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We consider anM/M/c queueing system with impatient customers and a synchronous vacation policy, where customer impatience
is due to the servers’ vacation. Whenever a system becomes empty, all the servers take a vacation. If the system is still empty, when
the vacation ends, all the servers take another vacation; otherwise, they return to serve the queue.We develop the balance equations
for the steady-state probabilities and solve the equations by using the probability generating function method. We obtain explicit
expressions of some important performance measures by means of the two indexes. Based on these, we obtain some results about
limiting behavior for some performance measures. We derive closed-form expressions of some important performance measures
for two special cases. Finally, some numerical results are also presented.

1. Introduction

Queueing systems with vacations have been developed for
wide range of applications in flexible manufacturing and
computer communication systems over more than two
decades. Literatures relating to this topic can be found in
several excellent surveys by Doshi [1], Takagi [2], and a
monograph by Tian and Zhang [3]. There is now growing
interest in the analysis of queueing systems with impatient
customers. This is due to their potential applications in
communication systems, call centers, production-inventory
systems, and many other related areas; see for instance [4–6]
and the references therein.

The M/M/𝑐 queue with exponentially distributed vaca-
tion times was first studied by Levy and Yechiali [7], where
each server takes vacations independently when the server
finishes a service and finds no customers waiting in the
queue. In the literature, this type of vacation policy is
called asynchronous vacation policy. Vinod [8] studied this
model by using QBD process and obtained the matrix-
geometric solution. Chao and Zhao [9] investigated the mul-
tiserver vacationmodels of both synchronous (servers taking
the same vacation together) and asynchronous types and

provided some algorithms for computing the stationary prob-
ability distributions and expected performance measures.
Tian et al. [10] and Zhang and Tian [11] have established the
conditional stochastic decomposition properties on queue
length and waiting time and provided the stationary dis-
tributions for the queue length and the waiting time in
the Markovian multiserver synchronous vacation queueing
systems.

Recently, Altman and Yechiali [12] presented a compre-
hensive analysis for M/M/𝑐 queueing models with server
vacations and customer impatience, where customers became
impatient only when the servers were on vacation. They
considered asynchronous vacation policy for both the single
and the multiple vacation cases by using the probability
generating function method. However, they did not obtain
the detailed results for the stationary probabilities and some
expected performance measures such as the mean queue
length and expected waiting time. For other works on the
vacation queueingmodels with impatient customers, we refer
to Altman and Yechiali [13], Yue et al. [14], Perel and Yechiali
[15], and Economou and Kapodistria [16].

To the best of our knowledge, there is no work on
multiserver synchronous vacation queueing models with
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impatient customers. In this paper, we consider an M/M/𝑐
queueing system with impatient customers and synchronous
vacations. When a server finishes serving a customer and
finds the system empty, all servers immediately leave for a
vacation. If all servers return from a vacation to find an
empty queue, they immediately leave for another vacation;
otherwise, all servers return to serve the queue. This type
of vacation is called a multiple synchronous vacation policy.
Customers became impatient only when the servers were
on vacation. That is, an arriving customer who finds that
all servers are on vacation activates an “impatience timer.”
If the customer’s service has not been completed before the
customer’s impatience timer expires, the customer abandons
the queue and never returns.

The model considered in this paper has potential
applications in practical systems. For example, consider
a production-inventory system with impatient customers,
where a single product is produced at a multipurpose facility.
The major job of the facility is to produce products to
fulfill customer orders. In addition, the facility may perform
other optional jobs utilizing the time between subsequent
productions. The production facility can produce ahead of
the demand in a make-to-stock fashion. However, the system
manager does not want to keep higher level of inventory of
items becausemore items in inventory result in the increasing
of the holding costs. Therefore, whenever the last order is
completed and no order occurs, the manager may decide
to stop the major production and perform optional jobs
for a period of time. Upon completion of each optional
job the manager checks the orders and decides whether or
not to restart major production. If no orders occur at this
moment, a decision is made to perform other optional jobs
next. The optional jobs can be referred to as a sequence of
finite maintenance policy (such as inspection, replacement,
or preventive maintenance for machines in the facility) or
secondary jobs. Upon arrival, an order is either fulfilled from
the inventory if any is available or back-ordered. Customers
whose orders are back-ordered may become impatient and
decide to cancel their orders if the customers’ waiting time
exceeds a customer’s level of patience.This is especially likely
when the facility performs optional jobs. This system can be
modeled by our model developed in this paper. For other
similar examples in communication networks, we refer to Ke
[17] and Ke and Chang [18].

The rest of paper is organized as follows. In Section 2,
we describe the model. In Section 3, we first develop the
differential equations for the probability generating func-
tions of the steady-state probabilities. Then, we obtain the
explicit expressions for some performance measures in terms
of two indexes. Based on these, we obtain some results
about limiting behavior for some performancemeasures.The
closed-form expressions of some performance measures are
obtained for two special cases. In Section 4, we present some
numerical results. Conclusions are given in Section 5.

2. Model Description

We consider an M/M/𝑐 queueing system with impatient
customers and a synchronous vacation policy. Customers

arrive according to a Poisson process at rate 𝜆. The service
is provided by 𝑐 servers, who serve the customers on a first-
come first-served (FCFS) basis. The service time of each
customer is exponentially distributed with mean 1/𝜇.

The multiple synchronous vacation policy is described
as follows. When the server finishes serving a customer
and finds the system empty, all servers immediately leave
for a vacation. If servers return from a vacation to find an
empty queue, they immediately leave for another vacation;
otherwise, they return to serve the queue. The duration of a
vacation is exponentially distributed with mean 1/𝛾.

During the vacation, customers are impatient. That is, an
arriving customer who finds that all servers are on vacation
activates an “impatience timer” 𝑇, which is exponentially
distributed with mean 1/𝜉. If the customer’s service has
not been completed before the customer’s timer expires, the
customer abandons the queue and never returns.

3. Stationary Analysis

In this section, we present a stationary analysis for the model
described in the last section.

3.1. Balance Equations. Let 𝐿(𝑡) denote the number of cus-
tomers in the system at time 𝑡 and let 𝐽(𝑡) denote the status
of the server at time 𝑡, which is defined as follows: 𝐽(𝑡) =
0 denotes that all 𝑐 servers are taking a vacation at time 𝑡
and 𝐽(𝑡) = 1 denotes that some servers are busy serving
customers at time 𝑡. Then, the process {(𝐿(𝑡), 𝐽(𝑡)), 𝑡 ≥ 0}

defines a continuous-time Markov process with state space
Ω = {(0, 0)} ∪ {(𝑛, 𝑗) : 𝑛 ≥ 1, 𝑗 = 0, 1}.

Let

𝑃
𝑛𝑗
= lim
𝑡→∞

𝑃 {𝐿 (𝑡) = 𝑛, 𝐽 (𝑡) = 𝑗} , (𝑛, 𝑗) ∈ Ω, (1)

denote the steady-state probabilities of the process
{(𝐿(𝑡), 𝐽(𝑡)), 𝑡 ≥ 0}. Then, the set of balance equations
is given as follows:

𝜆𝑃
00
= 𝜇𝑃
11
+ 𝜉𝑃
10
, (2)

(𝜆 + 𝑛𝜉 + 𝛾) 𝑃
𝑛0
= 𝜆𝑃
(𝑛−1)0

+ (𝑛 + 1) 𝜉𝑃
(𝑛+1)0

, 𝑛 ≥ 1,

(3)

(𝜆 + 𝜇) 𝑃
11
= 2𝜇𝑃

21
+ 𝛾𝑃
10
, (4)

(𝜆 + 𝑛𝜇) 𝑃
𝑛1
= 𝜆𝑃
(𝑛−1)1

+ (𝑛 + 1) 𝜇𝑃
(𝑛+1)1

+ 𝛾𝑃
𝑛0
,

2 ≤ 𝑛 ≤ 𝑐 − 1,
(5)

(𝜆 + 𝑐𝜇) 𝑃
𝑛1
= 𝜆𝑃
(𝑛−1)1

+ 𝑐𝜇𝑃
(𝑛+1)1

+ 𝛾𝑃
𝑛0
, 𝑛 ≥ 𝑐,

(6)

and the normalizing condition is as follows:

∞

∑
𝑛=0

𝑃
𝑛0
+

∞

∑
𝑛=1

𝑃
𝑛1
= 1. (7)
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3.2. Generating Functions. We define the probability generat-
ing functions as follows:

𝐺
0
(𝑧) =

∞

∑
𝑛=0

𝑃
𝑛0
𝑧
𝑛

, 𝐺
1
(𝑧) =

∞

∑
𝑛=1

𝑃
𝑛1
𝑧
𝑛

, 0 ≤ 𝑧 ≤ 1.

(8)

Then, multiplying (3) by 𝑧𝑛, summing all possible values
of 𝑛, and using (2), we get

𝜉 (1 − 𝑧)
𝑑

𝑑𝑧
𝐺
0
(𝑧) = [𝜆 (1 − 𝑧) + 𝛾]𝐺

0
(𝑧) − (𝛾𝑃

00
+ 𝜇𝑃
11
) .

(9)

Similarly, multiplying (5) and (6) by 𝑧𝑛, then summing all
possible values of 𝑛, and using (4), we get

(1 − 𝑧) (𝜆𝑧 − 𝜇)𝐺
1
(𝑧) = 𝛾𝑧𝐺

0
(𝑧) − (𝛾𝑃

00
+ 𝜇𝑃
11
) 𝑧

+ 𝜇 (1 − 𝑧)

𝑐

∑
𝑛=1

(𝑛 − 𝑐) 𝑃
𝑛1
𝑧
𝑛

.

(10)

The differential equation (9) is the same as (2.4) in the
paper written by Altman and Yechiali [12], where they solve
this differential equation and obtain 𝐺

0
(𝑧) as follows:

𝐺
0
(𝑧) = 𝑒

(𝜆/𝜉)𝑧

(1 − 𝑧)
−𝛾/𝜉

× [𝐺
0
(0) −

𝐻

𝜉
∫
𝑧

0

(1 − 𝑥)
(𝛾/𝜉)−1

𝑒
−(𝜆/𝜉)𝑥

𝑑𝑥] ,

(11)

where

𝐻 = 𝛾𝑃
00
+ 𝜇𝑃
11
. (12)

See Altman and Yechiali [12, Equation (2.11)]. Then

𝐺
0
(1) = 𝑒

(𝜆/𝜉)𝑧

[𝐺
0
(0) −

𝐻

𝜉
∫
1

0

(1 − 𝑥)
(𝛾/𝜉)−1

𝑒
−(𝜆/𝜉)𝑥

𝑑𝑥]

× lim
𝑧→1

(1 − 𝑧)
−𝛾/𝜉

.

(13)

Since 𝐺
0
(1) = ∑

∞

𝑛=0
𝑃
𝑛0
> 0 and lim

𝑧→1
(1 − 𝑧)

−𝛾/𝜉

= ∞, we
must have that

𝑃
00
= 𝐺
0
(0) =

𝐻

𝜉
𝐾, (14)

where

𝐾 = ∫
1

0

𝑒
−(𝜆/𝜉)𝑥

(1 − 𝑥)
(𝛾/𝜉)−1

𝑑𝑥. (15)

Substituting (14) into (11) and noting that 𝐺
0
(0) = 𝑃

00
, we

have

𝐺
0
(𝑧) =

𝑒
(𝜆/𝜉)𝑧

(1 − 𝑧)
𝛾/𝜉

[1 −
1

𝐾
∫
𝑧

0

(1 − 𝑥)
(𝛾/𝜉)−1

𝑒
−(𝜆/𝜉)𝑥

𝑑𝑥]𝑃
00
.

(16)

Equation (10) can be written as follows:

𝐺
1
(𝑧) =

[𝛾𝐺
0
(𝑧) − 𝐻] 𝑧

(𝜆𝑧 − 𝜇) (1 − 𝑧)
−

𝜇

𝜆𝑧 − 𝜇
𝑄 (𝑧) , (17)

where 𝑄(𝑧) = ∑𝑐
𝑛=1
(𝑐 − 𝑛)𝑃

𝑛1
𝑧
𝑛.

Equation (16) shows that𝐺
0
(𝑧) can be expressed in terms

of 𝑃
00
. Equation (17) shows that 𝐺

1
(𝑧) can be expressed in

terms of 𝐺
0
(𝑧), 𝐻, and 𝑄(𝑧). In other words, once 𝑃

00
and

𝑃
𝑗1

(𝑗 = 1, 2, . . . , 𝑐 − 1) are obtained, 𝐺
0
(𝑧) and 𝐺

1
(𝑧) are

completely determined.

3.3. Performance Measures. In this subsection, we derive
some performance measures of the system by using the
expressions of the PGF we obtained in last section. Further-
more, we consider the limiting behavior for some perfor-
mance measures.

3.3.1. Expected System Sizes. Let 𝐿
0
and 𝐿

1
be the system

size when all servers are on vacation and not on vacation,
respectively.Then, the expected system sizes𝐸[𝐿

0
] and𝐸[𝐿

1
]

are defined by

𝐸 [𝐿
𝑗
] =

∞

∑
𝑛=1

𝑛𝑃
𝑛𝑗
, 𝑗 = 0, 1. (18)

Let

𝐺
󸀠

0
(1) =

𝑑

𝑑𝑧
𝐺
0
(𝑧)
󵄨󵄨󵄨󵄨𝑧=1,

𝐺
󸀠󸀠

0
(1) =

𝑑
2

𝑑𝑧2
𝐺
0
(𝑧)
󵄨󵄨󵄨󵄨𝑧=1.

(19)

Then, 𝐺󸀠
0
(1) = 𝐸[𝐿

0
] and 𝐺󸀠󸀠

0
(1) = 𝐸[𝐿

0
(𝐿
0
− 1)].

First, we derive 𝐸[𝐿
0
]. Using L’Hôpital rule, we have from

(16) that

𝐺
0
(1) =

𝜉

𝛾𝐾
𝑃
00
. (20)

Substituting (14) into (20), we get

𝛾𝐺
0
(1) = 𝐻. (21)

From (17), using L’Hôpital rule, we get

𝐺
1
(1) = lim

𝑧→1

𝐺
1
(𝑧)

=
[𝛾𝐺
0
(1) − 𝐻] + 𝛾𝐺

󸀠

0
(1)

𝜇 − 𝜆
+

𝜇

𝜇 − 𝜆
𝑄 (1) ,

(22)

where 𝑄(1) = ∑𝑐
𝑗=1
(𝑐 − 𝑗)𝑃

𝑗1
, and substituting (21) into (22),

we get

𝐺
1
(1) =

𝛾

𝜇 − 𝜆
𝐸 [𝐿
0
] +

𝜇

𝜇 − 𝜆
𝑄 (1) . (23)
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From (9), we get

𝐸 [𝐿
0
] = lim
𝑧→1

𝐺
󸀠

0
(𝑧)

= lim
𝑧→1

[𝜆 (1 − 𝑧) + 𝛾]𝐺
0
(𝑧) − 𝐻

𝜉 (1 − 𝑧)

=
−𝜆𝐺
0
(1) + 𝛾𝐺

󸀠

0
(1)

−𝜉

=
−𝜆𝐺
0
(1) + 𝛾𝐸 [𝐿

0
]

−𝜉
,

(24)

where the third equality follows by using L’Hôpital rule.Thus,
we have

𝐺
0
(1) =

𝛾 + 𝜉

𝜆
𝐸 [𝐿
0
] . (25)

Using (22) and (25) and noting that 𝐺
0
(1) + 𝐺

1
(1) = 1, we

obtain

𝐸 [𝐿
0
] =

𝜆 (1 − 𝜌)

𝛾 + 𝜉 (1 − 𝜌)
−

𝜆

𝛾 + 𝜉 (1 − 𝜌)
𝑄 (1) , (26)

where 𝜌 = 𝜆/𝜇.
Now, we derive 𝐸[𝐿

1
]. From (17), we have

𝐸 [𝐿
1
] = lim
𝑧→1

𝐺
󸀠

1
(𝑧)

=
𝛾

2(𝜇 − 𝜆)
2
lim
𝑧→1

(𝜇 − 𝜆𝑧) [𝑧𝐺
󸀠󸀠

0
(𝑧) + 2𝐺

󸀠

0
(𝑧)]

−
𝜆

(𝜇 − 𝜆)
2
lim
𝑧→1

𝑧 [𝛾𝐺
0
(𝑧) − 𝐻]

(1 − 𝑧)

+ 𝜇 lim
𝑧→1

[(𝜇 − 𝜆𝑧)𝑄
󸀠

(𝑧) + 𝜆𝑄 (𝑧)]

(𝜇 − 𝜆𝑧)
2

=
𝛾 (𝜇 − 𝜆)𝐺

󸀠󸀠

0
(1) + 2𝜇𝛾𝐺

󸀠

0
(1)

2(𝜇 − 𝜆)
2

+
𝜇 [(𝜇 − 𝜆)𝑄

󸀠

(1) + 𝜆𝑄 (1)]

(𝜇 − 𝜆)
2

=
(𝜇 − 𝜆) 𝛾𝐸 [𝐿

0
(𝐿
0
− 1)] + 2𝜇𝛾𝐸 [𝐿

0
]

2(𝜇 − 𝜆)
2

+
1

1 − 𝜌
𝑄
󸀠

(1) +
𝜌

(1 − 𝜌)
2
𝑄 (1) ,

(27)

where

𝑄
󸀠

(1) =
𝑑𝑄(𝑧)

𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=1
=

𝑐−1

∑
𝑗=1

𝑗 (𝑐 − 𝑗) 𝑃
𝑗1
. (28)

In order to obtain𝐺󸀠󸀠
0
(1), we take derivatives for two times

on both sides of (9); then we get

𝜉 (1 − 𝑧) 𝐺
󸀠󸀠󸀠

0
(𝑧) + 2𝜆𝐺

󸀠

0
(𝑧) = [𝜆 (1 − 𝑧) + 𝛾 + 2𝜉] 𝐺

󸀠󸀠

0
(𝑧) ,

(29)

where 𝐺󸀠󸀠󸀠
0
(𝑧) = 𝑑

3

/𝑑𝑧
3

𝐺
0
(𝑧). Letting 𝑧 = 1 in (29), we get

𝐺
󸀠󸀠

0
(1) =

2𝜆

𝛾 + 2𝜉
𝐺
󸀠

0
(1) (30)

or, equivalently,

𝐸 [𝐿
0
(𝐿
0
− 1)] =

2𝜆

𝛾 + 2𝜉
𝐸 [𝐿
0
] . (31)

Substituting (31) into (27), we get

𝐸 [𝐿
1
] =

𝜌

(1 − 𝜌)
(

𝛾

𝛾 + 2𝜉
+

1

𝜆 (1 − 𝜌)
)𝐸 [𝐿

0
]

+
1

1 − 𝜌
𝑄
󸀠

(1) +
𝜌

(1 − 𝜌)
2
𝑄 (1) .

(32)

Let 𝐿 be the number of customers in the system. Then,
the expected system size can be calculated by 𝐸[𝐿] = 𝐸[𝐿

0
] +

𝐸[𝐿
1
], where 𝐸[𝐿

0
] and 𝐸[𝐿

1
] are given by (26) and (32).

Remark 1. If we take derivatives for (𝑘 + 1)th times on both
sides of (9) and use the same method as getting (31), then we
get

𝑑
𝑘

𝐺
0
(𝑧)

𝑑𝑧𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=1
=

𝑘𝜆

𝛾 + 𝑘𝜉
×
𝑑
𝑘−1

𝐺
0
(𝑧)

𝑑𝑧𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=1
(33)

or, equivalently,

𝐸 [𝐿
0
(𝐿
0
− 1) ⋅ ⋅ ⋅ (𝐿

0
− 𝑘)]

=
𝑘𝜆

𝛾 + 𝑘𝜉
𝐸 [𝐿
0
(𝐿
0
− 1) ⋅ ⋅ ⋅ (𝐿

0
− 𝑘 + 1)] .

(34)

Using this iteration, we get

𝐸 [𝐿
0
(𝐿
0
− 1) ⋅ ⋅ ⋅ (𝐿

0
− 𝑘)] =

𝑘+1

∏
𝑖=2

𝑖𝜆

𝛾 + 𝑖𝜉
𝐸 [𝐿
0
] , (35)

for 𝑘 = 1, 2, . . ..

3.3.2. Other Performance Measures. Now, we derive some
other performance measures such as the probability when
servers are on vacation (or not on vacation), the proportion
of customers served per unit of time, and the average rate of
abandonment due to impatience.

Let 𝑃
.0
= ∑
∞

𝑛=0
𝑃
𝑛0
and 𝑃
.1
= ∑
∞

𝑛=1
𝑃
𝑛1
. Clearly, 𝑃

.0
= 𝐺
0
(1)

is the probability when servers are on vacation and 𝑃
.1
=

𝐺
1
(1) = 1 − 𝑃

.0
is the probability when servers are not on

vacation.
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Substituting (26) into (23) and (25), we get

𝑃
.0
=
(1 − 𝜌) (𝛾 + 𝜉)

𝛾 + 𝜉 (1 − 𝜌)
−

𝛾 + 𝜉

𝛾 + 𝜉 (1 − 𝜌)
𝑄 (1) , (36)

𝑃
.1
=

𝜌𝛾

𝛾 + 𝜉 (1 − 𝜌)
+

𝛾 + 𝜉

𝛾 + 𝜉 (1 − 𝜌)
𝑄 (1) . (37)

When the system is in state (𝑛, 1), the service rates of the
servers are 𝑛𝜇 for 𝑛 = 1, 2, . . . , 𝑐 and 𝑐𝜇 for 𝑛 = 𝑐+ 1, 𝑐 + 2, . . .,
respectively. Thus, the expected number of customers served
per unit of time is given by

𝑁
𝑠
=

𝑐

∑
𝑛=1

𝜇𝑛𝑃
𝑛1
+

∞

∑
𝑛=𝑐+1

𝑐𝜇𝑃
𝑛1
= 𝜇 [𝑐𝑃

.1
− 𝑄 (1)] , (38)

implying that the proportion of customers served per unit of
time is given by

𝑃
𝑠
=
𝑁served
𝜆

=
1

𝜌
[𝑐𝑃
.1
− 𝑄 (1)] , (39)

where 𝑃
.1
is given by (37).

When the system is in state (𝑛, 0), 𝑛 ≥ 1, the rate of
abandonment of a customer due to impatience is 𝑛𝜉. Thus,
the average rate of abandonment due to impatience is given
by

𝑅
𝑎
=

∞

∑
𝑛=1

𝑛𝜉𝑃
𝑛0
= 𝜉𝐸 [𝐿

0
] , (40)

where 𝐸[𝐿
0
] is given by (26).

All the performancemeasures of the systemwe derived in
this subsection are expressed in terms of 𝑄(1) or/and 𝑄󸀠(1).
In the next subsection, we consider the calculation of these
two indexes 𝑄(1) and 𝑄󸀠(1).

Remark 2. Let 𝑃
𝐼
= ∑
𝑐−1

𝑗=1
𝑃
𝑗1
be the probability that there are

idle servers when all the servers are not on vacation. Clearly,
𝑄(1)/𝑃

𝐼
is the conditional expected number of idle servers

provided that there are idle servers when all servers are not
on vacation and𝑄󸀠(1)/𝑃

𝐼
is the conditional expectation of the

product of the number of the busy servers and the number of
the idle servers provided that there are idle servers when all
servers are not on vacation.

3.3.3. Limiting Behavior. We consider the limiting behavior
for some performance measures when 𝜌 → 1.

Since 𝑃
.0
≥ 0, from (36), it is easy to see that 0 ≤ 𝑄(1) ≤

1 − 𝜌, which implies that

lim
𝜌→1

𝑄 (1) = 0. (41)

Since𝑄(1) = ∑𝑐
𝑗=1
(𝑐 − 𝑗)𝑃

𝑗1
, it is easy to see that lim

𝜌→1
𝑃
𝑗1
=

0 for 𝑗 = 1, 2, . . . , 𝑐 − 1. This implies that

lim
𝜌→1

𝑄
󸀠

(1) = lim
𝜌→1

𝑐

∑
𝑗=1

𝑗 (𝑐 − 𝑗) 𝑃
𝑗1
= 0. (42)
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Figure 1: Effects of 𝜌 on 𝑄(1) and 𝑄󸀠(1).

The two curves of 𝑄(1) and 𝑄󸀠(1) with respect to 𝜌 are
shown in Figure 1, where the parameters are given as follows:
𝜉 = 1, 𝛾 = 0.5, 𝜇 = 2, and 𝑐 = 5. From Figure 1, it is
observed that both 𝑄(1) and 𝑄󸀠(1) go to zero when 𝜌 → 1.
This observation coincides with the results given by (41) and
(42). Furthermore, Figure 1 shows that the two curves are
very close when 𝜌 is very small.

Noting (41), we get from (36) and (37) that

lim
𝜌→1

𝑃
.0
= 0, lim

𝜌→1

𝑃
.1
= 1. (43)

Further, we get from (39) that

lim
𝜌→1

𝑃
𝑠
= 𝑐. (44)

Remark 3. Noting that lim
𝜌→1

𝑃
𝑗1
= 0 for 𝑗 = 1, 2, . . . , 𝑐 − 1

and using (43), we get lim
𝜌→1

∑
∞

𝑗=𝑐
𝑃
𝑗1
= 1. This implies that

if 𝜌 → 1, then all servers in the system will be busy. This
explains the result given by (44).

In Figures 2 and 3, we investigate the effect of 𝜌 on 𝑃
.0
and

𝑃
𝑠
, where the parameters are given as follows: 𝜉 = 0.3, 𝛾 = 0.5,

and 𝜇 = 2.
From Figure 2, it is observed that 𝑃

.0
is a decreasing

function of 𝜌 and it has its limit at 0 when 𝜌 → 1 for all
three values of 𝑐.This agrees with (43).The three curves show
that 𝑃

.0
has its limit at 1 when 𝜌 → 0. This agrees with

the intuitive expectation. In addition, we observe that 𝑃
.0
is

a concave function of 𝜌 for 𝑐 = 1, but it is not a concave
function of 𝜌 for other values of 𝑐 = 5 and 𝑐 = 10.

From Figure 3, it is observed that 𝑃
𝑠
is an increasing

function of 𝜌 for 𝑐 = 1 which agrees with the analytical result
given by Altman and Yechiali [12, page 270, Equation (3.32)],
but it is not an increasing function of 𝜌 for other values of
𝑐 = 5 and 𝑐 = 10. All the three curves show that 𝑃

𝑠
has its

limit at 𝑐 when 𝜌 → 1. This agrees with (44).
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Noting (41), we have from (26) that

lim
𝜌→1

1

𝜆
𝐸 [𝐿
0
] = lim
𝜌→1

1

𝜇
𝐸 [𝐿
0
] = 0. (45)

Further, we have from (32) that

lim
𝜌→1

𝐸 [𝐿
1
] = lim
𝜌→1

𝛾

𝜇 (1 − 𝜌)
(

𝜆

𝛾 + 2𝜉
+

1

1 − 𝜌
)𝐸 [𝐿

0
] .

(46)

Thus, when 𝜌 → 1 we have an approximation for 𝐸[𝐿
1
] as

follows:

𝐸 [𝐿
1
] ≅

𝛾

𝜇 (1 − 𝜌)
(

𝜆

𝛾 + 2𝜉
+

1

1 − 𝜌
)𝐸 [𝐿

0
] . (47)

Remark 4. The right hand side of (47) is the same as the
corresponding expected system size for the single server
model (see Altman and Yechiali [12, page 264]).
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Figure 5: Effect of 𝜌 on 𝐸[𝐿
1
].

In Figures 4 and 5, we investigate the effect of 𝜌 on 𝐸[𝐿
0
]

and𝐸[𝐿
1
], where the parameters are given as follows: 𝜉 = 0.3,

𝛾 = 0.5, and 𝜇 = 2.
From Figure 4, it is observed that 𝐸[𝐿

0
] is a concave

function of 𝜌 for all three values of 𝑐. It is insensitive to the
variables of 𝑐 when 𝜌 is very small or 𝜌 is close to 1. From
Figure 5, it is observed that 𝐸[𝐿

1
] is an increasing convex

function of 𝜌. Figure 5 shows that 𝐸[𝐿
1
] increases slowly

when 𝜌 is less than 0.9, but it increases significantly when 𝜌 is
larger than 0.9. In addition, we observe that all three curves
almost coincide when 𝜌 → 1. This agrees with (47) (see
Remark 4).

3.4. Calculation of𝑄(1) and𝑄󸀠(1). In order to compute𝑄(1)
and𝑄󸀠(1), we need to compute𝑃

𝑗1
for 𝑗 = 1, 2, . . . , 𝑐−1. From

(2), (3), (4), and (5), the 2𝑐 − 1 unknown probabilities 𝑃
𝑗1
for



Journal of Applied Mathematics 7

𝑗 = 1, 2, . . . , 𝑐 − 1 and 𝑃
𝑗0
for 𝑗 = 0, 1, . . . , 𝑐 − 1 satisfy the

following 2𝑐 − 3 linear equations:

𝜆𝑃
00
= 𝜇𝑃
11
+ 𝜉𝑃
10
, (48)

(𝜆 + 𝑛𝜉 + 𝛾) 𝑃
𝑛0
= 𝜆𝑃
(𝑛−1)0

+ (𝑛 + 1) 𝜉𝑃
(𝑛+1)0

,

1 ≤ 𝑛 ≤ 𝑐 − 2,
(49)

(𝜆 + 𝜇) 𝑃
11
= 2𝜇𝑃

21
+ 𝛾𝑃
10
, (50)

(𝜆 + 𝑛𝜇) 𝑃
𝑛1
= 𝜆𝑃
(𝑛−1)1

+ (𝑛 + 1) 𝜇𝑃
(𝑛+1)1

+ 𝛾𝑃
𝑛0,

2 ≤ 𝑛 ≤ 𝑐 − 2.
(51)

Therefore, we need another two independent equations to
calculate all 2𝑐 − 1 unknowns.

We show that 𝑃
11
can be expressed by 𝑃

00
. Equation (14)

can be written as

𝐺
0
(0) = 𝑃

00
=
𝛾𝑃
00
+ 𝜇𝑃
11

𝜉
𝐾 (52)

which yields that

𝑃
11
= 𝛿𝑃
00
, (53)

where

𝛿 =
𝜉 − 𝛾𝐾

𝐾𝜇
. (54)

Remark 5. It is easy to confirm that 𝜉 − 𝛾𝐾 > 0 (see Altman
and Yechiali [12, page 263]).

Substituting (36) into (21), we get

𝑃
00
+
𝜇

𝛾
𝑃
11
=
(𝜇 − 𝜆) (𝛾 + 𝜉)

𝜇𝛾 + 𝜉 (𝜇 − 𝜆)
−

𝜇 (𝛾 + 𝜉)

𝜇𝛾 + 𝜉 (𝜇 − 𝜆)
𝑄 (1) . (55)

Equations (53) and (55) give another two independent
equations. All in all, we have 2𝑐 − 1 independent equations
to solve for the 2𝑐 − 1 unknowns. In the following, we solve
these equations analytically.

Substituting (53) into (48) and (50), we have

(𝜆 − 𝜇𝛿) 𝑃
00
= 𝜉𝑃
10
, (56)

(𝜆 + 𝜇) 𝛿𝑃
00
= 2𝜇𝑃

21
+ 𝛾𝑃
10
. (57)

Thus, 𝑃
𝑗0
, 𝑗 = 1, 2, . . . , 𝑐 − 1, and 𝑃

𝑗1
, 𝑗 = 2, 3, . . . , 𝑐 − 1, satisfy

(49), (51), (56), and (57). These equations can be written as
equations in matrix form.

For this, we define the following column vectors:

𝑃
0
= (𝑃
10
, 𝑃
20
, . . . , 𝑃

(𝑐−1)0
)
𝑇

, 𝑃
1
= (𝑃
21
, 𝑃
31
, . . . , 𝑃

(𝑐−1)1
)
𝑇

,

(58)

Then, we have

𝐴𝑃
0
= 𝐷𝑃
00
,

𝑃
0
+ 𝐶𝑃
1
= 𝐸𝑃
00
,

(59)

where 𝐴, 𝐵, and 𝐶 are matrices given as follows:

𝐴 =(

𝜉 0 0 ⋅ ⋅ ⋅ 0 0 0

−𝑎
1
2𝜉 0 ⋅ ⋅ ⋅ 0 0 0

𝜆 −𝑎
2
3𝜉 ⋅ ⋅ ⋅ 0 0 0

...
...

...
...

...
...

0 0 0 ⋅ ⋅ ⋅ 𝜆 −𝑎
𝑐−2

(𝑐 − 1) 𝜉

),

𝐵 = (

𝛾 0 ⋅ ⋅ ⋅ 0 0

0 𝛾 ⋅ ⋅ ⋅ 0 0
...

...
...

...
0 0 ⋅ ⋅ ⋅ 𝛾 0

) ,

𝐶 =(

2𝜇 0 0 ⋅ ⋅ ⋅ 0 0 0

−𝑏
2
3𝜇 0 ⋅ ⋅ ⋅ 0 0 0

𝜆 −𝑏
3
4𝜇 ⋅ ⋅ ⋅ 0 0 0

...
...

...
...

...
...

0 0 0 ⋅ ⋅ ⋅ 𝜆 −𝑏
𝑐−2

(𝑐 − 1) 𝜇

),

(60)

where 𝑎
𝑛
= 𝜆 + 𝑛𝜉 + 𝛾 and 𝑏

𝑛
= 𝜆 + 𝑛𝜇 for 𝑛 = 1, 2, . . . , 𝑐 − 2

and𝐷 and 𝐸 are two column vectors given as follows:

𝐷=(𝜆 − 𝜇𝛿,−𝜆, 0, . . . , 0)
𝑇

, 𝐸 = ((𝜆 + 𝜇)𝛿,−𝜆𝛿.0, . . . , 0)
𝑇

.

(61)

Clearly,matrices𝐴 and𝐶 are inversematrices.Thus, from
(59), we have

𝑃
0
= 𝐴
−1

𝐷𝑃
00
,

𝑃
1
= 𝐶
−1

(𝐸 − 𝐵𝐴
−1

𝐷)𝑃
00
,

(62)

where 𝐴
−1 and 𝐶

−1 are inverses of matrices 𝐴 and 𝐶,
respectively.

Let 𝑒
0
be a vector with 𝑐 − 1 elements all to be one and let

𝑒
1
be a column vector with 𝑐 − 2 elements all to be one. Using

(53) and (62), 𝑄(1) can be written by

𝑄 (1) = (𝑐 − 1) 𝛿𝑃
00
+ 𝐹𝐶
−1

(𝐸 − 𝐵𝐴
−1

𝐷)𝑃
00
, (63)

where

𝐹 = (𝑐 − 2, 𝑐 − 3, . . . , 1) (64)

is a vector. Submitting (53) and (63) into (55), we can obtain
𝑃
00
.



8 Journal of Applied Mathematics

Thematrices𝐴−1 and𝐶−1 can be computed iteratively. Let
𝑥
𝑖𝑗
denote the elements of matrix 𝐴−1 and let 𝑦

𝑖𝑗
denote the

elements of matrix 𝐶−1. Then, we have

𝑥
𝑖𝑗
= 0, 𝑖 < 𝑗, 𝑗 = 2, 3, . . . , 𝑐 − 1,

𝑥
𝑗𝑗
=
1

𝑗𝜉
, 𝑗 = 1, 2, . . . , 𝑐 − 1,

𝑥
𝑖𝑗
=
1

𝑖𝜉
(𝑎
𝑖−1
𝑥
(𝑖−1)𝑗

− 𝜆𝑥
(𝑖−2)𝑗

) , 𝑖 > 𝑗, 𝑗 = 1, 2, . . . , 𝑐 − 1.

(65)

See the appendix for the proof of (65).
Since the matrix 𝐶 has the same structure as the matrix

𝐴, using (65), it is easy to get the elements of 𝐶−1 as follows:

𝑦
𝑖𝑗
= 0, 𝑖 < 𝑗, 𝑗 = 2, 3, . . . , 𝑐 − 2,

𝑦
𝑗𝑗
=

1

(𝑗 + 1) 𝜇
, 𝑗 = 1, 2, . . . , 𝑐 − 2,

𝑦
𝑖𝑗
=

1

(𝑖 + 1) 𝜇
(𝑏
𝑖
𝑦
(𝑖−1)𝑗

− 𝜆𝑦
(𝑖−2)𝑗

) , 𝑖 > 𝑗, 𝑗=1, 2, . . . , 𝑐 − 2.

(66)

Using (65) and (66), it is easy to get from (62) that

𝑃
10
= (𝜆 − 𝜇𝛿) 𝑥

11
𝑃
00
, (67)

𝑃
𝑗0
= [(𝜆 − 𝜇𝛿) 𝑥

𝑗1
− 𝜆𝑥
𝑗2
] 𝑃
00
, 𝑗 = 2, 3, . . . , 𝑐 − 1, (68)

𝑃
(𝑗+1)1

=(𝑏
1
𝑦
𝑗1
− 𝜆𝑦
𝑗2
) 𝛿𝑃
00
− 𝛾

𝑗

∑
𝑘=1

𝑦
𝑗𝑘
𝑃
𝑘0
, 𝑗=1, 2, . . . , 𝑐 − 2.

(69)

Define

𝜙
0
= 𝑐 − 1 +

𝑐−2

∑
𝑗=1

(𝑐 − 𝑗 − 1) (𝑏
1
𝑦
𝑗1
+ 𝜆𝑦
𝑗2
) ,

𝜙
𝑘
=

𝑐−2

∑
𝑗=𝑘

(𝑐 − 𝑗 − 1) 𝑦
𝑗𝑘
, 𝑘 = 1, 2, . . . , 𝑐 − 2.

(70)

Then, using (69), we have

𝑄 (1) =

𝑐−1

∑
𝑗=1

(𝑐 − 𝑗) 𝑃
𝑗1
= Δ (𝜙) 𝑃

00
, (71)

where

Δ (𝜙) = 𝛿𝜙
0
− 𝛾

𝑐−2

∑
𝑘=1

𝜙
𝑘
[(𝜆 − 𝜇𝛿) 𝑥

𝑘1
− 𝜆𝑥
𝑘2
] . (72)

Substituting (53) and (71) into (55), we get

𝑃
00
=

𝐾𝛾 (𝛾 + 𝜉) (𝜇 − 𝜆)

𝜉 [𝜇𝛾 + 𝜉 (𝜇 − 𝜆)] + 𝐾𝛾𝜇 (𝜇 + 𝜉) Δ (𝜙)
, (73)

where𝐾 is defined by (15).
Define

𝜓
0
= 𝑐 − 1 +

𝑐−2

∑
𝑗=1

(𝑗 + 1) (𝑐 − 𝑗 − 1) (𝑏
1
𝑦
𝑗1
+ 𝜆𝑦
𝑗2
) ,

𝜓
𝑘
=

𝑐−2

∑
𝑗=𝑘

(𝑗 + 1) (𝑐 − 𝑗 − 1) 𝑦
𝑗𝑘

, 𝑘 = 1, 2, . . . , 𝑐 − 2.

(74)

Then, using (69), we have

𝑄
󸀠

(1) =

𝑐−1

∑
𝑗=1

𝑗 (𝑐 − 𝑗) 𝑃
𝑗1
= Δ (𝜓) 𝑃

00
, (75)

where

Δ (𝜓) = 𝛿𝜓
0
− 𝛾

𝑐−2

∑
𝑘=1

𝜓
𝑘
[(𝜆 − 𝜇𝛿) 𝑥

𝑘1
− 𝜆𝑥
𝑘2
] . (76)

3.5. Special Cases. In this subsection, we consider two special
cases: 𝑐 = 1 and 𝑐 = 2. The performance measures of the
system for these two cases are distinguished by using the
superscripts M/M/1 and M/M/2, respectively.

Case 1 (single server model). If 𝑐 = 1, then 𝑄(1) = 0 and
𝑄
󸀠

(1) = 0. Thus, from (36) and (37), we have

𝑃
M/M/1
.0

=
(1 − 𝜌) (𝛾 + 𝜉)

𝛾 + 𝜉 (1 − 𝜌)
, 𝑃

M/M/1
.1

=
𝜌𝛾

𝛾 + 𝜉 (1 − 𝜌)
.

(77)

These results agree with the results given by Altman and
Yechiali [12, Equation (2.17), page 264]. From (26) and (27),
we get

𝐸[𝐿
0
]
M/M/1

=
𝜆 (1 − 𝜌)

𝛾 + 𝜉 (1 − 𝜌)
, (78)

𝐸[𝐿
1
]
M/M/1

= ((𝜇 − 𝜆) 𝛾𝐸[𝐿
0
(𝐿
0
− 1)]

M/M/1

+2𝜇𝛾𝐸[𝐿
0
]
M/M/1

) × (2(𝜇 − 𝜆)
2

)
−1

.

(79)

These results agree with the results given by Altman and
Yechiali [12, pages 264-265].

From (39), we get

𝑃
M/M/1
𝑠

=
𝛾

𝛾 + 𝜉 (1 − 𝜌)
. (80)

This agrees with the result given by Altman and Yechiali [12,
Equation (3.32), page 270].
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From (31) and (40), we get

𝐸[𝐿
0
(𝐿
0
− 1)]

M/M/1
=

2𝜆

𝛾 + 2𝜉
𝐸[𝐿
0
]
M/M/1

,

𝑅
M/M/1
𝑎

= 𝜉𝐸[𝐿
0
]
M/M/1

,

(81)

where 𝐸[𝐿
0
]
M/M/1 is given by (78).

Case 2 (two-servermodel). If 𝑐 = 2, then𝑄(1) = 𝑄󸀠(1) = 𝑃
11
.

Using (53) and substituting 𝑄(1) = 𝑃
11
into (55), we obtain

𝑃
M/M/2
00

=
(𝛾 + 𝜉) (1 − 𝜌)

(1 +
𝜇

𝛾
𝛿) [𝛾 + 𝜉 (1 − 𝜌)] + 𝛿 (𝛾 + 𝜉)

. (82)

Thus, from (36) and (37), we get

𝑃
M/M/2
.0

=
(1 − 𝜌) (𝛾 + 𝜉)

𝛾 + 𝜉 (1 − 𝜌)
−

𝛿 (𝛾 + 𝜉)

𝛾 + 𝜉 (1 − 𝜌)
𝑃
M/M/2
00

, (83)

𝑃
M/M/2
.1

=
𝜌𝛾

𝛾 + 𝜉 (1 − 𝜌)
+

𝛿 (𝛾 + 𝜉)

𝛾 + 𝜉 (1 − 𝜌)
𝑃
M/M/2
00

, (84)

where 𝑃M/M/2
00

is given by (82).
From (26) and (32), we get

𝐸[𝐿
0
]
M/M/2

=
𝜆 (1 − 𝜌)

𝛾 + 𝜉 (1 − 𝜌)
−

𝜆𝛿

𝛾 + 𝜉 (1 − 𝜌)
𝑃
M/M/2
00

, (85)

𝐸[𝐿
1
]
M/M/2

=
𝜌

(1 − 𝜌)
(

𝛾

𝛾 + 2𝜉
+

1

𝜆 (1 − 𝜌)
)𝐸[𝐿

0
]
M/M/2

+
𝛿

(1 − 𝜌)
2
𝑃
M/M/2
00

,

(86)

where𝑃M/M/2
00

is given by (82) and𝐸[𝐿
0
]
M/M/2 is given by (85).

Substituting (84) and 𝑄(1) = 𝑃
11
= 𝛿𝑃
00
into (39), we get

𝑃
M/M/2
𝑠

=
2𝛾

𝛾 + 𝜉 (1 − 𝜌)
+
𝛿 [𝛾 + 𝜉 (1 + 𝜌)]

𝜌 [𝛾 + 𝜉 (1 − 𝜌)]
𝑃
M/M/2
00

, (87)

where 𝑃M/M/2
00

is given by (82).
From (31) and (40), we get

𝐸[𝐿
0
(𝐿
0
− 1)]

M/M/2
=

2𝜆

𝛾 + 2𝜉
𝐸[𝐿
0
]
M/M/2

,

𝑅
𝑎
= 𝜉𝐸[𝐿

0
]
M/M/2

,

(88)

where 𝐸[𝐿
0
]
M/M/2 is given by (85).
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4. Numerical Results

In this section, we investigate numerically the effects of
the parameter 𝜉 and the number 𝑐 of servers on some
performance measures.

For M/M/1 queueing model with impatient customers
and multiple vacation policy, Altman and Yechiali [12] show
that the probability 𝑃

.0
[𝑃
.1
] is an increasing (decreasing)

concave (convex) function of 𝜉, having its limits at 1 − (𝜆/𝜇)
[at (𝜆/𝜇)]. Also, they show that 𝐸[𝐿

0
] behaves similar to 𝑃

.1
.

In Figures 6 and 7, we consider whether the above property
holds for our multiserver model, where the parameters are
given as follows: 𝜆 = 1, 𝜇 = 2, and 𝛾 = 0.4.

From Figures 6 and 7, it is observed that 𝑃
.0

is an
increasing function of 𝜉 for 𝑐 = 1 and 𝑃

.1
is a decreasing

function of 𝜉 for 𝑐 = 1. However, this property may not hold
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for our multiserver model. This can be observed from the
other three curves for 𝑐 = 10, 20, 30 in Figure 6 and Figure 7.

Altman and Yechiali [12] show that the probability𝑃
.0
and

𝑃
.1
have their limits when 𝜉 → 0. We observe from Figures

6 and 7 that this property may also hold for our multiserver
model. Further, we observe that their limits for the cases of
𝑐 = 5, 10, 20, 30 when 𝜉 → 0 are very close.

From Figure 8, it is observed that 𝐸[𝐿
0
] is a decreasing

function of 𝜉 for both the case of single server 𝑐 = 1 and
cases of multiserver 𝑐 = 5, 10, 20, 30. This is because that
the increasing of 𝜉 leads to the increasing of the number of
reneging customers, which results in the decreasing of the
mean system size 𝐸[𝐿

0
]. Further, we observe that the four

curves for 𝑐 = 5, 10, 20, 30 are very close. This means that
when 𝑐 is large enough 𝐸[𝐿

0
] is insensitive to the number 𝑐

of servers.
From Figure 9, we observe that 𝐸[𝐿

1
] is a decreasing

function of 𝜉 for the case of single server 𝑐 = 1. This can
be verified analytically from (32) by letting 𝑐 = 1. However,
𝐸[𝐿
1
] may not be a decreasing function of 𝜉 for the case of

multiserver. This can be observed from the two curves of
𝑐 = 20 and 𝑐 = 30. Further, we observe that 𝐸[𝐿

1
] varies

significantly with the increasing of 𝑐. This means that it is
sensitive to the number 𝑐 of servers.

5. Conclusions

In this paper, we have studied an M/M/𝑐 queueing system
with impatient customers and a synchronous vacation policy,
where the customer impatience is due to the server being
on vacation. We have derived some performance measures
for the system in terms of two indexes 𝑄(1) and 𝑄

󸀠

(1).
Based on these results, we have obtained some results
about limiting behavior for some performance measures.
In addition, we have obtained the iterative formulas for
calculating these two indexes 𝑄(1) and 𝑄󸀠(1). Furthermore,
we have derived closed-form expressions of some important
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].

performance measures for two special cases. The effects of
the reneging rate and the number of servers on the some
performance measures have been investigated numerically.
The results obtained in this paper may have potential appli-
cations in production-inventory systems and communication
networks.

Appendix

Proof of (65). Let𝑋
𝑗
= (𝑥
1𝑗
, 𝑥
2𝑗
, . . . , 𝑥

(𝑐−1)𝑗
)
𝑇, 𝑗 = 1, 2, . . . , 𝑐−

1, be the 𝑗th column vector of the inverse matrix 𝐴−1 and let
𝜀
𝑗
= (0, . . . , 1, . . . , 0)

𝑇 be the 𝑗th unit column vector; then we
have

𝐴𝑋
𝑗
= 𝜀
𝑗
, 𝑗 = 1, 2, . . . , 𝑐 − 1. (A.1)

For 𝑗 = 1, 2, . . . , 𝑐 − 1, (A.1) can be rewritten as the following
set of equations:
𝜆𝑥
𝑖−2𝑗

− 𝑎
𝑖−1
𝑥
𝑖−1𝑗

+ 𝑖𝜉𝑐
𝑖𝑗
= 0, 𝑖 ̸= 𝑗, 𝑖 = 1, 2, . . . , 𝑐 − 1,

(A.2)

𝜆𝑥
𝑖−2𝑗

− 𝑎
𝑖−1
𝑥
𝑖−1𝑗

+ 𝑖𝜉𝑥
𝑖𝑗
= 1, 𝑖 = 𝑗, 𝑖 = 1, 2, . . . , 𝑐 − 1,

(A.3)

where 𝑥
0𝑗
and 𝑥

−1𝑗
are defined to be zero. Repeating the use

of (A.2) gives
𝑥
𝑖𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑗 − 1. (A.4)

Substituting (A.4) into (A.3) yields

𝑥
𝑗𝑗
=
1

𝑗𝜉
. (A.5)

From (A.2), we have

𝑥
𝑖𝑗
=
1

𝑖𝜉
(𝑎
𝑖−1
𝑥
𝑖−1𝑗

− 𝜆𝑥
𝑖−2𝑗
) , 𝑖 = 𝑗 + 1, 𝑗 + 2, . . . , 𝑐 − 1.

(A.6)

This completes the proof.
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