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We introduce a new construction—𝐹𝑆
+
-domain—and prove that the category with 𝐹𝑆

+
-domains as objects and Scott continuous

functions as morphisms is a Cartesian closed category. We obtain that the Plotkin powerdomain 𝑃
𝑃

(𝐿) over an 𝐹𝑆-domain 𝐿 is an
𝐹𝑆
+
-domain.

1. Introduction

Powerdomains are very important structures in Domain the-
ory, which play an important role in modeling the semantics
of nondeterministic programming languages. Three classical
powerdomains are the Hoare or lower powerdomain [1],
the Smyth or upper powerdomain [2], and the Plotkin or
convex powerdomain [3].They are all free dcpo-algebras over
(continuous) dcpos with special binary operators satisfying
some equations and inequalities (see [4–12]).

In [13], Huth et al. concluded that the Hoare power-
domain 𝑃

𝐻
(𝐿) over a pointed domain 𝐿 is a distributive

𝐹𝑆
∨
-lattice. In [14], Meng and Kou obtained that the Smyth

powerdomain 𝑃
𝑆
(𝐿) of a Lawson compact domain 𝐿 is an

𝐹𝑆
∧
-domain. Then we have a problem whether the Plotkin

powerdomain can be characterized by some special 𝐹𝑆-
domain. In this paper, we will introduce a new domain
construction called the 𝐹𝑆

+
-domain which is a +-semilattice

and there exists a directed family of finitely separated Scott
continuous and +-semilattice homomorphisms which can
approximate 𝑖𝑑

𝐿
, where the operation + is Scott continuous

which satisfied the commutative, associative, and idempo-
tency laws. And the category with 𝐹𝑆

+
-domains as objects

and Scott continuous functions as morphisms is a Cartesian
closed category. We will show that the Plotkin powerdomain
𝑃
𝑃
(𝐿) over an 𝐹𝑆-domain 𝐿 is an 𝐹𝑆

+
-domain, where the

Plotkin powerdomain is the free dcpo-semilattice over a
continuous dcpo.

Next, we collect some basic notions needed in this paper.
The reader can also consult [4, 5, 15, 16]. A poset 𝐿 is called

a directed complete poset (a dcpo, for short) if any nonempty
directed subset of𝐿 has a sup in 𝐿. For𝑥, 𝑦 ∈ 𝐿,𝑥 is way below
𝑦 (denoted by 𝑥 ≪ 𝑦) if and only if, for all directed subsets
𝐷 ⊆ 𝐿 for which sup𝐷 exists, the relation 𝑦 ≤ sup𝐷 implies
the existence of a 𝑑 ∈ 𝐷 with 𝑥 ≤ 𝑑. A dcpo 𝐿 is called a
continuous domain if, for all 𝑥 ∈ 𝐿, 𝑥 = ⋁

↑I𝑥; that is, the set
I𝑥 = {𝑎 ∈ 𝐿 : 𝑎 ≪ 𝑥} is directed and 𝑥 = ⋁{𝑎 ∈ 𝐿 : 𝑎 ≪ 𝑥}.
For a subset 𝐴 of 𝐿, let ↑ 𝐴 = {𝑥 ∈ 𝐿 : ∃𝑎 ∈ 𝐴, 𝑎 ≤ 𝑥}, ↓ 𝐴 =

{𝑥 ∈ 𝐿 : ∃𝑎 ∈ 𝐴, 𝑥 ≤ 𝑎}. We use ↑ 𝑎 (resp., ↓ 𝑎) instead of
↑ {𝑎} (resp., ↓ {𝑎}) when 𝐴 = {𝑎}. 𝐴 is called an upper (resp.,
a lower) set if 𝐴 =↑ 𝐴 (resp., 𝐴 =↓ 𝐴). If (𝐿, ≤) is a dcpo, we
define the Scott topology, denoted by 𝜎(𝐿), which has as its
topology of closed sets all directed complete lower subsets,
that is, lower sets closed under directed sups. A function 𝑓

from a dcpo 𝐿 into a dcpo 𝑃 is continuous with respect to the
Scott topologies if 𝑓 preserves suprema of directed subsets.

Recall the definition of 𝐹𝑆-domain: a dcpo 𝐿 is called
an 𝐹𝑆-domain if 𝑖𝑑

𝐿
is approximated directly by a family

of finitely separated Scott continuous functions. A Scott
continuous function 𝑓 : 𝐿 → 𝐿 is called finitely separated
if there exists a finite set 𝑀

𝑓
such that, for each 𝑥 ∈ 𝐿, there

exists𝑚 ∈ 𝑀
𝑓
such that 𝑓(𝑥) ≤ 𝑚 ≤ 𝑥.

2. 𝐹𝑆
+

-Domains

2.1. Categories of 𝐹𝑆
+
-Domains. For dcpos 𝐿 and 𝑃, the

function space [𝐿 → 𝑃] of all Scott continuous functions
from 𝐿 to 𝑃 with the pointwise order is a dcpo. Then for
dcpo +-semilattices 𝐷 and 𝐸, we conclude that the function
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space [𝐷→
+
𝐸] of all the Scott continuous and +-semilattice

homomorphisms from 𝐷 to 𝐸 with the pointwise order is
a dcpo +-semilattice from the following theorem, where
the operation + satisfies the commutative, associative, and
idempotency laws.

Theorem 1. Let 𝐷 and 𝐸 be dcpo +-semilattices; then
[𝐷→

+
𝐸] is a dcpo +-semilattice.

Proof. For any directed family {𝑓
𝑗
∈ [𝐷→

+
𝐸] : 𝑗 ∈ 𝐽} and

𝑥 ∈ 𝐷, set 𝑓(𝑥) = ⋁
𝑗∈𝐽

𝑓
𝑗
(𝑥). It is obvious that 𝑓 is Scott

continuous. Then

𝑓 (𝑥 + 𝑦) = ⋁

𝑗∈𝐽

𝑓
𝑗
(𝑥 + 𝑦) = ⋁

𝑗∈𝐽

(𝑓
𝑗
(𝑥) + 𝑓

𝑗
(𝑦))

= (⋁

𝑗∈𝐽

𝑓
𝑗
(𝑥)) + (⋁

𝑗∈𝐽

𝑓
𝑗
(𝑦)) = 𝑓 (𝑥) + 𝑓 (𝑦) .

(1)

So 𝑓 is also a Scott continuous and +-semilattice homo-
morphism. Hence [𝐷→

+
𝐸] is a dcpo.

For any 𝑥 ∈ 𝐷, 𝑓, 𝑔 ∈ [𝐷→
+
𝐸], we define (𝑓 + 𝑔)(𝑥) =

𝑓(𝑥) + 𝑔(𝑥). For a directed set {𝑥
𝑘
∈ 𝐷 : 𝑘 ∈ 𝐾}, we have

(𝑓 + 𝑔)(⋁

𝑘∈𝐾

(𝑥
𝑘
)) = 𝑓(⋁

𝑘∈𝐾

(𝑥
𝑘
)) + 𝑔(⋁

𝑘∈𝐾

(𝑥
𝑘
))

= ⋁

𝑘∈𝐾

𝑓 (𝑥
𝑘
) + ⋁

𝑘∈𝐾

𝑔 (𝑥
𝑘
)

= ⋁

𝑘∈𝐾

⋁

𝑘
󸀠
∈𝐾

[𝑓 (𝑥
𝑘
) + 𝑔 (𝑥

𝑘
󸀠)]

= ⋁

𝑘∈𝐾

[𝑓 (𝑥
𝑘
) + 𝑔 (𝑥

𝑘
)]

= ⋁

𝑘∈𝐾

[(𝑓 + 𝑔) (𝑥
𝑘
)] .

(2)

Then 𝑓 + 𝑔 is Scott continuous.
For a pair of points 𝑥, 𝑦 in𝐷,

(𝑓 + 𝑔) (𝑥 + 𝑦) = 𝑓 (𝑥 + 𝑦) + 𝑔 (𝑥 + 𝑦)

= (𝑓 (𝑥) + 𝑓 (𝑦)) + (𝑔 (𝑥) + 𝑔 (𝑦))

= (𝑓 (𝑥) + 𝑔 (𝑥)) + (𝑓 (𝑦) + 𝑔 (𝑦))

= (𝑓 + 𝑔) (𝑥) + (𝑓 + 𝑔) (𝑦) .

(3)

That is, 𝑓 + 𝑔 is a +-semilattice homomorphism. So
[𝐷→

+
𝐸] is a +-semilattice.

Finally, by the Scott continuity of the operation +, we
obtain the following conclusion. For the sup of the directed

set {𝑓
𝑗
∈ [𝐷→

+
𝐸] : 𝑗 ∈ 𝐽} and 𝑔 ∈ [𝐷→

+
𝐸], if 𝑥 ∈ 𝐷,

then

[

[

𝑔 + (⋁

𝑗∈𝐽

𝑓
𝑗
)]

]

(𝑥) = 𝑔 (𝑥) + (⋁

𝑗∈𝐽

𝑓
𝑗
(𝑥))

= ⋁

𝑗∈𝐽

[𝑔 (𝑥) + 𝑓
𝑗
(𝑥)]

= ⋁

𝑗∈𝐽

[(𝑔 + 𝑓
𝑗
) (𝑥)]

= [

[

⋁

𝑗∈𝐽

(𝑔 + 𝑓
𝑗
)]

]

(𝑥) .

(4)

So + : [𝐷→
+
𝐸] × [𝐷→

+
𝐸] → [𝐷→

+
𝐸] is Scott con-

tinuous.
We have obtained that [𝐷→

+
𝐸] is a dcpo +-semilattice.

With respect to these special Scott continuous functions,
we will introduce some new order structures.

Definition 2. A dcpo 𝐿 is called an 𝐹𝑆
+
-domain if it is a +-

semilattice and there exists a directed family of finitely sep-
arated Scott continuous and +-semilattice homomorphisms
which can approximate 𝑖𝑑

𝐿
.

For example, an 𝐹𝑆
∧
-domain is a continuous dcpo ∧-

semilattice where 𝑖𝑑 is approximated by a directed family of
finitely separated Scott continuous functions preserving finite
infs.

We know that an 𝐹𝑆
+
-domain is an 𝐹𝑆-domain.

Theorem 3. Let𝐷 and𝐸 be𝐹𝑆
+
-domains; then [𝐷→

+
𝐸] and

[𝐷 → 𝐸] are 𝐹𝑆
+
-domains.

Proof. Suppose that D and E are approximate identities for
𝐷 and 𝐸, respectively. Then we claim that the family

D ⊗E = {𝛿 ⊗ 𝜖 : 𝛿 ∈ D, 𝜖 ∈ E} , (5)

defined by

𝑓 󳨃󳨀→ 𝜖
2

𝑓𝛿
2

, (6)

for 𝑓 ∈ [𝐷→
+
𝐸] is an approximate identity for [𝐷→

+
𝐸]

where 𝛿 ⊗ 𝜖 is finitely separated. The proof is similar to the
case of 𝐹𝑆-domains.

It suffices to show that 𝛿 ⊗ 𝜖 ∈ [𝐷→
+
𝐸]→

+
[𝐷→

+
𝐸].

Firstly, it is obvious that 𝛿 ⊗ 𝜖 is Scott continuous. Secondly,
for a pair of points 𝑓, 𝑔 ∈ [𝐷→

+
𝐸], we have for any 𝑥 ∈ 𝐷

[(𝛿 ⊗ 𝜖) (𝑓 + 𝑔)] (𝑥) = [𝜖
2

(𝑓 + 𝑔) 𝛿
2

] (𝑥)

= 𝜖
2

[𝑓𝛿
2

(𝑥) + 𝑔𝛿
2

(𝑥)]
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= 𝜖 [𝜖 (𝑓𝛿
2

(𝑥) + 𝑔𝛿
2

(𝑥))]

= 𝜖
2

𝑓𝛿
2

(𝑥) + 𝜖
2

𝑔𝛿
2

(𝑥)

= [𝜖
2

𝑓𝛿
2

+ 𝜖
2

𝑔𝛿
2

] (𝑥)

= [(𝛿 ⊗ 𝜖) (𝑓) + (𝛿 ⊗ 𝜖) (𝑔)] (𝑥) .

(7)

So we conclude that 𝛿 ⊗ 𝜖 is a +-semilattice homomor-
phism. Then [𝐷→

+
𝐸] is an 𝐹𝑆

+
-domain. Similarly, [𝐷 →

𝐸] is also an 𝐹𝑆
+
-domain.

Theorem 4. The category with 𝐹𝑆
+
-domains as objects and

Scott continuous functions as morphisms is a Cartesian closed
category.

Note that the category with 𝐹𝑆
+
-domains as objects

and Scott continuous and +-semilattice homomorphisms
as morphisms is not a Cartesian closed category generally,
because the evaluation maps do not preserve the finite +-
operation.

2.2. Classify the Powerdomains

Definition 5 (see [5]). Let 𝐿 be a dcpo-algebra equipped
with a Scott continuous binary operation + that satisfies the
following equations: for any 𝑎, 𝑏, 𝑐, ∈ 𝐿

(1) 𝑎 + 𝑎 = 𝑎 (idempotency law);
(2) 𝑎 + 𝑏 = 𝑏 + 𝑎 (commutative law);
(3) 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 (associative law).

Then the dcpo-algebra is a commutative idempotent semi-
group, called a dcpo-semilattice. The free dcpo-semilattice
over a dcpo 𝐿 is called the convex or Plotkin powerdomain
of 𝐿 and it is denoted by 𝑃

𝑃
(𝐿).

If the binary operation + satisfies the inequality 𝑎+𝑏 ≤ 𝑎,
then we obtain the upper or Smyth powerdomain, and it is
denoted by 𝑃

𝑆
(𝐿), where 𝑎 + 𝑏 = 𝑎 ∧ 𝑏.

Similarly, if the binary operation + satisfies 𝑎 + 𝑏 ≥ 𝑎,
then it is called the lower or Hoare powerdomain, denoted by
𝑃
𝐻
(𝐿), where 𝑎 + 𝑏 = 𝑎 ∨ 𝑏.

Proposition 6 (see [5]). For subsets 𝐶 and 𝐷 of a preordered
set (𝐿, ≤) one has

(1) 𝐶=
𝐻

↓ 𝐶;
(2) 𝐶≤

𝐻
𝐷 iff ↓ 𝐶 ⊆ ↓ 𝐷;

(3) 𝐶≪
𝐻
𝐷 iff there exists a finite subset 𝐹 ⊆ 𝐿 such that

𝐶 ⊆↓ 𝐹 ⊆ I 𝐷;
(4) 𝐶=

𝑆
↑ 𝐶;

(5) 𝐶≤
𝑆
𝐷 iff ↑ 𝐷 ⊆ ↑ 𝐶;

(6) 𝐶≪
𝑆
𝐷 iff𝐷 ⊆ int

𝜎
(↑ 𝐶) iff𝐷 ⊆ L 𝐶;

(7) 𝐶=
𝑃
↓ 𝐶∩ ↑ 𝐶 = sup{↓ 𝐹 ∩ ↑ 𝐹 : 𝐹 ≺ 𝐶, 𝐹 ⊆

𝑓in 𝐿},
where 𝐹 ≺ 𝐶 iff 𝐹 ⊆ I 𝐶 and 𝐶 ⊆ L 𝐹;

(8) 𝐶≤
𝑃
𝐷 iff ↓ 𝐶 ⊆ ↓ 𝐷 and ↑ 𝐷 ⊆ ↑ 𝐶;

(9) 𝐶≪
𝑃
𝐷 iff 𝐶≪

𝐻
𝐷 and 𝐶≪

𝑆
𝐷.

Next, we draw the conclusion that some special 𝐹𝑆-
domain categories concerning the operation + can be used
to classify the powerdomains.

Theorem 7. If 𝐿 is an 𝐹𝑆-domain, then the convex powerdo-
main 𝑃

𝑃
(𝐿) is an 𝐹𝑆

+
-domain.

Proof. Suppose that 𝐿 is an 𝐹𝑆-domain; then 𝐿 is a Lawson
compact domain. Thus, 𝑃𝑃(𝐿) is also a domain. Assume that
F = {𝑓

𝑖
: 𝐿 → 𝐿}

𝑖∈𝐼
is the approximate identity for 𝐿, where

F is a family of finitely separated Scott continuous functions;
that is, for any 𝑓

𝑖
, there exists a finite set𝑀

𝑖
⊆ 𝐿 such that, for

any 𝑥 ∈ 𝐿, there exists some𝑚 ∈ 𝑀
𝑖
such that 𝑓

𝑖
(𝑥) ≤ 𝑚 ≤ 𝑥.

We claim that {𝑃(𝑓
𝑖
) : 𝑃
𝑃
(𝐿) → 𝑃

𝑃
(𝐿)}
𝑖∈𝐼

is the approximate
identity for 𝑃𝑃(𝐿). It suffices to consider four steps as follows.

(1) 𝑃(𝑓
𝑖
) ≤ 𝑃(𝑖𝑑). For 𝐴 ∈ 𝑃

𝑃
(𝐿), define 𝑃(𝑓

𝑖
)(𝐴) =

𝑃(𝑓
𝑖
(𝐴)) = ↓ 𝑓

𝑖
(𝐴) ∩ ↑ 𝑓

𝑖
(𝐴). By Proposition 6,

↓ 𝑓
𝑖
(𝐴) ∩ ↑ 𝑓

𝑖
(𝐴) ∈ 𝑃

𝑃
(𝐿). For any 𝑥 ∈ 𝐴, let

𝑀
𝑖
(𝐴) = {𝑚 ∈ 𝑀

𝑖
: ∃𝑥 ∈ 𝐴, 𝑓

𝑖
(𝑥) ≤ 𝑚 ≤ 𝑥}; then

𝑓
𝑖
(𝑥) ≤ 𝑥 implies ↓ 𝑓

𝑖
(𝐴) ⊆ ↓ 𝑀

𝑖
(𝐴) ⊆ ↓ 𝐴 and ↑ 𝐴 ⊆

↑ 𝑀
𝑖
(𝐴) ⊆ ↑ 𝑓

𝑖
(𝐴). Hence 𝑃(𝑓

𝑖
)(𝐴) = 𝑃(𝑓

𝑖
(𝐴))≤

𝑃
𝐴.

(2) sup{𝑃(𝑓
𝑖
) : 𝑖 ∈ 𝐼} = 𝑃(𝑖𝑑). For any 𝐴 ∈ 𝑃

𝑃
(𝐿), it is

obvious that sup{𝑃(𝑓
𝑖
)(𝐴) : 𝑖 ∈ 𝐼} ≤ 𝐴. Suppose 𝐴 ≰

sup{𝑃(𝑓
𝑖
)(𝐴) : 𝑖 ∈ 𝐼}. There is 𝐵 ∈ 𝑃

𝑃
(𝐿) such that

𝐵 ≪
𝑃
𝐴 and 𝐵 ≰ sup{𝑃(𝑓

𝑖
)(𝐴) : 𝑖 ∈ 𝐼}. By 𝐵 ≪

𝑃
𝐴

and 𝐴 = sup{↓ 𝐹 ∩ ↑ 𝐹 : 𝐹 ≺ 𝐴, 𝐹 ⊆
𝑓in𝐿}, there

is some finite set 𝐹 ≺ 𝐴 such that 𝐵 ≤ ↓ 𝐹∩ ↑ 𝐹.
But for any finite set 𝐹 ≺ 𝐴, we have 𝐹 = sup{𝑓

𝑖
(𝐹) :

𝑖 ∈ 𝐼}, where 𝐹 ≺ 𝐴 iff 𝐹 ⊆ I𝐴 and 𝐴 ⊆ L𝐹. Then
↓ 𝐹∩ ↑ 𝐹 = sup{↓ 𝑓

𝑖
(𝐹) ∩ ↑ 𝑓

𝑖
(𝐹) : 𝑖 ∈ 𝐼} ≤ sup{↓

𝑓
𝑖
(𝐴) ∩ ↑ 𝑓

𝑖
(𝐴) : 𝑖 ∈ 𝐼}. This is a contradiction.Then

we conclude that sup{𝑃(𝑓
𝑖
) : 𝑖 ∈ 𝐼} = 𝑃(𝑖𝑑).

(3) 𝑃(𝑓
𝑖
) is Scott continuous and finitely separated. For a

directed familyD in 𝑃
𝑃
(𝐿), we have

𝑃 (𝑓
𝑖
) (supD) = 𝑃 (𝑓

𝑖
(supD))

= 𝑃 (sup {𝑓
𝑖
(𝐷) : 𝐷 ∈ D})

= sup {𝑃 (𝑓
𝑖
(𝐷)) : 𝐷 ∈ D} .

(8)

Then 𝑃(𝑓
𝑖
) is Scott continuous. For any 𝐴 ∈ 𝑃

𝑃
(𝐿),

𝑀
𝑖
(𝐴) is a finite set. By ↓ 𝑓

𝑖
(𝐴) ⊆ ↓ 𝑀

𝑖
(𝐴) ⊆ ↓ 𝐴 and

↑ 𝐴 ⊆ ↑ 𝑀
𝑖
(𝐴) ⊆ ↑ 𝑓

𝑖
(𝐴), it follows that ↓ 𝑀

𝑖
(𝐴) ∩ ↑

𝑀
𝑖
(𝐴) ∈ 𝑃

𝑃
(𝐿). LetM

𝑖
= {↓ 𝑀

𝑖
(𝐴) ∩ ↑ 𝑀

𝑖
(𝐴) : 𝐴 ∈

𝑃
𝑃
(𝐿)}. Since 𝑀

𝑖
(𝐴) ⊆ 𝑀

𝑖
and 𝑀

𝑖
is finite, it follows

thatM
𝑖
is a finite family of 𝑃𝑃(𝐿). And we have that,

for any 𝐴, there exists ↓ 𝑀
𝑖
(𝐴) ∩ ↑ 𝑀

𝑖
(𝐴) ∈ M

𝑖

such that 𝑃(𝑓
𝑖
)(𝐴)≤

𝑃
↓ 𝑀
𝑖
(𝐴) ∩ ↑ 𝑀

𝑖
(𝐴)≤
𝑃
𝐴; that

is, 𝑃(𝑓
𝑖
) is finitely separated.
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(4) 𝑃(𝑓
𝑖
) is a +-semilattice homomorphism. For 𝐴, 𝐵 ∈

𝑃
𝑃
(𝐿), since 𝑃𝑃(𝐿) is a +-semilattice, 𝐴 + 𝐵 = ↓ (𝐴 ∪

𝐵) ∩ ↑ (𝐴 ∪ 𝐵) ∈ 𝑃
𝑃
(𝐿):

𝑃 (𝑓
𝑖
) (𝐴 + 𝐵) = 𝑃 (𝑓

𝑖
) [↓ (𝐴 ∪ 𝐵) ∩ ↑ (𝐴 ∪ 𝐵)]

= ↓ 𝑓
𝑖
[↓ (𝐴 ∪ 𝐵) ∩ ↑ (𝐴 ∪ 𝐵)]

∩ ↑ 𝑓
𝑖
[↓ (𝐴 ∪ 𝐵) ∩ ↑ (𝐴 ∪ 𝐵)]

= ↓ 𝑓
𝑖
(𝐴 ∪ 𝐵) ∩ ↑ 𝑓

𝑖
(𝐴 ∪ 𝐵)

= ↓ [(↓ 𝑓
𝑖
(𝐴) ∩ ↑ 𝑓

𝑖
(𝐴))

∪ (↓ 𝑓
𝑖
(𝐵) ∩ ↑ 𝑓

𝑖
(𝐵))]

∩ ↑ [(↓ 𝑓
𝑖
(𝐴) ∩ ↑ 𝑓

𝑖
(𝐴))

∪ (↓ 𝑓
𝑖
(𝐵) ∩ ↑ 𝑓

𝑖
(𝐵))]

= 𝑃 (𝑓
𝑖
) (𝐴) + 𝑃 (𝑓

𝑖
) (𝐵) .

(9)

Then we conclude that {𝑃(𝑓
𝑖
) : 𝑖 ∈ 𝐼} is the

approximate identity for𝑃𝑃(𝐿).Thus the convex pow-
erdomain 𝑃

𝑃
(𝐿) is an 𝐹𝑆

+
-domain.

Combinedwith the work of Huth et al. [13] andMeng and
Kou [14], we conclude the following theorem.

Theorem 8. Let 𝐿 be a domain. Then the following statements
hold:

(1) if 𝐿 is Lawson compact, then the Smyth powerdomain
𝑃
𝑆
(𝐿) is an 𝐹𝑆

⋀
-domain (in [14]);

(2) if 𝐿 has a least point, then the Hoare powerdomain
𝑃
𝐻
(𝐿) is a distributive 𝐹𝑆

⋁
-lattice (in [13]);

(3) if 𝐿 is an 𝐹𝑆-domain, then the Plotkin powerdomain
P𝑃(𝐿) is an 𝐹𝑆

+
-domain.
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