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We establish a new nonlinear retarded Volterra-Fredholm type integral inequality. The upper bounds of the embedded unknown
functions are estimated explicitly by using the theory of inequality and analytic techniques. Moreover, an application of our result
to the retarded Volterra-Fredholm integral equations for estimation is given.

1. Introduction

Gronwall-Bellman inequality [1, 2] is an important tool in
the study of existence, uniqueness, boundedness, oscillation,
stability, invariantmanifolds, and other qualitative properties
of solutions of differential equations and integral equation. A
lot of its generalizations in various cases can be found from
the literature (e.g., [3–7]). During the past few years, some
investigators have established a lot of useful and interesting
integral inequalities in order to achieve various goals; see [8–
18] and the references cited therein.

Gronwall-Bellman inequality [1, 2] can be stated as
follows. If 𝑢 and 𝑓 are nonnegative continuous functions on
an interval [𝑎, 𝑏] satisfying

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

𝑎

𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏] , (1)

for some constant 𝑐 ≥ 0, then

𝑢 (𝑡) ≤ 𝑐 exp(∫
𝑡

𝑎

𝑓 (𝑠) 𝑑𝑠) , 𝑡 ∈ [𝑎, 𝑏] . (2)

In 2004, Pachpatte [9] has discussed the linear Volterra-
Fredholm type integral inequality with retardation:

𝑢 (𝑡) ≤ 𝑘 + ∫

𝛼(𝑡)

𝛼(𝑡0)

𝑎 (𝑡, 𝑠) [𝑓 (𝑠) 𝑢 (𝑠)

+∫

𝑠

𝛼(𝑡0)

𝑐 (𝑠, 𝜏) 𝑢 (𝜏) 𝑑𝜏] 𝑑𝑠

+ ∫

𝛼(𝑇)

𝛼(𝑡0)

𝑏 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠, ∀𝑡 ∈ 𝐼.

(3)

In 2011, Abdeldaim and yakout [17] studied a new integral
inequality of Gronwall-Bellman-Pachpatte type:

𝑢 (𝑡) ≤ 𝑢
0

+ ∫

𝑡

𝛼(𝑡0)

𝑓 (𝑠) 𝑢 (𝑠)

× [𝑢 (𝑠) + ∫

𝑠

𝛼(𝑡0)

ℎ (𝜏)

× [𝑢 (𝜏)

+∫

𝜏

𝛼(𝑡0)

𝑔 (𝜉) 𝑢 (𝜉) 𝑑𝜉] 𝑑𝜏] 𝑑𝑠.

(4)
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In this paper, on the basis of [9, 17], we discuss a new
retarded nonlinear Volterra-Fredholm type integral inequal-
ity:

𝑢 (𝑡)

≤ 𝑘

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [𝑓
1
(𝑡

1
) 𝜙

1
(𝑢 (𝑡

1
))

+ ∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
) 𝜙

2
(𝑢 (𝑡

2
)) + ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
) 𝜙

𝑛−1
(𝑢 (𝑡

𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝜙

𝑛

× (𝑢 (𝑡
𝑛
)) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
⋅ ⋅ ⋅ ] 𝑑𝑡

2
]𝑑𝑡

1

+ ∫

𝛼(𝑇)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [𝑓
1
(𝑡

1
) 𝜙

1
(𝑢 (𝑡

1
))

+ ∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
) 𝜙

2
(𝑢 (𝑡

2
)) + ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
) 𝜙

𝑛−1
(𝑢 (𝑡

𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝜙

𝑛

× (𝑢 (𝑡
𝑛
)) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
⋅ ⋅ ⋅ ] 𝑑𝑡

2
]𝑑𝑡

1
,

(5)

where 𝑘 is a constant. The upper bound estimation of the
unknown function is given by integral inequality technique,

such as change of variable, amplification method, differential
and integration, inverse function, and the dialectical rela-
tionship between constants and variables. Furthermore, we
apply our result to retarded nonlinear Volterra-Fredholm
type equations for estimation.

2. Main Result

Throughout this paper, R denotes the set of real numbers,
R

+
= [0, +∞), 𝐼 = [𝑡

0
, 𝑇], 𝐶1

(𝑀, 𝑆) denotes the class of
continuously differentiable functions defined on set𝑀 with
range in the set 𝑆, 𝐶(𝑀, 𝑆) denotes the class of continuous
functions defined on set𝑀 with range in the set 𝑆, and 𝛼󸀠(𝑡)
denotes the derived function of a function 𝛼󸀠(𝑡).

We give the following notations used to simplify the
details of presentation.

We technically define a sequence of functions {𝑤
𝑖
(𝑢)} by

𝜙
𝑖
(𝑢) in (5), which can be defined recursively by

𝑤
1
(𝑢) := max

𝜏∈[0,𝑢]

{𝜙
1
(𝜏)} ,

𝑤
𝑖+1
(𝑢) := max

𝜏∈[0,𝑢]

{

𝜙
𝑖+1
(𝜏)

𝑤
𝑖
(𝜏)

}𝑤
𝑖
(𝑢) , 𝑖 = 1, . . . , 𝑛.

(6)

Obviously, for all 𝑗 > 𝑖, the function𝑤
𝑗
(𝑢)/𝑤

𝑖
(𝑢) is increasing

and the sequence {𝑤
𝑖
(𝑢)} consists of nondecreasing nonneg-

ative functions and satisfies 𝑤
𝑖
(𝑢) ≥ 𝜙

𝑖
(𝑢), 𝑖 = 1, . . . , 𝑛.

Moreover,

𝑤
𝑖
∝ 𝑤

𝑖+1
, 𝑖 = 1, 2, . . . , 𝑛 − 1, (7)

as defined in [4] for comparison ofmonotonicity of functions,
because the ratios 𝑤

𝑖+1
(𝑢)/𝑤

𝑖
(𝑢), 𝑖 = 1, . . . , 𝑛 − 1, are all

nondecreasing.
For given constant 𝑢

𝑖
> 0, we define functions

𝑊
1
(𝑢, 𝑢

1
) = ∫

𝑢

𝑢1

𝑑𝑠

𝑤
1
(𝑠)

, (8)

𝑊
𝑖
(𝑢, 𝑢

𝑖
) = ∫

𝑢

𝑢𝑖

𝑤
𝑖−1
(𝑊

−1

1
(⋅ ⋅ ⋅𝑊

−1

𝑖−1
(𝑠) ⋅ ⋅ ⋅ )) 𝑑𝑠

𝑤
𝑖
(𝑊

−1

1
(⋅ ⋅ ⋅𝑊

−1

𝑖−1
(𝑠) ⋅ ⋅ ⋅ ))

,

𝑖 = 2, . . . , 𝑛,

(9)

which are strictly increasing. When there is no confusion, we
simply let𝑊

𝑖
(𝑢) denote𝑊

𝑖
(𝑢, 𝑢

𝑖
) and𝑊−1

𝑖
denote its inverse.
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We define functions {𝐻
𝑖
(𝑡)} (𝑖 = 1, 2, . . . , 𝑛):

𝐻
1
(𝑡) = ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) 𝑓

1
(𝑡

1
) 𝑑𝑡

1
,

𝐻
2
(𝑡) = ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) 𝑓

2
(𝑡

2
) 𝑑𝑡

2
]𝑑𝑡

1
,

...

𝐻
𝑛−1
(𝑡) = ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [⋅ ⋅ ⋅ [∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
) 𝑓

𝑛−1
(𝑡

𝑛−1
) 𝑑𝑡

𝑛−1
]

⋅ ⋅ ⋅ ] 𝑑𝑡
2
]𝑑𝑡

1
,

𝐻
𝑛
(𝑡) = ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [⋅ ⋅ ⋅ [∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
]

⋅ ⋅ ⋅ ] 𝑑𝑡
2
]𝑑𝑡

1
.

(10)

We define function

𝐺 (𝑢) = 𝑊
𝑛
{𝑊

𝑛−1
{⋅ ⋅ ⋅ {𝑊

2
{𝑊

1
(2𝑢 − 𝑘)}} ⋅ ⋅ ⋅ }}

− 𝑊
𝑛
{𝑊

𝑛−1
{⋅ ⋅ ⋅ {𝑊

2
{𝑊

1
(𝑢) + 𝐻

1
(𝑇)}

+𝐻
2
(𝑇)} ⋅ ⋅ ⋅ } + 𝐻

𝑛−1
(𝑇)}

− 𝐻
𝑛
(𝑇) , ∀𝑢 > 𝑘.

(11)

Theorem 1. Suppose that ℎ
𝑛
(𝑡), 𝑓

𝑖
(𝑡), ℎ

𝑖
(𝑡) ∈ 𝐶(𝐼,R

+
), (𝑖 =

1, . . . , 𝑛 − 1), 𝛼 ∈ 𝐶
1
(𝐼, 𝐼) is nondecreasing with 𝛼(𝑡) ≤ 𝑡 and

𝛼(𝑡
0
) = 𝑡

0
on 𝐼; all 𝜙

𝑖
are continuous functions with 𝜙

𝑖
(𝑢) >

0 (𝑖 = 1, . . . , 𝑛) for 𝑢 > 0, 𝑊
𝑖
(+∞) = +∞, 𝑖 = 1, 2, . . . , 𝑛.

Suppose that the function 𝐺(𝑢) is increasing and 𝐺(𝑢) = 0 has
a solution 𝑐 for 𝑢 > 𝑘. If 𝑢(𝑡) satisfies (5), then

𝑢 (𝑡) ≤ 𝑊
−1

1

× {𝑊
−1

2
{⋅ ⋅ ⋅ {𝑊

−1

𝑛
{𝑊

𝑛
{𝑊

𝑛−1
{⋅ ⋅ ⋅{𝑊

2
{𝑊

1
(𝑐)+𝐻

1
(𝑡)}

+𝐻
2
(𝑡)} ⋅ ⋅ ⋅ }+𝐻

𝑛−1
(𝑡)}+𝐻

𝑛
(𝑡)} } ⋅ ⋅ ⋅ }} , ∀𝑡 ∈ 𝐼,

(12)

where 𝑊−1

𝑖
(𝑖 = 1, 2, . . . , 𝑛) are inverse functions of 𝑊

𝑖
,

respectively.

Proof. From (5) and (6), we have

𝑢 (𝑡)

≤ 𝑘

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [𝑓
1
(𝑡

1
) 𝑤

1
(𝑢 (𝑡

1
))

+ ∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
) 𝑤

2
(𝑢 (𝑡

2
)) + ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
) 𝑤

𝑛−1
(𝑢 (𝑡

𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝑤

𝑛

× (𝑢 (𝑡
𝑛
)) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
⋅ ⋅ ⋅ ]𝑑𝑡

2
]𝑑𝑡

1

+ ∫

𝛼(𝑇)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [𝑓
1
(𝑡

1
) 𝑤

1
(𝑢 (𝑡

1
))

+ ∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
) 𝑤

2
(𝑢 (𝑡

2
)) + ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
) 𝑤

𝑛−1
(𝑢 (𝑡

𝑛−1
))
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+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝑤

𝑛

× (𝑢 (𝑡
𝑛
)) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
⋅ ⋅ ⋅ ]𝑑𝑡

2
]𝑑𝑡

1
,

(13)

for all 𝑡 ∈ 𝐼. Let 𝑧
1
(𝑡) denote the function on the right-hand

side of (13), which is a positive and nondecreasing function
on 𝐼. Then (13) is equivalent to

𝑢 (𝑡) ≤ 𝑧
1
(𝑡) , ∀𝑡 ∈ 𝐼, (14)

𝑧
1
(𝑡

0
)

= 𝑘 + ∫

𝛼(𝑇)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [𝑓
1
(𝑡

1
) 𝑤

1
(𝑢 (𝑡

1
))

+ ∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
) 𝑤

2
(𝑢 (𝑡

2
)) + ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
) 𝑤

𝑛−1
(𝑢 (𝑡

𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝑤

𝑛

× (𝑢 (𝑡
𝑛
)) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
⋅ ⋅ ⋅ ] 𝑑𝑡

2
]𝑑𝑡

1
.

(15)

Differentiating 𝑧
1
(𝑡) with respect to 𝑡, using (14), we have

𝑧
󸀠

1
(𝑡)

= 𝛼
󸀠
(𝑡) ℎ

1
(𝛼 (𝑡))

× [𝑓
1
(𝛼 (𝑡)) 𝑤

1
(𝑢 (𝛼 (𝑡)))

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
) 𝑤

2
(𝑢 (𝑡

2
)) + ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
) 𝑤

𝑛−1
(𝑢 (𝑡

𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝑤

𝑛

× (𝑢 (𝑡
𝑛
)) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
⋅ ⋅ ⋅ ] 𝑑𝑡

2
]

≤ 𝛼
󸀠
(𝑡) ℎ

1
(𝛼 (𝑡))

× [𝑓
1
(𝛼 (𝑡)) 𝑤

1
(𝑧

1
(𝛼 (𝑡)))

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
) 𝑤

2
(𝑧

1
(𝑡

2
)) + ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
) 𝑤

𝑛−1
(𝑧

1
(𝑡

𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝑤

𝑛

× (𝑧
1
(𝑡

𝑛
)) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
⋅ ⋅ ⋅ ] 𝑑𝑡

2
] ,

∀𝑡 ∈ 𝐼,

(16)

by themonotonicity of𝑤
1
and 𝑧

1
and the property of 𝛼. From

(16), we have

𝑧
󸀠

1
(𝑡)

𝑤
1
(𝑧

1
(𝑡))

≤ 𝛼
󸀠
(𝑡) ℎ

1
(𝛼 (𝑡))

× [𝑓
1
(𝛼 (𝑡))

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
)

𝑤
2
(𝑧

1
(𝑡

2
))

𝑤
1
(𝑧

1
(𝑡

2
))

+ ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
)

𝑤
𝑛−1
(𝑧

1
(𝑡

𝑛−1
))

𝑤
1
(𝑧

1
(𝑡

𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)
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×

𝑤
𝑛
(𝑧

1
(𝑡

𝑛
))

𝑤
1
(𝑧

1
(𝑡

𝑛
))

𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
⋅ ⋅ ⋅] 𝑑𝑡

2
] ,

∀𝑡 ∈ 𝐼.

(17)

Integrating both sides of the above inequality from 𝑡
0
to 𝑡, we

obtain

𝑊
1
(𝑧

1
(𝑡))

≤ 𝑊
1
(𝑧

1
(𝑡

0
))

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑠) 𝑓

1
(𝑠) 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
)

𝑤
2
(𝑧

1
(𝑡

2
))

𝑤
1
(𝑧

1
(𝑡

2
))

+ ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
)

𝑤
𝑛−1
(𝑧

1
(𝑡

𝑛−1
))

𝑤
1
(𝑧

1
(𝑡

𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑧

1
(𝑡

𝑛
))

𝑤
1
(𝑧

1
(𝑡

𝑛
))

𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
⋅ ⋅ ⋅ ] 𝑑𝑡

2
]𝑑𝑡

1

≤ 𝑊
1
(𝑧

1
(𝑡

0
))

+ ∫

𝛼(𝑇1)

𝛼(𝑡0)

ℎ
1
(𝑠) 𝑓

1
(𝑠) 𝑑𝑠

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
)

𝑤
2
(𝑧

1
(𝑡

2
))

𝑤
1
(𝑧

1
(𝑡

2
))

+ ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
)

𝑤
𝑛−1
(𝑧

1
(𝑡

𝑛−1
))

𝑤
1
(𝑧

1
(𝑡

𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑧

1
(𝑡

𝑛
))

𝑤
1
(𝑧

1
(𝑡

𝑛
))

𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
⋅ ⋅ ⋅ ]𝑑𝑡

2
]𝑑𝑡

1
,

(18)

for 𝑡
0
≤ 𝑡 ≤ 𝑇

1
≤ 𝑇; 𝑇

1
is chosen arbitrarily, where 𝑊

1
is

defined by (8).
Let 𝑧

2
(𝑡) denote the function on the right-hand side

of (18), which is a positive and nondecreasing function on
[𝑡

0
, 𝑇

1
]. Then (18) is equivalent to

𝑧
1
(𝑡) ≤ 𝑊

−1

1
(𝑧

2
(𝑡)) , ∀𝑡 ∈ [𝑡

0
, 𝑇

1
] , (19)

𝑧
2
(𝑡

0
) = 𝑊

1
(𝑧

1
(𝑡

0
)) + ∫

𝛼(𝑇1)

𝛼(𝑡0)

ℎ
1
(𝑠) 𝑓

1
(𝑠) 𝑑𝑠. (20)

Differentiating 𝑧
2
(𝑡) with respect to 𝑡, using (19), we have

𝑧
󸀠

2
(𝑡)

= 𝛼
󸀠
(𝑡) ℎ1 (𝛼 (𝑡))

× [∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
)
𝑤

2
(𝑧

1
(𝑡

2
))

𝑤
1
(𝑧

1
(𝑡

2
))

+ ∫

𝑡2

𝛼(𝑡0)

ℎ
3
(𝑡

3
)

× [𝑓
3
(𝑡

3
)
𝑤

3
(𝑧

1
(𝑡

2
))

𝑤
1
(𝑧

1
(𝑡

2
))

+ ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1

(𝑡
𝑛−1

)

× [𝑓
𝑛−1

(𝑡
𝑛−1

)
𝑤

𝑛−1
(𝑧

1
(𝑡

𝑛−1
))

𝑤
1
(𝑧

1
(𝑡

𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×
𝑤

𝑛
(𝑧

1
(𝑡

𝑛
))

𝑤
1
(𝑧

1
(𝑡

𝑛
))

𝑑𝑡
𝑛
] 𝑑𝑡

𝑛−1
⋅ ⋅ ⋅ ] 𝑑𝑡

3
] 𝑑𝑡

2
]

≤ 𝛼
󸀠
(𝑡) ℎ1 (𝛼 (𝑡))

× [∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
)

𝑤
2
(𝑊

−1

1
(𝑧

2
(𝑡

2
)))

𝑤
1
(𝑊

−1

1
(𝑧

2
(𝑡

2
)))

+ ∫

𝑡2

𝛼(𝑡0)

ℎ
3
(𝑡

3
)

× [𝑓
3
(𝑡

3
)

𝑤
3
(𝑊

−1

1
(𝑧

2
(𝑡

3
)))

𝑤
1
(𝑊

−1

1
(𝑧

2
(𝑡

3
)))

+ ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1

(𝑡
𝑛−1

)
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× [𝑓
𝑛−1

(𝑡
𝑛−1

)

𝑤
𝑛−1

(𝑊
−1

1
(𝑧

2
(𝑡

𝑛−1
)))

𝑤
1
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛−1
)))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛
)))

𝑤
1
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛
)))

𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
⋅ ⋅ ⋅]𝑑𝑡

3
] 𝑑𝑡

2
] ,

∀𝑡∈[𝑡
0
, 𝑇

1
] ,

(21)

by themonotonicity of𝑤
𝑖
/𝑤

1
(𝑖 = 1, 2, . . . , 𝑛) and the property

of 𝛼. From (21), we have

𝑧
󸀠

2
(𝑡) 𝑤

1
(𝑊

−1

1
(𝑧

2
(𝑡)))

𝑤
2
(𝑊

−1

1
(𝑧

2
(𝑡)))

≤ 𝛼
󸀠
(𝑡) ℎ

1
(𝛼 (𝑡))

× ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
) 𝑓

2
(𝑡

2
) 𝑑𝑡

2

+ 𝛼
󸀠
(𝑡) ℎ

1
(𝛼 (𝑡))

× ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [∫

𝑡2

𝛼(𝑡0)

ℎ
3
(𝑡

3
)

× [𝑓
3
(𝑡

3
)

𝑤
3
(𝑊

−1

1
(𝑧

2
(𝑡

2
)))

𝑤
2
(𝑊

−1

1
(𝑧

2
(𝑡

2
)))

+ ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
)

𝑤
𝑛−1
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛−1
)))

𝑤
2
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛−1
)))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛
)))

𝑤
2
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛
)))

𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
⋅ ⋅ ⋅]𝑑𝑡

3
]𝑑𝑡

2
,

(22)

for all 𝑡 ∈ [𝑡
0
, 𝑇

1
]. From (22), we have

𝑊
2
(𝑧

2
(𝑡))

≤ 𝑊
2
(𝑧

2
(𝑡

0
))

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) 𝑓

2
(𝑡

2
) 𝑑𝑡

2
]𝑑𝑡

1

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [∫

𝑡2

𝛼(𝑡0)

ℎ
3
(𝑡

3
)

× [𝑓
3
(𝑡

3
)

𝑤
3
(𝑊

−1

1
(𝑧

2
(𝑡

2
)))

𝑤
2
(𝑊

−1

1
(𝑧

2
(𝑡

2
)))

+ ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
)

𝑤
𝑛−1
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛−1
)))

𝑤
2
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛−1
)))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛
)))

𝑤
2
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛
)))

𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1

⋅ ⋅ ⋅ ] 𝑑𝑡
3
]𝑑𝑡

2
]𝑑𝑡

1

≤ 𝑊
2
(𝑧

2
(𝑡

0
))

+ ∫

𝛼(𝑇1)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) 𝑓

2
(𝑡

2
) 𝑑𝑡

2
]𝑑𝑡

1

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [∫

𝑡2

𝛼(𝑡0)

ℎ
3
(𝑡

3
)

× [𝑓
3
(𝑡

3
)

𝑤
3
(𝑊

−1

1
(𝑧

2
(𝑡

2
)))

𝑤
2
(𝑊

−1

1
(𝑧

2
(𝑡

2
)))

+ ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
)

𝑤
𝑛−1
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛−1
)))

𝑤
2
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛−1
)))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛
)))

𝑤
2
(𝑊

−1

1
(𝑧

2
(𝑡

𝑛
)))

𝑑𝑡
𝑛
]

× 𝑑𝑡
𝑛−1
⋅ ⋅ ⋅ ] 𝑑𝑡

3
]𝑑𝑡

2
]𝑑𝑡

1
,

(23)
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for all 𝑡 ∈ [𝑡
0
, 𝑇

1
], where𝑊

2
is defined by (9). Repeating the

same derivation as in (19), (23), and so on, we obtain

𝑊
𝑛−2
(𝑧

𝑛−2
(𝑡))

≤ 𝑊
𝑛−2
(𝑧

𝑛−2
(𝑡

0
))

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

⋅ ⋅ ⋅ [∫

𝑡𝑛−3

𝛼(𝑡0)

ℎ
𝑛−2
(𝑡

𝑛−2
) 𝑓

𝑛−2
(𝑡

𝑛−2
) 𝑑𝑡

𝑛−2
] ⋅ ⋅ ⋅ ] 𝑑𝑡

1

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [ ⋅ ⋅ ⋅

[ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
)

×

𝑤
𝑛−1
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛−1
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−2
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛−1
))) ⋅ ⋅ ⋅ )))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−2
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

×𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
] ⋅ ⋅ ⋅ ] 𝑑𝑡

2
]𝑑𝑡

1

≤ 𝑊
𝑛−2
(𝑧

𝑛−2
(𝑡

0
))

+ ∫

𝛼(𝑇1)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

⋅ ⋅ ⋅ [∫

𝑡𝑛−3

𝛼(𝑡0)

ℎ
𝑛−2
(𝑡

𝑛−2
) 𝑓

𝑛−2
(𝑡

𝑛−2
) 𝑑𝑡

𝑛−2
] ⋅ ⋅ ⋅ ] 𝑑𝑡

1

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [ ⋅ ⋅ ⋅

[ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
)

×

𝑤
𝑛−1
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛−1
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−2
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛−1
))) ⋅ ⋅ ⋅ )))

+∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−2
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

×𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
] ⋅ ⋅ ⋅ ] 𝑑𝑡

2
]𝑑𝑡

1
,

(24)

for all 𝑡 ∈ [𝑡
0
, 𝑇

1
], where𝑊

𝑛−2
is defined by (9).

Let 𝑧
𝑛−1
(𝑡) denote the function on the right-hand side

of (24), which is a positive and nondecreasing function on
[𝑡

0
, 𝑇

1
]. Then (24) is equivalent to

𝑧
𝑛−2
(𝑡) ≤ 𝑊

−1

𝑛−2
(𝑧

𝑛−1
(𝑡)) , ∀𝑡 ∈ [𝑡

0
, 𝑇

1
] , (25)

𝑧
𝑛−1
(𝑡

0
)

= 𝑊
𝑛−2
(𝑧

𝑛−2
(𝑡

0
))

+ ∫

𝛼(𝑇1)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) ⋅ ⋅ ⋅

× [∫

𝑡𝑛−3

𝛼(𝑡0)

ℎ
𝑛−2
(𝑡

𝑛−2
) 𝑓

𝑛−2
(𝑡

𝑛−2
) 𝑑𝑡

𝑛−2
]⋅ ⋅ ⋅]𝑑𝑡

1
.

(26)

Differentiating 𝑧
𝑛−1
(𝑡) with respect to 𝑡, we have

𝑧
󸀠

𝑛−1
(𝑡)

= 𝛼
󸀠
(𝑡) ℎ

1
(𝛼 (𝑡))

× [∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
)
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× [ ⋅ ⋅ ⋅

[∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
)

×

𝑤
𝑛−1
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛−1
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−2
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛−1
))) ⋅ ⋅ ⋅ )))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−2
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

×𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
] ⋅ ⋅ ⋅ ] 𝑑𝑡

2
] ,

(27)

for all 𝑡 ∈ [𝑡
0
, 𝑇

1
]. From (27), using (25), we have

𝑧
󸀠

𝑛−1
(𝑡) 𝑤

𝑛−2
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛−1
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−1
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛−1
))) ⋅ ⋅ ⋅ )))

≤ 𝛼
󸀠
(𝑡) ℎ

1
(𝛼 (𝑡))

× [∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [ ⋅ ⋅ ⋅

[ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
)

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−1
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−3
(𝑧

𝑛−2
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

×𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
] ⋅ ⋅ ⋅ ] 𝑑𝑡

2
]

≤ 𝛼
󸀠
(𝑡) ℎ

1
(𝛼 (𝑡))

× [∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [ ⋅ ⋅ ⋅

[ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
)

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−2
(𝑧

𝑛−1
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−1
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−2
(𝑧

𝑛−1
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

×𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
] ⋅ ⋅ ⋅ ] 𝑑𝑡

2
] ,

(28)

for all 𝑡 ∈ [𝑡
0
, 𝑇

1
], by themonotonicity of 𝑧

𝑛−1
, 𝑊

−1

1
, . . . ,𝑊

−1

𝑛−2

and 𝑤
𝑛−2
/𝑤

𝑛−1
and the property of 𝛼. Integrating both sides

of the above inequality from 𝑡
0
to 𝑡, we obtain

𝑊
𝑛−1
(𝑧

𝑛−1
(𝑡))

≤ 𝑊
𝑛−1
(𝑧

𝑛−1
(𝑡

0
))

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [⋅ ⋅ ⋅ [∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
) 𝑓

𝑛−1
(𝑡

𝑛−1
) 𝑑𝑡

𝑛−1
]

⋅ ⋅ ⋅ ] 𝑑𝑡
2
]𝑑𝑡

1

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [ ⋅ ⋅ ⋅
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[∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−2
(𝑧

𝑛−1
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−1
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−2
(𝑧

𝑛−1
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

×𝑑𝑡
𝑛
] 𝑑𝑡

𝑛−1
] ⋅ ⋅ ⋅ ] 𝑑𝑡

2
]𝑑𝑡

1

≤ 𝑊
𝑛−1
(𝑧

𝑛−1
(𝑡

0
))

+ ∫

𝛼(𝑇1)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [ ⋅ ⋅ ⋅ [∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
) 𝑓

𝑛−1
(𝑡

𝑛−1
) 𝑑𝑡

𝑛−1
]

⋅ ⋅ ⋅ ] 𝑑𝑡
2
]𝑑𝑡

1

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [ ⋅ ⋅ ⋅

[ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−2
(𝑧

𝑛−1
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−1
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−2
(𝑧

𝑛−1
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

×𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
] ⋅ ⋅ ⋅ ] 𝑑𝑡

2
]𝑑𝑡

1
,

(29)

for all 𝑡 ∈ [𝑡
0
, 𝑇

1
], where 𝑊

𝑛−1
is defined by (9). Let 𝑧

𝑛
(𝑡)

denote the function on the right-hand side of (29), which is
a positive and nondecreasing function on [𝑡

0
, 𝑇

1
]. Then (29)

is equivalent to

𝑧
𝑛−1
(𝑡) ≤ 𝑊

−1

𝑛−1
(𝑧

𝑛
(𝑡)) , ∀𝑡 ∈ [𝑡

0
, 𝑇

1
] , (30)

𝑧
𝑛
(𝑡

0
)

= 𝑊
𝑛−1
(𝑧

𝑛−1
(𝑡

0
))

+ ∫

𝛼(𝑇1)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [ ⋅ ⋅ ⋅

[∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× 𝑓
𝑛−1
(𝑡

𝑛−1
) 𝑑𝑡

𝑛−1
] ⋅ ⋅ ⋅ ] 𝑑𝑡

2
]𝑑𝑡

1
.

(31)

Differentiating 𝑧
𝑛
(𝑡) with respect to 𝑡, using (30), we have

𝑧
󸀠

𝑛
(𝑡)

= 𝛼
󸀠
(𝑡) ℎ

1
(𝛼 (𝑡))

× ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [ ⋅ ⋅ ⋅

[ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−2
(𝑧

𝑛−1
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−1
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−2
(𝑧

𝑛−1
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

×𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
] ⋅ ⋅ ⋅ ] 𝑑𝑡

2

≤ 𝛼
󸀠
(𝑡) ℎ

1
(𝛼 (𝑡))

× ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [ ⋅ ⋅ ⋅

[ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)
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× [∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

×

𝑤
𝑛
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−1
(𝑧

𝑛
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛−1
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−1
(𝑧

𝑛
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

×𝑑𝑡
𝑛
]𝑑𝑡

𝑛−1
] ⋅ ⋅ ⋅ ] 𝑑𝑡

2
,

(32)

for all 𝑡 ∈ [𝑡
0
, 𝑇

1
]. From (32), we have

𝑧
󸀠

𝑛
(𝑡) 𝑤

𝑛−1
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−1
(𝑧

𝑛
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

𝑤
𝑛
(𝑊

−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−1
(𝑧

𝑛
(𝑡

𝑛
))) ⋅ ⋅ ⋅ )))

= 𝛼
󸀠
(𝑡) ℎ

1
(𝛼 (𝑡))

× ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [⋅ ⋅ ⋅ [∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
]

⋅ ⋅ ⋅ ] 𝑑𝑡
2
,

(33)

for all 𝑡 ∈ [𝑡
0
, 𝑇

1
]. Integrating both sides of the above

inequality from 𝑡
0
to 𝑡, we obtain

𝑊
𝑛
(𝑧

𝑛
(𝑡)) − 𝑊

𝑛
(𝑧

𝑛
(𝑡

0
))

≤ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [⋅ ⋅ ⋅ [∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
]

⋅ ⋅ ⋅ ] 𝑑𝑡
2
]𝑑𝑡

1
,

(34)

for all 𝑡 ∈ [𝑡
0
, 𝑇

1
]. From (19), (25), (30), and (34), we have

𝑧
1
(𝑡)

≤ 𝑊
−1

1
(𝑊

−1

2
(⋅ ⋅ ⋅ (𝑊

−1

𝑛−1
(𝑧

𝑛
(𝑡))) ⋅ ⋅ ⋅ ))

≤ 𝑊
−1

1
{𝑊

−1

2
{⋅ ⋅ ⋅ {𝑊

−1

𝑛
{𝑊

𝑛
(𝑧

𝑛
(𝑡

0
)) + ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) [⋅ ⋅ ⋅ [∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
] ⋅ ⋅ ⋅]𝑑𝑡

2
]𝑑𝑡

1
}} ⋅ ⋅ ⋅ }}

(35)

for all 𝑡 ∈ [𝑡
0
, 𝑇

1
]. Substituting (20), (26), and (31) into (35),

we have

𝑧
1
(𝑡)

≤ 𝑊
−1

1
{𝑊

−1

2

× { ⋅ ⋅ ⋅ {𝑊
−1

𝑛
{𝑊

𝑛
{𝑊

𝑛−1

× {𝑊
𝑛−2
{⋅ ⋅ ⋅ {𝑊

2
{𝑊

1
(𝑧

1
(𝑡

0
))

+ ∫

𝛼(𝑇1)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) 𝑓

1
(𝑡

1
) 𝑑𝑡

1
}

+∫

𝛼(𝑇1)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) 𝑓

2
(𝑡

2
) 𝑑𝑡

2
]𝑑𝑡

1
}⋅ ⋅ ⋅}

+∫

𝛼(𝑇1)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) [ ⋅ ⋅ ⋅

[∫

𝑡𝑛−3

𝛼(𝑡0)

ℎ
𝑛−2
(𝑡

𝑛−2
) 𝑓

𝑛−2
(𝑡

𝑛−2
) 𝑑𝑡

𝑛−2
]⋅ ⋅ ⋅]𝑑𝑡

2
]𝑑𝑡

1
}

+∫

𝛼(𝑇1)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) [ ⋅ ⋅ ⋅

[∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
) 𝑓

𝑛−1
(𝑡

𝑛−1
) 𝑑𝑡

𝑛−1
]⋅ ⋅ ⋅]𝑑𝑡

2
]𝑑𝑡

1
}

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) [⋅ ⋅ ⋅[∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
]⋅ ⋅ ⋅]𝑑𝑡

2
]𝑑𝑡

1
}}⋅ ⋅ ⋅}} ,

∀𝑡 ∈ [𝑡
0
, 𝑇

1
] .

(36)
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Since 𝑇
1
is chosen arbitrarily, we have

𝑧
1
(𝑡)

≤ 𝑊
−1

1
{𝑊

−1

2

× { ⋅ ⋅ ⋅ {𝑊
−1

𝑛
{𝑊

𝑛
{𝑊

𝑛−1

× {𝑊
𝑛−2
{⋅ ⋅ ⋅ {𝑊

2
{𝑊

1
(𝑧

1
(𝑡

0
))

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) 𝑓

1
(𝑡

1
) 𝑑𝑡

1
}

+∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) 𝑓

2
(𝑡

2
) 𝑑𝑡

2
]𝑑𝑡

1
}⋅ ⋅ ⋅}

+∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) [ ⋅ ⋅ ⋅

[∫

𝑡𝑛−3

𝛼(𝑡0)

ℎ
𝑛−2
(𝑡

𝑛−2
) 𝑓

𝑛−2
(𝑡

𝑛−2
) 𝑑𝑡

𝑛−2
]⋅ ⋅ ⋅]𝑑𝑡

2
]𝑑𝑡

1
}

+∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) [ ⋅ ⋅ ⋅

[∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
) 𝑓

𝑛−1
(𝑡

𝑛−1
) 𝑑𝑡

𝑛−1
]⋅ ⋅ ⋅]𝑑𝑡

2
]𝑑𝑡

1
}

+ ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) [⋅ ⋅ ⋅[∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1
]⋅ ⋅ ⋅]𝑑𝑡

2
]𝑑𝑡

1
}}⋅ ⋅ ⋅}}

= 𝑊
−1

1
{𝑊

−1

2

× {⋅ ⋅ ⋅ {𝑊
−1

𝑛
{𝑊

𝑛
{𝑊

𝑛−1
{⋅ ⋅ ⋅ {𝑊

2

× {𝑊
1
(𝑧

1
(𝑡

0
)) + 𝐻

1
(𝑡)} + 𝐻

2
(𝑡)} ⋅ ⋅ ⋅ }

+𝐻
𝑛−1
(𝑡)} + 𝐻

𝑛
(𝑡)} } ⋅ ⋅ ⋅ } } , ∀𝑡 ∈ [𝑡

0
, 𝑇] .

(37)

By the definition of 𝑧
1
and (15), we have

2𝑧
1
(𝑡

0
) − 𝑘

= 𝑘 + 2∫

𝛼(𝑇)

𝛼(𝑡0)

ℎ
1
(𝑡

1
)

× [𝑓
1
(𝑡

1
) 𝑤

1
(𝑢 (𝑡

1
))

+ ∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
)

× [𝑓
2
(𝑡

2
) 𝑤

2
(𝑢 (𝑡

2
)) + ⋅ ⋅ ⋅

+ ∫

𝑡𝑛−2

𝛼(𝑡0)

ℎ
𝑛−1
(𝑡

𝑛−1
)

× [𝑓
𝑛−1
(𝑡

𝑛−1
) 𝑤

𝑛−1
(𝑢 (𝑡

𝑛−1
))

+ ∫

𝑡𝑛−1

𝛼(𝑡0)

ℎ
𝑛
(𝑡

𝑛
)

× 𝑤
𝑛
(𝑢 (𝑡

𝑛
)) 𝑑𝑡

𝑛
]𝑑𝑡

𝑛−1

⋅ ⋅ ⋅ ] 𝑑𝑡
2
]𝑑𝑡

1
= 𝑧

1
(𝑇) .

(38)

From (37) and (38), we have

2𝑧
1
(𝑡

0
) − 𝑘

≤𝑊
−1

1
{𝑊

−1

2
{⋅ ⋅ ⋅ {𝑊

−1

𝑛
{𝑊

𝑛
{𝑊

𝑛−1
{⋅ ⋅ ⋅ {𝑊

2
{𝑊

1
(𝑧

1
(𝑡

0
))

+ 𝐻
1
(𝑇)}+𝐻

2
(𝑇)} ⋅ ⋅ ⋅ }+𝐻

𝑛−1
(𝑇)}+𝐻

𝑛
(𝑇)} } ⋅ ⋅ ⋅ }}

(39)

or

𝑊
𝑛
{𝑊

𝑛−1
{⋅ ⋅ ⋅ {𝑊

2
{𝑊

1
(2𝑧

1
(𝑡

0
) − 𝑘)}} ⋅ ⋅ ⋅ }}

− 𝑊
𝑛
{𝑊

𝑛−1
{⋅ ⋅ ⋅ {𝑊

2
{𝑊

1
(𝑧

1
(𝑡

0
)) + 𝐻

1
(𝑇)}

+𝐻
2
(𝑇)} ⋅ ⋅ ⋅ } + 𝐻

𝑛−1
(𝑇)}

− 𝐻
𝑛
(𝑇) ≤ 0.

(40)

By the definition of𝐺, the assumption ofTheorem 1, and (40),
we observe that

𝐺 (𝑧
1
(𝑡

0
)) ≤ 0 = 𝐺 (𝑐) . (41)

Since 𝐻
2
is increasing, from the last inequality and (14), we

have the desired estimation (12).
We define the following functions:

𝐻
1
(𝑡) = ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) 𝑓

1
(𝑡

1
) 𝑑𝑡

1
,

𝐻
2
(𝑡) = ∫

𝛼(𝑡)

𝛼(𝑡0)

ℎ
1
(𝑡

1
) [∫

𝑡1

𝛼(𝑡0)

ℎ
2
(𝑡

2
) 𝑑𝑡

2
]𝑑𝑡

1
,

𝐸 (𝑢) = 𝑊
2
{𝑊

1
(2𝑢 − 𝑘)} − 𝑊

2
{𝑊

1
(𝑢) + 𝐻

1
(𝑇)} − 𝐻

2
(𝑇) ,

(42)

for all 𝑢 > 𝑘, where𝑊
𝑖
, 𝑖 = 1, 2 are defined by (8) and (9),

respectively.

Corollary 2. Let 𝑛 = 2, 𝑓
1
(𝑡), 𝑓

2
(𝑡), ℎ

𝑖
(𝑡), 𝜙

𝑖
,𝑊

𝑖
, 𝑖 = 1, 2, 𝛼 be

as in Theorem 1. Suppose that the function 𝐸(𝑢) is increasing
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and 𝐸(𝑢) = 0 has a solution 𝑐 for 𝑢 > 𝑘. If 𝑢(𝑡) satisfies (5),
then

𝑢 (𝑡) ≤ 𝑊
−1

1
{𝑊

−1

2
{𝑊

2
{𝑊

1
(𝑐) + 𝐻

1
(𝑡)} + 𝐻

2
(𝑡)}} ,

∀𝑡 ∈ 𝐼,

(43)

where𝑊−1

𝑖
(𝑖 = 1, 2) are inverse functions of𝑊

𝑖
, respectively.

3. Application

In this section, we apply our result inTheorem 1 to investigate
the retarded Volterra-Fredholm integral equations:

𝑥 (𝑡)

= 𝑥
0
+∫

𝑡

𝑡0

𝐹
1
{𝑠, 𝑥 (𝑠−𝛾 (𝑠)) , ∫

𝑠

𝑡0

𝐹
2
[𝜏, 𝑥 (𝜏 − 𝛾 (𝜏))] 𝑑𝜏} 𝑑𝑠

+ ∫

𝑇

𝑡0

𝐹
1
{𝑠, 𝑥 (𝑠 − 𝛾 (𝑠)) , ∫

𝑠

𝑡0

𝐹
2
[𝜏, 𝑥 (𝜏 − 𝛾 (𝜏))] 𝑑𝜏} 𝑑𝑠,

(44)

for 𝑡 ∈ 𝐼, where 𝑥 ∈ 𝐶(𝐼,R), 𝛾 ∈ 𝐶1
(𝐼, 𝐼) is nondecreasing

with 𝑡 − 𝛾(𝑡) ≥ 𝑡
0
, 𝛾(𝑡

0
) = 0, 𝛾

󸀠
(𝑡) < 1, 𝐹

1
∈ 𝐶 (𝐼 ×R2

,R), 𝐹
2
∈

𝐶 (𝐼 ×R,R). Let 𝛽(𝑡) = 𝑡 − 𝛾(𝑡); then 𝛽(𝑡) ∈ 𝐶1
(𝐼, 𝐼), 𝛽(𝑡) ≤ 𝑡.

Since 𝛽󸀠(𝑡) = 1−𝛾󸀠(𝑡) > 0, 𝛽(𝑡) is an increasing and invertible
function.

The following theorem gives the bound on the solution of
(44).

Theorem 3. Suppose that 𝐹
1
, 𝐹

2
in (44) satisfy the conditions

󵄨
󵄨
󵄨
󵄨
𝐹
1
(𝑠, 𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤ ℎ

1
(𝑠) [𝑓

1
(𝑠) 𝑤

1
(|𝑥|) +

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
] ,

󵄨
󵄨
󵄨
󵄨
𝐹
2
(𝑠, 𝑥)

󵄨
󵄨
󵄨
󵄨
≤ ℎ

2
(𝑠) 𝑤

2
(|𝑥|) ,

(45)

where𝑓
1
(𝑠), ℎ

1
(𝑠), ℎ

2
(𝑠), 𝑤

1
(𝑠) and𝑤

2
(𝑠) are as inTheorem 1;

let𝑀 = max
𝑡∈𝐼
(1/𝛽

󸀠
(𝛽

−1
(𝑡))) < ∞. Assume that the function

𝐻
3
(𝑢) = 𝑊

2
[𝑊

1
(2𝑢 − 𝑘)]

− 𝑊
2
[𝑊

1
(𝑢) + ∫

𝛽(𝑇)

𝛽(𝑡0)

ℎ
1
(𝑠) 𝑓

1
(𝑠) 𝑑𝑠]

− ∫

𝛽(𝑇)

𝛽(𝑡0)

ℎ
1
(𝑠) [∫

𝑠

𝛽(𝑡0)

ℎ
2
(𝜏) 𝑓

2
(𝜏) 𝑑𝜏] 𝑑𝑠

(46)

is increasing and𝐻
3
(𝑡) = 0 has a solution 𝑐 for 𝑢 > 𝑘. If 𝑥(𝑡) is

a solution of (44), then

|𝑥 (𝑡)| ≤ 𝑊
−1

1
{𝑊

−1

2
[𝑊

2
[𝑊

1
(𝑐) + ∫

𝛽(𝑡)

𝛽(𝑡0)

𝑀ℎ
1
(𝛽

−1
(𝑠)) 𝑓

1
(𝛽

−1
(𝑠)) 𝑑𝑠]

+∫

𝛽(𝑡)

𝛽(𝑡0)

𝑀ℎ
1
(𝛽

−1
(𝑠)) [∫

𝑠

𝛽(𝑡0)

𝑀ℎ
2
(𝛽

−1
(𝜏)) 𝑑𝜏] 𝑑𝑠]} , ∀𝑡 ∈ 𝐼,

(47)

where𝑊
1
, 𝑊

2
, 𝑊

−1

1
, and𝑊−1

2
are as in Theorem 1.

Proof. Using the condition (45), we have

|𝑥 (𝑡)| ≤
󵄨
󵄨
󵄨
󵄨
𝑥

0

󵄨
󵄨
󵄨
󵄨
+ ∫

𝑡

𝑡0

ℎ
1
(𝑠) [𝑓

1
(𝑠) 𝑤

1
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠 − 𝛾 (𝑠))

󵄨
󵄨
󵄨
󵄨
)

+∫

𝑠

𝑡0

ℎ
2
(𝜏)

×𝑤
2
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝜏 − 𝛾 (𝜏))

󵄨
󵄨
󵄨
󵄨
) 𝑑𝜏] 𝑑𝑠

+ ∫

𝑇

𝑡0

ℎ
1
(𝑠) [𝑓

1
(𝑠) 𝑤

1
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑠 − 𝛾 (𝑠))

󵄨
󵄨
󵄨
󵄨
)

+∫

𝑠

𝑡0

ℎ
2
(𝜏) 𝑤

2
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝜏 − 𝛾 (𝜏))

󵄨
󵄨
󵄨
󵄨
) 𝑑𝜏] 𝑑𝑠

=
󵄨
󵄨
󵄨
󵄨
𝑥

0

󵄨
󵄨
󵄨
󵄨
+ ∫

𝑡

𝑡0

ℎ
1
(𝑠) [𝑓

1
(𝑠) 𝑤

1
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝛽 (𝑠))

󵄨
󵄨
󵄨
󵄨
)

+∫

𝑠

𝑡0

ℎ
2
(𝜏) 𝑤

2
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝛽 (𝜏))

󵄨
󵄨
󵄨
󵄨
) 𝑑𝜏] 𝑑𝑠

+ ∫

𝑇

𝑡0

ℎ
1
(𝑠) [𝑓

1
(𝑠) 𝑤

1
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝛽 (𝑠))

󵄨
󵄨
󵄨
󵄨
)

+∫

𝑠

𝑡0

ℎ
2
(𝜏) 𝑤

2
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝛽 (𝜏))

󵄨
󵄨
󵄨
󵄨
) 𝑑𝜏] 𝑑𝑠

≤
󵄨
󵄨
󵄨
󵄨
𝑥

0

󵄨
󵄨
󵄨
󵄨
+ ∫

𝑡

𝑡0

ℎ
1
(𝑠) [𝑓

1
(𝑠) 𝑤

1
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝛽 (𝑠))

󵄨
󵄨
󵄨
󵄨
)

+∫

𝛽(𝑠)

𝛽(𝑡0)

𝑀ℎ
2
(𝛽

−1
(𝜏))

×𝑤
2
(|𝑥 (𝜏)|) 𝑑𝜏] 𝑑𝑠

+ ∫

𝑇

𝑡0

ℎ
1
(𝑠) [𝑓

1
(𝑠) 𝑤

1
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝛽 (𝑠))

󵄨
󵄨
󵄨
󵄨
)

+∫

𝛽(𝑠)

𝛽(𝑡0)

𝑀ℎ
2
(𝛽

−1
(𝜏))
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×𝑤
2
(|𝑥 (𝜏)|) 𝑑𝜏] 𝑑𝑠

≤
󵄨
󵄨
󵄨
󵄨
𝑥

0

󵄨
󵄨
󵄨
󵄨
+ ∫

𝛽(𝑡)

𝛽(𝑡0)

𝑀ℎ
1
(𝛽

−1
(𝑠))

× [𝑓
1
(𝛽

−1
(𝑠)) 𝑤

1
(|𝑥 (𝑠)|)

+∫

𝑠

𝛽(𝑡0)

𝑀ℎ
2
(𝛽

−1
(𝜏))

×𝑤
2
(|𝑥 (𝜏)|) 𝑑𝜏] 𝑑𝑠

+ ∫

𝛽(𝑇)

𝛽(𝑡0)

𝑀ℎ
1
(𝛽

−1
(𝑠))

× [𝑓
1
(𝛽

−1
(𝑠)) 𝑤

1
(|𝑥 (𝑠)|)

+∫

𝑠

𝛽(𝑡0)

𝑀ℎ
2
(𝛽

−1
(𝜏))

×𝑤
2
(|𝑥 (𝜏)|) 𝑑𝜏] 𝑑𝑠,

(48)

for 𝑡 ∈ 𝐼, where several changes of variables are made.
Applying the result of Theorem 1 to the last inequality, we
obtain the desired estimation (47).
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