We set sup
𝑡∈[1,𝑒]
|𝑓(𝑡, 0)| = 𝑀 < ∞ and choose

𝑟 ≥
𝑀Φ

1 − 𝐿Φ
. (17)

Now, we show thatF𝐵𝑟 ⊂ 𝐵𝑟, where 𝐵𝑟 = {𝑥 ∈ C : ‖𝑥‖ ≤
𝑟}. For any 𝑥 ∈ 𝐵𝑟, we have

‖F𝑥‖

≤ sup
𝑡∈[1,𝑒]

{𝐽
𝑞 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨 (𝑡)

+
(log 𝑡)𝑞−1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 𝐽
𝛼𝑖+𝑞 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨 (𝜂𝑖)

+
(log 𝑡)𝑞−1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨
(𝐽
𝛽𝑗+𝑞 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨 (𝑒)

+𝐽
𝛽𝑗+𝑞 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨 (𝜉𝑗))}

≤ 𝐽
𝑞
(
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)

󵄨󵄨󵄨󵄨) (𝑒)

+
1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 𝐽
𝛼𝑖+𝑞 (
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)

󵄨󵄨󵄨󵄨) (𝜂𝑖)

+
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨
(𝐽
𝛽𝑗+𝑞 (

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)

󵄨󵄨󵄨󵄨) (𝑒)

+ 𝐽
𝛽𝑗+𝑞 (

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)

󵄨󵄨󵄨󵄨 ) (𝜉𝑗))

≤ (𝐿𝑟 +𝑀)

{

{

{

1

Γ (𝑞 + 1)
+
1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)

+
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 + (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

}

}

}

= (𝐿𝑟 +𝑀)Φ ≤ 𝑟.

(18)

It follows thatF𝐵𝑟 ⊂ 𝐵𝑟.
For 𝑥, 𝑦 ∈ C and for each 𝑡 ∈ [1, 𝑒], we have
󵄨󵄨󵄨󵄨F𝑥 (𝑡) −F𝑦 (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝐽
𝑞
(
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

󵄨󵄨󵄨󵄨) (𝑡)

+
(log 𝑡)𝑞−1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 𝐽
𝛼𝑖+𝑞 (

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
󵄨󵄨󵄨󵄨) (𝜂𝑖)

+
(log 𝑡)𝑞−1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨
(𝐽
𝛽𝑗+𝑞 (

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
󵄨󵄨󵄨󵄨) (𝑒)

+ 𝐽
𝛽𝑗+𝑞 (

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
󵄨󵄨󵄨󵄨)

× (𝜉𝑗))

≤ 𝐿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

{

{

{

1

Γ (𝑞 + 1)
+
1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)

×
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 + (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

}

}

}

= 𝐿Φ
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(19)

The above result implies that ‖F𝑥 −F𝑦‖ ≤ 𝐿Φ‖𝑥 − 𝑦‖. As
𝐿Φ < 1, therefore F is a contraction. Hence, by the Banach
contraction mapping principle, we deduce thatF has a fixed
point which is the unique solution of the problem (1)-(2).

Next, we give the second existence and uniqueness result
by using nonlinear contractions.

Definition 5. Let 𝐸 be a Banach space and let 𝐹 : 𝐸 → 𝐸 be a
mapping.𝐹 is said to be a nonlinear contraction if there exists
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a continuous nondecreasing function Ψ : R+ → R+ such
that Ψ(0) = 0 and Ψ(𝜃) < 𝜃 for all 𝜃 > 0 with the property

󵄩󵄩󵄩󵄩𝐹𝑥 − 𝐹𝑦
󵄩󵄩󵄩󵄩 ≤ Ψ (

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩) , ∀𝑥, 𝑦 ∈ 𝐸. (20)

Lemma 6 (see [29]). Let 𝐸 be a Banach space and let 𝐹 : 𝐸 →
𝐸 be a nonlinear contraction. Then 𝐹 has a unique fixed point
in 𝐸.

Theorem 7. Let 𝑓: [1, 𝑒] × R → R be a continuous function
satisfying the assumption
(H2) |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ ℎ(𝑡)(|𝑥 − 𝑦|/(𝐻

∗
+ |𝑥 − 𝑦|)), 𝑡 ∈

[1, 𝑒], 𝑥, 𝑦 ≥ 0, where ℎ : [1, 𝑒] → R+ is continuous
and a constant𝐻∗ is defined by

𝐻
∗
= 𝐽
𝑞
ℎ (𝑒) +

1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 𝐽
𝛼𝑖+𝑞ℎ (𝜂𝑖)

+
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨
(𝐽
𝛽𝑗+𝑞ℎ (𝑒) + 𝐽

𝛽𝑗+𝑞ℎ (𝜉𝑗)) .

(21)

Then the boundary value problem (1)-(2) has a unique solution.

Proof. We define the operator F : C → C as (14) and a
continuous nondecreasing function Ψ : R+ → R+ by

Ψ (𝜃) =
𝐻
∗
𝜃

𝐻∗ + 𝜃
, ∀𝜃 ≥ 0. (22)

Note that the function Ψ satisfies Ψ(0) = 0 and Ψ(𝜃) < 𝜃 for
all 𝜃 > 0.

For any 𝑥, 𝑦 ∈ C and for each 𝑡 ∈ [1, 𝑒], we have
󵄨󵄨󵄨󵄨F𝑥 (𝑡) −F𝑦 (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝐽
𝑞
(
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

󵄨󵄨󵄨󵄨) (𝑡)

+
(log 𝑡)𝑞−1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 𝐽
𝛼𝑖+𝑞 (
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

󵄨󵄨󵄨󵄨) (𝜂𝑖)

+
(log 𝑡)𝑞−1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨
(𝐽
𝛽𝑗+𝑞 (

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
󵄨󵄨󵄨󵄨) (𝑒)

+ 𝐽
𝛽𝑗+𝑞 (

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
󵄨󵄨󵄨󵄨 )

× (𝜉𝑗))

≤ 𝐽
𝑞
(ℎ (𝑠)

󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)
󵄨󵄨󵄨󵄨

𝐻∗ +
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨

) (𝑒)

+
1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 𝐽
𝛼𝑖+𝑞 (ℎ (𝑠)

󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)
󵄨󵄨󵄨󵄨

𝐻∗ +
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨

) (𝜂𝑖)

+
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

{

{

{

𝐽
𝛽𝑗+𝑞 (ℎ (𝑠)

󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)
󵄨󵄨󵄨󵄨

𝐻∗ +
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨

) (𝑒)

+ 𝐽
𝛽𝑗+𝑞 (ℎ (𝑠)

󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)
󵄨󵄨󵄨󵄨

𝐻∗ +
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨

) (𝜉𝑗)

}

}

}

≤

Ψ(
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 )

𝐻∗
(𝐽
𝑞
ℎ (𝑒) +

1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 𝐽
𝛼𝑖+𝑞ℎ (𝜂𝑖)

+
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨
(𝐽
𝛽𝑗+𝑞ℎ (𝑒) + 𝐽

𝛽𝑗+𝑞ℎ (𝜉𝑗)))

= Ψ (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) .

(23)

This implies that ‖F𝑥 −F𝑦‖ ≤ Ψ(‖𝑥 − 𝑦‖). Therefore F is
a nonlinear contraction. Hence, by Lemma 6 the operatorF
has a fixed point which is the unique solution of the problem
(1)-(2).

Next, we give an existence result by using Krasnoselskii’s
fixed point theorem.

Lemma 8 (Krasnoselskii’s fixed point theorem [30]). Let M
be a closed, bounded, convex, and nonempty subset of a Banach
space X. Let A, B be the operators such that (a) 𝐴𝑥 + 𝐵𝑦 ∈ 𝑀,
whenever 𝑥, 𝑦 ∈ 𝑀; (b) A is compact and continuous; (c) B is
a contraction mapping. Then there exists 𝑧 ∈ 𝑀 such that z =
Az + Bz.

Theorem 9. Assume that 𝑓: [1, 𝑒] × R → R is a continuous
function satisfying assumption (𝐻1). In addition we suppose
that

(H3) |𝑓(𝑡, 𝑥)| ≤ 𝜅(𝑡), ∀(𝑡, 𝑥) ∈ [1, 𝑒] × R and 𝜅 ∈
𝐶([1, 𝑒],R+).

If

𝐿

Γ (𝑞 + 1)
< 1, (24)

then the boundary value problem (1)-(2) has at least one
solution on [1, 𝑒].

Proof. We define sup
𝑡∈[1,𝑒]
|𝜅(𝑡)| = ‖𝜅‖ and choose a suitable

constant 𝑟 as

𝑟 ≥ ‖𝜅‖Φ, (25)

where Φ is defined by (15). Furthermore, we define the
operatorsP and Q on 𝐵𝑟 = {𝑥 ∈ C : ‖𝑥‖ ≤ 𝑟} as

(P𝑥) (𝑡) =
(log 𝑡)𝑞−1

Λ

𝑛

∑

𝑗=1

𝜇𝑗 (𝐽
𝛽𝑗+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝑒)

−𝐽
𝛽𝑗+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝜉𝑗))

−
(log 𝑡)𝑞−1

Λ

𝑚

∑

𝑖=1

𝜆𝑖𝐽
𝛼𝑖+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝜂𝑖) ,

𝑡 ∈ [1, 𝑒] ,

(Q𝑥) (𝑡) = 𝐽
𝑞
𝑓 (𝑠, 𝑥 (𝑠)) (𝑡) , 𝑡 ∈ [1, 𝑒] .

(26)
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For 𝑥, 𝑦 ∈ 𝐵𝑟, we have

󵄩󵄩󵄩󵄩P𝑥 + Q𝑦
󵄩󵄩󵄩󵄩 ≤ ‖𝜅‖(

1

Γ (𝑞 + 1)
+
1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)

+
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 + (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

)

= ‖𝜅‖Φ ≤ 𝑟.

(27)

This shows that P𝑥 + Q𝑦 ∈ 𝐵𝑟. It follows from assumption
(H1) together with (24) thatQ is a contractionmapping. Since
the function 𝑓 is continuous, we have that the operatorP is
continuous. It is easy to verify that

‖P𝑥‖ ≤ ‖𝜅‖(
1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)

+
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 + (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

) .

(28)

Therefore,P is uniformly bounded on 𝐵𝑟.
Next, we prove the compactness of the operatorP. Let us

set sup
(𝑡,𝑥)∈[1,𝑒]×𝐵𝑟

|𝑓(𝑡, 𝑥)| = 𝑓 < ∞; consequently we get
󵄨󵄨󵄨󵄨(P𝑥) (𝑡1) − (P𝑥) (𝑡2)

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(log 𝑡1)
𝑞−1

Λ

𝑛

∑

𝑗=1

𝜇𝑗 (𝐽
𝛽𝑗+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝑒)

−𝐽
𝛽𝑗+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝜉𝑗))

−
(log 𝑡1)

𝑞−1

Λ

𝑚

∑

𝑖=1

𝜆𝑖𝐽
𝛼𝑖+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝜂𝑖)

−
(log 𝑡2)

𝑞−1

Λ

𝑛

∑

𝑗=1

𝜇𝑗 (𝐽
𝛽𝑗+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝑒)

− 𝐽
𝛽𝑗+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝜉𝑗))

+
(log 𝑡2)

𝑞−1

Λ

𝑚

∑

𝑖=1

𝜆𝑖𝐽
𝛼𝑖+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝜂𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑓

󵄨󵄨󵄨󵄨󵄨
(log 𝑡2)

𝑞−1
− (log 𝑡1)

𝑞−1󵄨󵄨󵄨󵄨󵄨

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)

+ 𝑓

󵄨󵄨󵄨󵄨󵄨
(log 𝑡2)

𝑞−1
− (log 𝑡1)

𝑞−1󵄨󵄨󵄨󵄨󵄨

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 − (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

,

(29)

which is independent of 𝑥 and tends to zero as 𝑡2 → 𝑡1.Thus,
P is equicontinuous. SoP is relatively compact on𝐵𝑟. Hence,

by the Arzelá-Ascoli theorem, P is compact on 𝐵𝑟. Thus, all
the assumptions of Lemma 8 are satisfied. So the boundary
value problem (1)-(2) has at least one solution on [1, 𝑒]. The
proof is completed.

Remark 10. In the above theorem we can interchange the
roles of the operators P and Q to obtain a second result
replacing (24) by the following condition:

𝐿

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)
+
𝐿

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 + (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

< 1.

(30)

Now, our last existence result is based on Leray-Schaud-
er’s nonlinear alternative.

Theorem 11 (nonlinear alternative for single-valued maps
[31]). Let E be a Banach space, C a closed, convex subset of E,
U an open subset of C, and 0 ∈ 𝑈. Suppose that 𝐹 : 𝑈 → 𝐶 is
a continuous, compact (i.e., 𝐹(𝑈) is a relatively compact subset
of C) map. Then either

(i) F has a fixed point in 𝑈 or

(ii) there is a 𝑢 ∈ 𝜕𝑈 (the boundary of U in C) and 𝜆 ∈
(0, 1), with 𝑢 = 𝜆𝐹(𝑢).

Theorem 12. Assume that 𝑓 : [1, 𝑒] ×R → R is a continuous
function. In addition we suppose that

(H4) there exists a continuous nondecreasing function 𝜓 :
[0,∞) → (0,∞) and a function 𝑝 ∈ 𝐶([1, 𝑒],R+)
such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑝 (𝑡) 𝜓 (|𝑥|) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑡, 𝑥) ∈ [1, 𝑒] ×R; (31)

(H5) there exists a constant𝑁 > 0 such that

𝑁

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝑁)Φ

> 1, (32)

whereΦ is defined by (15).

Then the boundary value problem (1)-(2) has at least one
solution on [1, 𝑒].

Proof. Firstly, we will show that the operator F, defined by
(14), maps bounded sets (balls) into bounded sets in C. For a
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positive number 𝑅, let 𝐵𝑅 = {𝑥 ∈ C : ‖𝑥‖ ≤ 𝑅} be a bounded
ball inC. Then for 𝑡 ∈ [1, 𝑒], we have

|F𝑥 (𝑡)| ≤ 𝐽
𝑞 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨 (𝑒)

+
1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 𝐽
𝛼𝑖+𝑞 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨 (𝜂𝑖)

+
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨
(𝐽
𝛽𝑗+𝑞 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨 (𝑒)

+ 𝐽
𝛽𝑗+𝑞 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨 (𝜉𝑗))

≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (‖𝑥‖)

1

Γ (𝑞 + 1)

+
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (‖𝑥‖)

1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)

+
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (‖𝑥‖)

1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 + (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝑅)

1

Γ (𝑞 + 1)

+
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝑅)

1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)

+
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝑅)

1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 + (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

:= 𝐾.

(33)

Therefore, we conclude that ‖F𝑥‖ ≤ 𝐾.
Secondly, we show thatFmaps bounded sets into equicon-

tinuous sets of C. Let sup
(𝑡,𝑥)∈[1,𝑒]×𝐵𝑅

|𝑓(𝑡, 𝑥)| = 𝑓
∗
< ∞,

]1, ]2 ∈ [1, 𝑒] with ]1 < ]2 and 𝑥 ∈ 𝐵𝑅. Then we have

󵄨󵄨󵄨󵄨(F𝑥) (]2) − (F𝑥) (]1)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐽
𝑞
𝑓 (𝑠, 𝑥 (𝑠)) (]2)

−
(log ]2)

𝑞−1

Λ

𝑚

∑

𝑖=1

𝜆𝑖𝐽
𝛼𝑖+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝜂𝑖)

+
(log ]2)

𝑞−1

Λ

𝑛

∑

𝑗=1

𝜇𝑗 (𝐽
𝛽𝑗+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝑒)

−𝐽
𝛽𝑗+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝜉𝑗))

− 𝐽
𝑞
𝑓 (𝑠, 𝑥 (𝑠)) (]1)

+
(log ]1)

𝑞−1

Λ

𝑚

∑

𝑖=1

𝜆𝑖𝐽
𝛼𝑖+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝜂𝑖)

−
(log ]1)

𝑞−1

Λ

𝑛

∑

𝑗=1

𝜇𝑗 (𝐽
𝛽𝑗+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝑒)

−𝐽
𝛽𝑗+𝑞𝑓 (𝑠, 𝑥 (𝑠)) (𝜉𝑗))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑓
∗

󵄨󵄨󵄨󵄨󵄨
(log ]2)

𝑞
− (log ]1)

𝑞󵄨󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)

+ 𝑓
∗

󵄨󵄨󵄨󵄨󵄨
(log ]2)

𝑞−1
− (log ]1)

𝑞−1󵄨󵄨󵄨󵄨󵄨

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)

+ 𝑓
∗

󵄨󵄨󵄨󵄨󵄨
(log ]2)

𝑞−1
− (log ]1)

𝑞−1󵄨󵄨󵄨󵄨󵄨

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 − (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

.

(34)

Obviously, the right hand side of the above inequality tends
to zero independently of 𝑥 ∈ 𝐵𝑅 as ]2 → ]1. Therefore it
follows from the Arzelá-Ascoli theorem thatF : C → C is
completely continuous.

Let 𝑥 be a solution. Then, for 𝑡 ∈ [1, 𝑒], following the
similar computations as in the first step, we have

‖𝑥‖ ≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (‖𝑥‖)

1

Γ (𝑞 + 1)

+
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (‖𝑥‖)

1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)

+
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (‖𝑥‖)

1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 + (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

=
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (‖𝑥‖)Φ.

(35)

Consequently, we have

‖𝑥‖

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (‖𝑥‖)Φ

≤ 1. (36)

In view of (H5), there exists𝑁 such that ‖𝑥‖ ̸=𝑁. Let us set

𝑈 = {𝑥 ∈ C : ‖𝑥‖ < 𝑁} . (37)

Note that the operator F : 𝑈 → C is continuous and
completely continuous. From the choice of 𝑈, there is no
𝑥 ∈ 𝜕𝑈 such that 𝑥 = 𝜃F𝑥 for some 𝜃 ∈ (0, 1). Consequently,
by nonlinear alternative of Leray-Schauder type (Theorem 11)
we deduce thatF has a fixed point in 𝑈, which is a solution
of the boundary value problem (1)-(2). This completes the
proof.



Abstract and Applied Analysis 7

4. Examples

Example 1. Consider the following boundary value problem
for Hadamard fractional differential equation:

𝐷
3/2
𝑥 (𝑡) =

log 𝑡5

𝑒𝑡(𝑡 + 2)
2

|𝑥 (𝑡)|

(3 + |𝑥 (𝑡)|)
, 𝑡 ∈ 𝐽 = [1, 𝑒] ,

𝑥 (1) = 0,

2𝐽
1/4
𝑥(
5

4
) +
1

5
𝐽
3/2
𝑥(
9

5
) + 3𝐽

2
𝑥(
15

7
)

= 𝐽
2/3
𝑥 (𝑒) − 𝐽

2/3
𝑥(
10

7
) + 5 (𝐽

9/7
𝑥 (𝑒) − 𝐽

9/7
𝑥 (2))

− 2 (𝐽
11/4
𝑥 (𝑒) − 𝐽

11/4
𝑥(
9

4
)) .

(38)

Here 𝑞 = 3/2, 𝜆1 = 2, 𝜆2 = 1/5, 𝜆3 = 3, 𝛼1 = 1/4, 𝛼2 =
3/2, 𝛼3 = 2, 𝜂1 = 5/4, 𝜂2 = 9/5, 𝜂3 = 15/7, 𝜇1 = 1, 𝜇2 =
5, 𝜇3 = −2, 𝛽1 = 2/3, 𝛽2 = 9/7, 𝛽3 = 11/4, 𝜉1 = 10/7, 𝜉2 =
2, 𝜉3 = 9/4, and 𝑓(𝑡, 𝑥) = (log 𝑡

5
|𝑥|)/(𝑒

𝑡
(𝑡 + 2)

2
(3 + |𝑥|)).

Since

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤ (

5

27𝑒
)
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 ,
(39)

then (H1) is satisfied with 𝐿 = 5/27𝑒. We can show that

Λ =

𝑚

∑

𝑖=1

𝜆𝑖

Γ (𝑞)

Γ (𝑞 + 𝛼𝑖)
(log 𝜂𝑖)

𝑞+𝛼𝑖−1

−

𝑛

∑

𝑗=1

𝜇𝑗

Γ (𝑞)

Γ (𝑞 + 𝛽𝑗)

(1 − (log 𝜉𝑗)
𝑞+𝛽𝑗−1

)

≈ −0.6895040549,

Φ =
1

Γ (𝑞 + 1)
+
1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)

+
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 + (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

≈ 3.975680952,

𝐿Φ =
5

27𝑒
(3.975680952) ≈ 0.2708465347 < 1.

(40)

Hence, byTheorem 4, the boundary value problem (38) has a
unique solution on [1, 𝑒].

Example 2. Consider the following boundary value problem
for Hadamard fractional differential equation:

𝐷
7/4
𝑥 (𝑡) =

𝑒
𝑡

(𝑡 + 1)
2

|𝑥 (𝑡)|

(2 + |𝑥 (𝑡)|)
, 𝑡 ∈ 𝐽 = [1, 𝑒] ,

𝑥 (1) = 0,

1

4
𝐽
6/7
𝑥(
7

3
) −
2

3
𝐽
3
𝑥(
7

5
) − 2𝐽

5/2
𝑥 (2)

= 4 (𝐽
5
𝑥 (𝑒) − 𝐽

5
𝑥(
11

5
))

+
11

4
(𝐽
3/4
𝑥 (𝑒) − 𝐽

3/4
𝑥(
16

13
)) .

(41)

Here 𝑞 = 7/4, 𝜆1 = 1/4, 𝜆2 = −2/3, 𝜆3 = −2, 𝛼1 = 6/7,
𝛼2 = 3, 𝛼3 = 5/2, 𝜂1 = 7/3, 𝜂2 = 7/5, 𝜂3 = 2, 𝜇1 = 4, 𝜇2 =
11/4,𝛽1 = 5, 𝛽2 = 3/4, 𝜉1 = 11/5, 𝜉2 = 16/13, and 𝑓(𝑡, 𝑥) =
(𝑒
𝑡
|𝑥|)/((𝑡 + 1)

2
(2 + |𝑥|)). We choose ℎ(𝑡) = 𝑒𝑡/4 and that

Λ =

𝑚

∑

𝑖=1

𝜆𝑖

Γ (𝑞)

Γ (𝑞 + 𝛼𝑖)
(log 𝜂𝑖)

𝑞+𝛼𝑖−1

−

𝑛

∑

𝑗=1

𝜇𝑗

Γ (𝑞)

Γ (𝑞 + 𝛽𝑗)

(1 − (log 𝜉𝑗)
𝑞+𝛽𝑗−1

)

≈ −1.672972140,

𝐻
∗
= 𝐽
𝑞
ℎ (𝑒) +

1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨 𝐽
𝛼𝑖+𝑞ℎ (𝜂𝑖)

+
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨
(𝐽
𝛽𝑗+𝑞ℎ (𝑒) + 𝐽

𝛽𝑗+𝑞ℎ (𝜉𝑗))

≈ 1.295076743.

(42)

Clearly,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 =

𝑒
𝑡

(1 + 𝑡)
2
(

2 |𝑥| − 2
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

4 + 2 |𝑥| + 2
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 + |𝑥|

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

)

≤
𝑒
𝑡

4
(

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

1.295076743 +
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

) .

(43)

Hence, byTheorem 7, the boundary value problem (41) has a
unique solution on [1, 𝑒].
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Example 3. Consider the following boundary value problem
for Hadamard fractional differential equation:

𝐷
6/5
𝑥 (𝑡) =

2 sin (𝑥/4)
5𝜋 + (𝑒

𝑥 + 1)
2
+
2 + cos (𝜋𝑡)
10𝜋 + 3

, 𝑡 ∈ 𝐽 = [1, 𝑒] ,

𝑥 (1) = 0,

𝐽
4
𝑥(
3

2
) − 3𝐽

9/4
𝑥 (2) − 10𝐽

1/5
𝑥(
7

4
) + 6𝐽

7/2
𝑥(
5

2
)

+
14

3
𝐽
5
𝑥(
11

9
)

= 3 (𝐽
3/2
𝑥 (𝑒) − 𝐽

3/2
𝑥(
11

7
)) − 7 (𝐽

3
𝑥 (𝑒) − 𝐽

3
𝑥(
17

13
))

+
4

3
(𝐽
5/3
𝑥 (𝑒) − 𝐽

5/3
𝑥 (2)) .

(44)

Here 𝑞 = 6/5, 𝜆1 = 1, 𝜆2 = −3, 𝜆3 = −10, 𝜆4 = 6, 𝜆5 =
14/3,𝛼1 = 4, 𝛼2 = 9/4, 𝛼3 = 1/5, 𝛼4 = 7/2, 𝛼5 = 5, 𝜂1 =
3/2, 𝜂2 = 2, 𝜂3 = 7/4, 𝜂4 = 5/2, 𝜂5 = 11/9, 𝜇1 = 3, 𝜇2 =
−7, 𝜇3 = 4/3, 𝛽1 = 3/2, 𝛽2 = 3, 𝛽3 = 5/3, 𝜉1 = 11/7, 𝜉2 =
17/13, 𝜉3 = 2, and 𝑓(𝑡, 𝑥) = (2 sin(𝑥/4))/(5𝜋 + (𝑒

𝑥
+ 1)
2
) +

(2 + cos(𝜋𝑡))/(10𝜋 + 3). Clearly,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 sin (𝑥/4)
5𝜋 + (𝑒

𝑥 + 1)
2
+
2 + cos (𝜋𝑡)
10𝜋 + 3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (2 + cos (𝜋𝑡)) ( |𝑥| + 1
10𝜋

) .

(45)

Choosing 𝑝(𝑡) = 2 + cos(𝜋𝑡) and 𝜓(|𝑥|) = (|𝑥| + 1)/(10𝜋), we
can show that

Λ =

𝑚

∑

𝑖=1

𝜆𝑖

Γ (𝑞)

Γ (𝑞 + 𝛼𝑖)
(log 𝜂𝑖)

𝑞+𝛼𝑖−1

−

𝑛

∑

𝑗=1

𝜇𝑗

Γ (𝑞)

Γ (𝑞 + 𝛽𝑗)

(1 − (log 𝜉𝑗)
𝑞+𝛽𝑗−1

)

≈ −9.148087406,

Φ =
1

Γ (𝑞 + 1)
+
1

|Λ|

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

(log 𝜂𝑖)
𝛼𝑖+𝑞

Γ (𝛼𝑖 + 𝑞 + 1)

+
1

|Λ|

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝜇𝑗

󵄨󵄨󵄨󵄨󵄨

1 + (log 𝜉𝑗)
𝛽𝑗+𝑞

Γ (𝛽𝑗 + 𝑞 + 1)

≈ 1.462649525,

𝑁

(3) ((𝑁 + 1) /10𝜋) (1.462649525)
> 1,

(46)

which implies that𝑁> 0.1623483851. Hence, byTheorem 12,
the boundary value problem (44) has at least one solution on
[1, 𝑒].
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