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Based on the community structure characteristics, theory, and methods of frequent subgraph mining, network motifs findings are
firstly introduced into social network analysis; the tendentiousness evaluation function and the importance evaluation function are
proposed for effectiveness assessment. Compared with the traditional way based on nodes centrality degree, the new approach can
be used to analyze the properties of social network more fully and judge the roles of the nodes effectively. In application analysis,
our approach is shown to be effective.

1. Introduction

A large number of systems in the real world exist as net-
works, such as social networks (coauthor network, criminal
networks, etc.), biological networks (protein interaction net-
works, metabolic networks, etc.), and technology networks
(electricity networks, the Internet, etc.) [1–12]. In order to
reveal their structure and principle, Milo et al. first proposed
the concept of “networkmotifs,” which can be defined as pat-
terns of interconnections occurring in complex networks at
numbers that are significantly higher than those in random-
ized network [13]. Later, research on networkmotifs has been
developed extensively. Kim et al. defined biological network
motifs as biologically significant subgraphs [14]. Farina et al.
identified regulatory network motifs from gene expression
data, and they proposed the corresponding algorithm [15]. In
order to specify network motifs, Ohnishi et al. analyzed an
interfirm network consisting of about one million firms and
four million directed links [16].

The study of social networks has always been a hot
research topic. In order to judge the importance of nodes,
the staple methods of traditional social network analysis
are basing on the calculation of the centrality of nodes in
network, [17, 18]. In recent years, various new methods are
introduced into social network analysis; network motif is
an important kind of them [19, 20]. Analyzing motifs for
the large social networks derived from email communication
firstly, Juszczyszyn found that the distribution of motifs in all

analyzed real social networks is similar and can be treated as
the network fingerprint. This property is most distinctive for
stronger human relationships [21, 22].

In this paper, we introduce network motifs to develop
a set of network analysis methods, which is different from
the traditional social network analysis, and also illustrate its
application.

2. Research Methods

2.1. Directed Graph and Point Centrality. A network with
𝑛 nodes is denoted by 𝐺 = (𝑉, 𝐸), where 𝑉 = {V

𝑖
|

𝑖 = 1, 2, . . . , 𝑛} is node set, 𝐸 = {⟨V
𝑖
, V
𝑗
⟩ | V

𝑖

is the start node, V
𝑗
is the end node, and 𝑖, 𝑗 = 1, 2, . . . ,

𝑛} is edge set. 𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

is adjacency matrix of 𝐺, of which
the elements are as follows:

𝑎
𝑖𝑗
=

{

{

{

1, ⟨V
𝑖
, V
𝑗
⟩ ∈ 𝐸,

0, ⟨V
𝑖
, V
𝑗
⟩ ∉ 𝐸,

(1)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑛.
The centrality analysis is the staple method of traditional

social network analysis [17, 18]. In a network, if there are
direct links between an actor and other actors, this actor
resides in the centre of the network, having more “power”
[17]. The importance of a node, point centrality, can be
measured by the number of contacted nodes [18]. Based on
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the adjacency matrix, the formula of point centrality of node
V
𝑖
is as follows:

𝐶 (V
𝑖
) = 𝑐
𝑖
=

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
+

𝑛

∑

𝑘=1

𝑎
𝑘𝑖
, (2)

where 𝑖 = 1, 2, . . . , 𝑛.

2.2. Network Motifs Finding

2.2.1. Frequent Graph. Frequent subgraph mining is an
important method of network information mining. Frequent
subgraph mining algorithms are divided into breadth-first
search (BFS) algorithm and depth-first search (DFS) algo-
rithm based on subgraph search path [23]. As a breadth-first
search algorithm, Apriori graph mining (AGM) algorithm is
an early adopter of Apriori idea. AGM algorithm takes an
adjacency matrix to represent the graph. Then it generates
code based on adjacency matrix and takes minimum coding
as unique identification for the graph in order to solve NP
problem of subgraph isomorphism [24].

The graph which is constituted by 𝐾 node set 𝑉
𝑠

=

{V
𝑠1
, V
𝑠2
, . . . , V

𝑠𝑘
} and edge set 𝐸

𝑠
= {⟨V
𝑠𝑖
, V
𝑠𝑗
⟩ | V
𝑠𝑖
, V
𝑠𝑗

∈ 𝑉
𝑠
}

is a subgraph of 𝐺. Let 𝑆𝐺
𝑠
= 𝐺(𝑉

𝑠
) = (𝑉

𝑠
, 𝐸
𝑠
). Furthermore,

the node set of subgraph 𝑆𝐺
𝑠
is denoted as 𝑉

𝑠
= 𝑉(𝑆𝐺

𝑠
).

Based on the adjacency matrix of a subgraph, the
maximum encoding is obtained as unique identification of
the subgraph. AGM algorithm is used to mine frequent
subgraphs based on the maximum encoding.

2.2.2. Random Network Model. In typical network motifs
finding algorithms, random network model maintains the
degree sequence of the real network very well [25]. Exchange
algorithm is an algorithm for generating random network
according to degree sequence, which is as follows [26].

Algorithm A.

Input: degree sequence
Output: random network
Step 1: Construct a network according to degree
sequence.
Step 2: Randomly select a pair of edges (e.g., 𝐴 →

𝐵, 𝐶 → 𝐷).
Step 3: Carry out the Monte Carlo exchange (𝐴 →

𝐷, 𝐶 → 𝐵).
Step 4: Cancel the exchange if the exchange has led to
multiple edges or loops.
Step 5: Repeat until reaching the target number of
times.

In this way, a set of random networks with the same degree
sequence as 𝐺 can be obtained.

2.2.3. Statistical Significance of Network Motifs. Network
motifs are frequent subgraphs with special statistical signif-
icance, which have some special functions in the network.

Network motifs satisfy the following conditions: occurrence
of the subgraph in real network is not less than a minimum
and is significantly higher than their occurrence in random
network [13, 27].

The statistical significance of network motifs is denoted
by 𝑍-score:

𝑍 =

𝑁real − ⟨𝑁rand⟩

𝜎rand
, (3)

where 𝑁real denotes the occurrences of a subgraph in real
network and ⟨𝑁rand⟩ and 𝜎rand denote mean and standard
deviation of the occurrences of the subgraph in random
networks.

2.3. Frequency Matrix. The nodes of a network always have a
lot of roles, such as teacher and student. Most social networks
can be simulated by role network model (RNM). The role
set is denoted by 𝑅 = {𝑅

𝑖
= 1, 2, . . . , 𝑚}, where 𝑚 is the

number of roles. The set of nodes whose role is 𝑅
𝑘
(𝑘 =

1, 2, . . . , 𝑚) is denoted by 𝑉
𝑅

𝑘
, so the set of 𝑉𝑅

𝑘
is denoted by

𝑉
𝑅

= {𝑉
𝑅

1
, 𝑉
𝑅

2
, . . . , 𝑉

𝑅

𝑚
}. 𝑀𝑆𝐺 denotes the set of subgraphs

whose structure is the same as the network motifs in the
network.

In order to determine the role tendentiousness of the
unknown role nodes, we can count the frequency of the
unknown role nodes occurring in different network motifs,
respectively, through the composition of nodes in network
motifs, which contain different known role nodes.

Based on network motifs, frequency matrix 𝐹 = (𝑓
𝑖𝑗
)
𝑛×𝑚

is obtained. The elements 𝑓
𝑖𝑗
of 𝐹 denotes the total occur-

rences of node V
𝑖
in the network motifs that contain the

known role nodes, whose role is 𝑅
𝑗
.

The algorithm for calculating frequency matrix is as
follows.

Algorithm B.

Input: 𝑉, 𝑉𝑅,𝑀𝑆𝐺

Output: 𝐹

Step 1: For any 𝑖 ∈ {1, 2, . . . , 𝑛}, for any 𝑗 ∈ {1, 2,

. . . , 𝑛} 𝑓
𝑖𝑗
⇐ 0.

Step 2: For any 𝑀𝑆𝐺
𝑖
∈ 𝑀𝑆𝐺, for any 𝑉

𝑅

𝑗
∈ 𝑉
𝑅, if

𝑉(𝑀𝑆𝐺
𝑖
) ∩ 𝑉
𝑅

𝑗
̸= 0, then for any V

𝑖𝑘
∈ 𝑀𝑆𝐺

𝑖
, 𝑓
𝑖𝑘𝑗

=

𝑓
𝑖𝑘𝑗

+ 1.

Step 3: Output 𝐹 = (𝑓
𝑖𝑗
)
𝑛×𝑚

.

Step 4: End.

2.4. Evaluation Function

2.4.1. Tendentiousness Evaluation Function (TEF). Based on
frequency matrix 𝐹, the tendentiousness of node V

𝑖
with

respect to role 𝑅
𝑗
is evaluated by TEF.
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Table 1: Point centrality.

Name 𝑐
𝑖

Name 𝑐
𝑖

Name 𝑐
𝑖

Name 𝑐
𝑖

Name 𝑐
𝑖

Gretchen 29 Lois 14 Dwight 11 Cory 6 Tran 3
Sherri 26 Donald 14 Marion 11 Jia 6 Quan 3
Jerome 23 Neal 14 Malcolm 11 Shelley 6 Olina 3
Neal 22 Wayne 14 Karen 11 Wesley 6 Phille 2
Julia 22 Marian 14 Yao 10 Chris 6 Cole 2
Franklin 21 Crystal 14 Douglas 10 Este 5 Bariol 2
Paige 21 Kristine 14 Claire 10 Hark 5 Le 2
Elsie 20 Beth 14 Jean 10 Mai 5 Darol 2
Darlene 18 Sandy 14 Christina 9 Lars 5 Lao 2
Patricia 18 Dolores 14 Priscilla 9 Gerry 4 Cha 2
Paul 17 Patrick 14 Reni 8 Ellin 4 Vind 2
Kristina 17 William 13 Ulf 8 Kim 4 Carina 1
Alex 16 Francis 13 Harvey 8 Seeni 3 Sheng 1
Hazel 16 Beth 12 Erica 8 Fanti 3 Chara 1
Marcia 15 Stephanie 12 Jerome 8 Gard 3 Dayi 0
Eric 15 Katherine 11 Han 7 Andra 3
Gretchen 15 Elsie 11 Louis 7 Melia 3

Figure 1: Visualized of the network model of the 83 people (nodes)
and 400 messages between these people (links).

Definition 1. The TEF value 𝑝
𝑖𝑗
is defined by

𝑝
𝑖𝑗
= 𝑃 (V

𝑖
, 𝑅
𝑗
)

=

{
{
{
{

{
{
{
{

{

1, 𝑅
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𝑗
,

0, 𝑅
(V𝑖) ∈ 𝑅, 𝑅

(V𝑖) ̸= 𝑅
𝑗
,

𝑓
𝑖𝑗

∑
𝑛

𝑘=1
𝑓
𝑘𝑗

×

𝑓
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∑
𝑚

𝑘=1
𝑓
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𝑅
(V𝑖) ∉ 𝑅,

(4)

where 0 ≤ 𝑝
𝑖𝑗

≤ 1, 𝑖 = 1, 2, . . . , 𝑛, and 𝑗 = 1, 2, . . . , 𝑛.
Obviously, the greater 𝑝

𝑖𝑗
, the greater the tendentiousness of

node V
𝑖
with respect to role 𝑅

𝑗
.

2.4.2. Importance Evaluation Function (IEF). Based on point
centrality and TEF, the importance of node V

𝑖
with respect to

role 𝑅
𝑗
in the network is evaluated by IEF.

Definition 2. The IEF value 𝑆
𝑖𝑗
is defined by

𝑆
𝑖𝑗
= 𝑆 (V

𝑖
, 𝑅
𝑗
) = 𝑐
𝑖
× 𝑝
𝑖𝑗
=

𝑓
𝑖𝑗

∑
𝑛

𝑘=1
𝑓
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𝑓
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. (5)

The normalized form is

𝑥
𝑖𝑗
= 𝑋(V

𝑖
, 𝑅
𝑗
)

=
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𝑖
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(𝑆 (V
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(𝑆 (V
𝑖
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(𝑆 (V
𝑖
, 𝑅
𝑗
))

,

(6)

where 0 ≤ 𝑥
𝑖𝑗

≤ 1, 𝑖 = 1, 2, . . . , 𝑛, and 𝑗 = 1, 2, . . . , 𝑛. The
greater 𝑥

𝑖𝑗
, obviously, the greater the importance of node V

𝑖

with respect to role 𝑅
𝑗
in the network.

3. Application Analysis

The Intergalactic Crime Modelers (ICM) is investigating a
conspiracy to commit a criminal act. The case involves 83
members and 400 messages between these people, as shown
in Figure 1. As priorly known in [28], Jean, Alex, Elsie, Paul,
Ulf, Yao, Harvey are conspirators, Darlene, Tran, Jia, Ellin,
Gard, Chris, Paige, Este are nonconspirators.

Now, we analyze the set of prior conspirator and the set
of prior non-conspirator by using the theory and methods of
network motifs.

Firstly, let 𝑅
1
be “conspirator” and let 𝑅

2
be “non-

conspirator”.Then the links are divided into two categories, of
which daily topic is denoted by topic 1, and conspiracy topic
is denoted by topic 2.

Based on adjacency matrix of the network, point cen-
trality of nodes is calculated by using formulas (2) as shown
in Table 1. The point centrality reflects the influence of a
node in the network, which means the larger point centrality
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Table 2: The sample of frequent subgraph and network motifs.

Scale ID Structure 𝑁real 𝑍 Scale ID Structure 𝑁real 𝑍

2 S1 1 230 1.1609 4 M4

11

2 1 30 5.4641

2 S2 1
1

10 3.6995 4 M5 1 1

21

30 5.7152

3 M1
1

1 2
15 5.8795 5 M6

1 1
1

1 1 2
136 5.7783

4 M2 1 1

2

1 38 9.7047 5 M7
1

1 2 11
126 9.4614

4 M3 1 1
21

36 8.1592 5 M8

1

2
1

11
1

102 8.3725
Note of figure: S1-2 are not network motifs (𝑍 < 5); M1-8 are network motifs (𝑍 > 5), which are structure module with special features (the minimum of 𝑍-
score is 5).

Table 3: Priority list of criminal tend.

Name 𝑝
𝑖1

𝑝
𝑖2

Name 𝑝
𝑖1

𝑝
𝑖2

Name 𝑝
𝑖1

𝑝
𝑖2

Jean 1 0 Donald 0.0069 0.0064 Gerry 0.0001 0.0038
Alex 1 0 Shelley 0.0065 0.0051 Franklin 0.0001 0.0060
Elsie 1 0 Dwight 0.0061 0.0100 Phille 0 0
Paul 1 0 Louis 0.0057 0.0005 Cole 0 0
Ulf 1 0 Beth 0.0054 0.0015 Bariol 0 0
Yao 1 0 Karen 0.0054 0.0231 Cory 0 0
Harvey 1 0 Kim 0.0051 0.0007 Quan 0 0
Marcia 0.0316 0.0059 Kristina 0.0042 0.0000 Mai 0 0
Stephanie 0.0229 0.0178 Han 0.0033 0.0003 Le 0 0
Jerome 0.0210 0.0068 Lars 0.0031 0.0000 Darol 0 0
Crystal 0.0196 0.0197 Erica 0.0031 0.0014 Sheng 0 0
Priscilla 0.0173 0.0016 Wayne 0.0030 0.0249 Cha 0 0
Neal 0.0153 0.0100 Carina 0.0027 0.0001 Olina 0 0
William 0.0141 0.0014 Elsie 0.0027 0.0159 Chara 0 0
Sherri 0.0140 0.0072 Gretchen 0.0025 0.0075 Vind 0 0
Douglas 0.0129 0.0054 Marion 0.0024 0.0052 Dayi 0 0
Patrick 0.0111 0.0005 Katherine 0.0023 0.0049 Seeni 0 0.0005
Gretchen 0.0098 0.0180 Kristine 0.0023 0.0303 Lao 0 0.0018
Dolores 0.0096 0.0024 Francis 0.0016 0.0001 Fanti 0 0.0023
Julia 0.0096 0.0033 Eric 0.0014 0.0007 Darlene 0 1
Patricia 0.0089 0.0106 Sandy 0.0007 0.0022 Tran 0 1
Jerome 0.0088 0.0001 Melia 0.0004 0 Jia 0 1
Christina 0.0086 0.0048 Wesley 0.0004 0 Ellin 0 1
Neal 0.0085 0.0006 Claire 0.0003 0.0012 Gard 0 1
Reni 0.0084 0.0010 Marian 0.0003 0.0026 Chris 0 1
Lois 0.0080 0.0055 Hark 0.0002 0.0002 Paige 0 1
Hazel 0.0078 0.0084 Malcolm 0.0001 0.0006 Este 0 1
Beth 0.0074 0.0523 Andra 0.0001 0.0014



Journal of Applied Mathematics 5

Table 4: Priority list for key monitoring.

ID Name 𝑥
𝑖1

ID Name 𝑥
𝑖1

ID Name 𝑥
𝑖1

8 Jean 1.0000 2 Donald 0.0036 78 Gerry 0.0000
44 Alex 0.8500 17 Shelley 0.0035 73 Franklin 0.0000
22 Elsie 0.8000 29 Dwight 0.0034 82 Phille 0
68 Paul 0.5000 83 Louis 0.0034 81 Cole 0
19 Ulf 0.5000 6 Beth 0.0030 80 Bariol 0
55 Yao 0.4000 30 Karen 0.0021 79 Cory 0
50 Harvey 0.4000 47 Kim 0.0020 77 Quan 0
35 Marcia 0.0241 36 Kristina 0.0020 76 Mai 0
28 Stephanie 0.0237 5 Han 0.0019 75 Le 0
4 Jerome 0.0182 20 Lars 0.0016 72 Darol 0
33 Crystal 0.0143 38 Erica 0.0015 69 Sheng 0
31 Priscilla 0.0138 14 Wayne 0.0013 66 Cha 0
21 Neal 0.0137 43 Carina 0.0012 65 Olina 0
32 William 0.0107 40 Elsie 0.0012 64 Chara 0
16 Sherri 0.0106 70 Gretchen 0.0012 63 Vind 0
18 Douglas 0.0094 12 Marion 0.0010 62 Dayi 0
51 Patrick 0.0092 34 Katherine 0.0010 60 Seeni 0
45 Gretchen 0.0080 23 Kristine 0.0010 59 Lao 0
37 Dolores 0.0078 61 Francis 0.0008 58 Fanti 0
7 Julia 0.0078 13 Eric 0.0005 57 Darlene 0
11 Patricia 0.0067 27 Sandy 0.0002 56 Tran 0
41 Jerome 0.0064 74 Melia 0.0001 54 Jia 0
9 Christina 0.0062 26 Wesley 0.0001 53 Ellin 0
46 Neal 0.0056 24 Claire 0.0001 52 Gard 0
42 Reni 0.0048 25 Marian 0.0001 49 Chris 0
39 Lois 0.0045 10 Hark 0.0001 3 Paige 0
48 Hazel 0.0039 67 Malcolm 0.0001 1 Este 0
15 Beth 0.0038 71 Andra 0.0000

a criminal node have, the bigger negative impact on the
network will occur. Therefore, ICM should focus on high-
ranking members in Table 1.

According to the method in Section 2.2, frequent sub-
graphs and network motifs of the network are obtained, as
shown in Table 2 (example).

Depending on the network motifs, frequency matrix is
obtained by applying Algorithm B. Based on the evaluation
functions TEF and IEF, the priority list of criminal tend and
the priority list for key monitoring are obtained, as shown
respectively, in Tables 3 and 4.

By comparing and analyzing, the “network motifs” offer
a much more comprehensive way to analyze social networks;
the high-ranking members having both higher point central-
ity andmore criminal tend in Tables 3 and 4 are more suspect
than others, so ICM should monitor them. Our research
confirmed that the method is suitable in social network and
the results are reliable.

4. Conclusions

In this paper, we developed a set of network analysis methods
based on the theory and methods of social network analysis,

frequent subgraph mining, network motifs, and so forth,
which is different from the traditional social network analysis.
In application analysis, a series of priority lists are obtained
based on the evaluation functions. The priority lists reflect
network information effectively, which is of great reference
value for ICM.

Based on the study on node connection relationship of
social networks, a follow-up studywill involvemore attention
to structural relationship with more practical value.
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