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We establish the interactionmodel of two cell populations following the concept of the random-walk, and assume the cellmovement
is constrained by space limitation primarily. Furthermore, we analyze the model to obtain the behavior of two cell populations as
time is closed to initial state and far into the future.

1. Introduction

In the 1980s, the movement of isolated single cells was
researched and wasmodelled by a range of authors (Oster [1];
Oster and Perelson [2]; Bottino and Fauci [3]; and Bottino, et
al. [4]). In mathematics and biomedicine, not only of one-cell
population but of multiple cell populations, there are many
researches on the movement.

A consequential early paper written by Keller and Segel
[5] modelled a partial differential equation to study the bio-
chemical regulation of bacteria movement; their research has
been the basis for models of the movement of diversified cell
populations, such as slime mould aggregation (Höfer et al.
[6]), tumor angiogenesis (Chaplain and Stuart [7]), primitive
streak formation (Painter et al. [8]), and wound repair (Pettet
et al. [9]).

In the recent years, most of the researches on cell move-
ment focused on the interaction of multiple cell popula-
tions, precise cell behavior, and the development of the
mathematics modelling. In this study we follow the contour
of two-cell interaction developed by Painter and Sherratt
[10]. The modelling of interaction of tumor- and healthy-
cell populations was developed with the concept of random-
walk (space-jump). Assuming the movement is according
to space limitation and the diffusion coefficients of two cell
populations are the same, we develop a system of partial

differential equations (PDEs). Through some calculations,
the system of PDEs is simplified to a system of ordinary dif-
ferential equations (o.d.es.). Analyzing the system of o.d.es.,
it is obtained that the number of two cell populations per unit
area in a unit amount of time is finite nomatter when; namely,
the density of each cell population does not blow up.

To model the motion of biological organisms, there are
three major concepts which would be used:

(a) the space-jump process inwhich the individual jumps
between sites on a lattice,

(b) the velocity-jump process in which discontinuous
changes in the speed or direction of an individual are
generated by a Poisson process,

(c) the flux motion in which the movement of cells are
treated as the flux motion.

In this work we adopt space-jump concept to establish
our model and from it we show how a PDE of cell movement
could be deduced.Then we use the same concept and expand
the PDE which has been deduced to reason a system of PDEs
describing the interaction of two cell population.

2. Movement of One-Cell Population

Wewill deduce an equation of cellmovement on a lattice from
the space-jump concept; moreover, we translate that equation
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into a PDE of cell movement through changing variables.
First, we list the functions and variables that will be used in
this content and call the considering cell population by 𝑢-cell
as follows:

𝑢(𝑥
𝑖
, 𝑡) ≡ 𝑢

𝑖
number of 𝑢-cell at site 𝑥

𝑖
at time 𝑡 per

unit area in a unit amount of time (the density of 𝑢-
cell at site 𝑥

𝑖
at time 𝑡),

𝐸(𝑥
𝑖
, 𝑡) ≡ 𝐸

𝑖
the information of 𝑢-cell at site 𝑥

𝑖
at time

𝑡,
𝑔(𝐸
𝑖+1
) the probability of 𝑢-cell moving from 𝑥

𝑖
to

𝑥
𝑖+1

(to right),
𝑔(𝐸
𝑖−1
) the probability of 𝑢-cell moving from 𝑥

𝑖
to

𝑥
𝑖−1

(to left).

Moreover, the meaning of 𝑔(𝐸
𝑖+1
) is that the probability

of the cell moving to the target would be influenced by the
information of the cell’s jumping target.

For example, we choose that the cell density on position
𝑥
𝑖+1

at time 𝑡 is the information of cells on 𝑥
𝑖+1

at 𝑡; then
the probability of cells moving from 𝑥

𝑖
to 𝑥
𝑖+1

would be
influenced by 𝐸

𝑖+1
, which is the density of cell population

on position 𝑥
𝑖+1

at time 𝑡. Reasonably, a decreasing function
𝑔(𝐸
𝑖+1
) with respect to 𝐸

𝑖+1
implies that a lower probability

results from the more crowded target.
Supposing that cells move continuously in time on a

lattice (discrete space), a PDE of 𝑢-cell movement would be
modelled.

In the lattice space, the 𝑢-cells’ movement at time 𝑡 can be
modelled as

𝜕𝑢
𝑖

𝜕𝑡

= 𝑔 (𝐸
𝑖
) (𝐷
𝑢
(𝑥
𝑖−1
, 𝑡) 𝑢 (𝑥

𝑖−1
, 𝑡) + 𝐷

𝑢
(𝑥
𝑖+1
, 𝑡) 𝑢 (𝑥

𝑖+1
, 𝑡))

− 𝐷
𝑢
(𝑥
𝑖
, 𝑡) 𝑢 (𝑥

𝑖
, 𝑡) (𝑔 (𝐸

𝑖−1
) + 𝑔 (𝐸

𝑖+1
)) .

(1)

We explain our idea as shown in Figure 1.
Figure 1 shows the movement of cells; the function on

the figure is the moving probability. The changing of the 𝑢-
cell density at site 𝑥

𝑖
at time 𝑡 is equal to that of the 𝑢-cell

number jumping from site 𝑥
𝑖−1

and site 𝑥
𝑖+1

minus the 𝑢-
cell number jumping to site 𝑥

𝑖−1
and site 𝑥

𝑖+1
. 𝜕𝑢
𝑖
/𝜕𝑡 means

the changing of 𝑢-cell density at site 𝑥
𝑖
and time 𝑡. The

function 𝑔(𝐸
𝑖
)𝐷
𝑢
(𝑥
𝑖−1
, 𝑡)𝑢(𝑥

𝑖−1
, 𝑡)+𝑔(𝐸

𝑖
)𝐷
𝑢
(𝑥
𝑖+1
, 𝑡)𝑢(𝑥

𝑖+1
, 𝑡)

is the increase of 𝑢-cell density at site 𝑥
𝑖
at time 𝑡 with cells

moving from site 𝑥
𝑖−1

and site 𝑥
𝑖+1

to site 𝑥
𝑖
, where 𝐷

𝑢
(𝑥
𝑖
, 𝑡)

is the jumping (diffusion) coefficient of 𝑢-cell at site 𝑥
𝑖
at time

𝑡. And −𝐷
𝑢
(𝑥
𝑖
, 𝑡)𝑢(𝑥

𝑖
, 𝑡)(𝑔(𝐸

𝑖−1
) + 𝑔(𝐸

𝑖+1
)) is the decrease of

𝑢-cell density at site 𝑥
𝑖
at time 𝑡 with cells moving to site 𝑥

𝑖−1

and site 𝑥
𝑖+1

from site 𝑥
𝑖
. Thus, (1) is obtained.

Themodel of 𝑢-cellmovement in continuous space can be
deduce from (1) in a lattice space through changing variables.
Let 𝑥
𝑖+𝑘
= 𝑥 + 𝑘ℎ, 𝑘 ∈ Z. 𝑥

𝑖
= 𝑥, 𝑥

𝑖+1
= 𝑥 + ℎ, 𝑥

𝑖−1
= 𝑥 − ℎ,

and 𝐸
𝑖
= 𝐸(𝑥, 𝑡); hence, (1) becomes

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

= 𝑔 (𝐸 (𝑥, 𝑡)) (𝐷𝑢 (
𝑥 − ℎ, 𝑡) 𝑢 (𝑥 − ℎ, 𝑡)

+ 𝐷
𝑢 (
𝑥 + ℎ, 𝑡) 𝑢 (𝑥 + ℎ, 𝑡))

g(Ei) g(Ei)

g(Ei−1)

xi−1 xi xi+1

g(Ei+1)

Figure 1: The movement of cells.

− (𝑔 (𝐸 (𝑥 − ℎ, 𝑡)) + 𝑔 (𝐸 (𝑥 + ℎ, 𝑡))

× 𝐷
𝑢 (
𝑥, 𝑡) 𝑢 (𝑥, 𝑡)) .

(2)

For a continuum flow we consider that the jumping
coefficient 𝐷

𝑢
(𝑥, 𝑡) = 𝐷

𝑢
is a constant. Denote 𝑢(𝑥 − ℎ, 𝑡)

and 𝑢(𝑥 + ℎ, 𝑡) by Taylor’s series

𝑢 (𝑥 − ℎ, 𝑡) = 𝑢 (𝑥, 𝑡) +

𝜕𝑢

𝜕𝑥

(𝑥 − ℎ − 𝑥)

+

1

2!

𝜕
2
𝑢

𝜕𝑥
2
(𝑥 − ℎ − 𝑥)

2
+ ⋅ ⋅ ⋅ ,

𝑢 (𝑥 + ℎ, 𝑡) = 𝑢 (𝑥, 𝑡) +

𝜕𝑢

𝜕𝑥

(𝑥 + ℎ − 𝑥)

+

1

2!

𝜕
2
𝑢

𝜕𝑥
2
(𝑥 + ℎ − 𝑥)

2
+ ⋅ ⋅ ⋅ .

(3)

In consequence, 𝑢(𝑥 − ℎ, 𝑡) + 𝑢(𝑥 + ℎ, 𝑡) = 2𝑢(𝑥, 𝑡) +

(𝜕
2
𝑢/𝜕𝑥
2
)ℎ
2
+ 𝑂(ℎ

4
); similarly,

𝑔 (𝐸 (𝑥 − ℎ, 𝑡)) + 𝑔 (𝐸 (𝑥 + ℎ, 𝑡)) = 2𝑔 (𝐸 (𝑥, 𝑡))

+

𝜕
2
𝑔

𝜕𝑥
2
ℎ
2
+ 𝑂 (ℎ

4
) .

(4)

Consequently,

𝜕𝑢

𝜕𝑡

(𝑥, 𝑡) = 𝑔 (𝐸)𝐷𝑢

𝜕
2
𝑢

𝜕𝑥
2
ℎ
2
+ 𝑂 (ℎ

4
) 𝑔 (𝐸)

− 𝐷
𝑢
𝑢

𝜕
2
𝑔

𝜕𝑥
2
ℎ
2
− 𝐷
𝑢
𝑢𝑂 (ℎ

4
) ,

(5)

and then we get

𝜕𝑢

𝜕𝑡

= 𝐷
𝑢

𝜕

𝜕𝑥

(𝑔 (𝐸)

𝜕𝑢

𝜕𝑥

− 𝑢

𝜕𝑔 (𝐸)

𝜕𝑥

) ℎ
2
+ 𝑂 (ℎ

4
) . (6)

Therefore, we consider (1) as the following.
The 𝑢-cell movement can be modelled as

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

= 𝐷
𝑢

𝜕

𝜕𝑥

(𝑔 (𝐸)

𝜕𝑢

𝜕𝑥

− 𝑢

𝜕𝑔 (𝐸)

𝜕𝑥

) , (7)

where𝐷
𝑢
is a diffusion coefficient and𝐸(𝑥, 𝑡) ≡ 𝐸 is the infor-

mation of 𝑢-cell on position 𝑥 at time 𝑡.
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3. Interaction of Two Cell Populations

Now we show how to deduce a system of PDEs which
describes the interaction of two cell populations. Here the
two considered cell populations are called by 𝑢-cell and V-cell.
What the variables and functions (𝐸(𝑥, 𝑡) and 𝑔(𝐸)) mean
is as above; moreover, denote the density of 𝑢-cell and V-
cell populations on position 𝑥 at time 𝑡 by 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡),
respectively. On the other hand, we write 𝑤(𝑥, 𝑡) := 𝑢(𝑥, 𝑡) +
V(𝑥, 𝑡) to describe the total cell density. There is also another
vague function, 𝑔(𝐸), which needs to be defined clearly.

Given that space limitation influences the movement of
cells, the probability of cells moving to position 𝑥 decreases
with how the position is crowded with cells. We choose
𝑤(𝑥, 𝑡), the total cell density, to express the information of
cells on position 𝑥, namely, 𝐸(𝑥, 𝑡) = 𝑤(𝑥, 𝑡). Hence 𝑔(𝐸) =
𝑔(𝑤) = 1 − (𝑤/𝑇) shows that the probability of cells moving
to position 𝑥 decreases with the total cell density on position
𝑥, where 𝑇 ≫ 𝑤 initially and 𝑇 is a constant. Here the
assumption on 𝑔(𝐸) follows the paper written by Painter and
Sherratt (2003) [10].

After defining those variables, the model of interaction
of two cell populations (𝑢-cell and V-cell) can be deduced.
According to (7), replacing 𝑔(𝐸) by 1 − (𝑤(𝑥, 𝑡)/𝑇) ≡ 1 −
(𝑤/𝑇), then

𝜕𝑢

𝜕𝑡

= 𝐷
𝑢

𝜕

𝜕𝑥

((1 −

𝑤

𝑇

)

𝜕𝑢

𝜕𝑥

+ 𝑢

𝜕

𝜕𝑥

(1 −

𝑤

𝑇

))

= 𝐷
𝑢

𝜕

𝜕𝑥

(

𝜕𝑢

𝜕𝑥

−

𝑤

𝑇

𝜕𝑢

𝜕𝑥

+

𝑢

𝑇

𝜕𝑤

𝜕𝑥

)

= 𝐷
𝑢

𝜕

𝜕𝑥

(

𝜕𝑢

𝜕𝑥

−

V
𝑇

𝜕𝑢

𝜕𝑥

+

𝑢

𝑇

𝜕V
𝜕𝑥

)

= 𝐷
𝑢
(

𝜕
2
𝑢

𝜕𝑥
2
−

V
𝑇

𝜕
2
𝑢

𝜕𝑥
2
+

𝑢

𝑇

𝜕
2V
𝜕𝑥
2
) ,

(8)

where 𝐷
𝑢
is a constant. Similarly, the same processes are

applied to V. We obtain the following equation:

𝜕V
𝜕𝑡

= 𝐷V (
𝜕
2V
𝜕𝑥
2
−

𝑢

𝑇

𝜕
2V
𝜕𝑥
2
+

V
𝑇

𝜕
2
𝑢

𝜕𝑥
2
) . (9)

Consequently, we get the interaction of two cell populations.
Following space limitation, the interaction of two cell

populations can be modelled as

𝜕𝑢

𝜕𝑡

= 𝐷
𝑢
((1 −

V
𝑇

)

𝜕
2
𝑢

𝜕𝑥
2
+

𝑢

𝑇

𝜕
2V
𝜕𝑥
2
) ,

𝜕V
𝜕𝑡

= 𝐷V ((1 −
𝑢

𝑇

)

𝜕
2V
𝜕𝑥
2
+

V
𝑇

𝜕
2
𝑢

𝜕𝑥
2
) ,

(10)

where𝐷
𝑢
and𝐷V are diffusion coefficients with respect to 𝑢-

cell and V-cell (𝐷
𝑢
and𝐷V are constants), respectively.

Furthermore, through changing variables,

𝜇 ≡ 𝜇 (𝑥, 𝑡) =

𝑢 (𝑥, 𝑡)

𝑇

, ] ≡ ] (𝑥, 𝑡) =
V (𝑥, 𝑡)
𝑇

, (11)

with the consequence that

𝜕𝑢

𝜕𝑡

= 𝑇

𝜕𝜇

𝜕𝑡

,

𝜕V
𝜕𝑡

= 𝑇

𝜕]
𝜕𝑡

,

𝜕
2
𝑢

𝜕𝑥
2
= 𝑇

𝜕
2
𝜇

𝜕𝑥
2
,

𝜕
2V
𝜕𝑥
2
= 𝑇

𝜕
2]
𝜕𝑥
2
.

(12)

Rewriting system (10) as

𝑇

𝜕𝜇

𝜕𝑡

= 𝐷
𝜇
((1 − ])

𝜕
2
𝜇

𝜕𝑥
2
+ 𝜇

𝜕
2]
𝜕𝑥
2
)𝑇,

𝑇

𝜕]
𝜕𝑡

= 𝐷] ((1 − 𝜇)
𝜕
2]
𝜕𝑥
2
+ ]
𝜕
2
𝜇

𝜕𝑥
2
)𝑇,

(13)

the system of P.D.Es (10) can be simplified as

𝜕𝜇

𝜕𝑡

= 𝐷
𝜇
((1 − ])

𝜕
2
𝜇

𝜕𝑥
2
+ 𝜇

𝜕
2]
𝜕𝑥
2
) ,

𝜕]
𝜕𝑡

= 𝐷] ((1 − 𝜇)
𝜕
2]
𝜕𝑥
2
+ ]
𝜕
2
𝜇

𝜕𝑥
2
) ,

(14)

where𝐷
𝜇
and𝐷] are diffusion coefficients.

Now, the interaction of 𝑢-cell and V-cell has been mod-
elled. Model (14) will be used frequently in the following
context, and some properties of two cell populations can be
deduced from analyzing model (14). We show the analyzing
procedures and some results in the next section.

4. The Behavior and the Meaning of
](𝑥, 𝑡) = ](𝑧) as 𝑧 → 0

We have got the system of PDEs (14) which shows the
interaction of two cell populations. In this section, model (14)
will be transformed to a system of o.d.es. and then analyzed
to obtain some properties of ](𝑥, 𝑡) = ](𝑧) as 𝑧 approaches
to zero and infinite; furthermore, the properties of 𝜇(𝑥, 𝑡) =
𝜇(𝑧) will be deduced from the properties of ](𝑧) and 𝜔(𝑧),
where 𝜔(𝑧) is 𝜇(𝑧) + ](𝑧).

Our purpose is to obtain a simpler form of (14) in
order to analyze the model conveniently. Supposing that 𝑢-
cell and V-cell have the same diffusion coefficient (𝐷

𝜇
is

equal to 𝐷]), 𝑘 denotes the diffusion coefficients 𝐷
𝜇
and 𝐷].

Through changing variables, the system of PDEs (14) could
be transformed to a system of o.d.es.

Lemma 1. Given two cell populations with the same diffusion
coefficient, the system of PDEs (14) can be shown as a system of
o.d.es. as follows:

−

1

2

𝑧𝜇
󸀠
(𝑧) = 𝑘 ((1 − ]) 𝜇󸀠󸀠 (𝑧) + 𝜇]󸀠󸀠 (𝑧)) ,

−

1

2

𝑧]󸀠 (𝑧) = 𝑘 ((1 − 𝜇) ]󸀠󸀠 (𝑧) + ]𝜇󸀠󸀠 (𝑧)) ,
(15)

where 𝑧 = 𝑥/√𝑡, 𝑘 ≡ 𝐷
𝜇
= 𝐷].
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Proof. According to the system of PDEs (14), we could obtain

𝜕𝜇

𝜕𝑡

= 𝑘((1 − ])
𝜕
2
𝜇

𝜕𝑥
2
+ 𝜇

𝜕
2]
𝜕𝑥
2
) ,

𝜕]
𝜕𝑡

= 𝑘((1 − 𝜇)

𝜕
2]
𝜕𝑥
2
+ ]
𝜕
2
𝜇

𝜕𝑥
2
) .

(16)

Let 𝜇(𝑧) = 𝜇(𝑥/√𝑡) ≡ 𝜇(𝑥, 𝑡) and ](𝑧) = ](𝑥/√𝑡) ≡
](𝑥, 𝑡), with the consequence that

𝜕𝜇 (𝑥, 𝑡)

𝜕𝑡

≡ −

1

2

𝑥𝑡
−3/2
𝜇
󸀠
(

𝑥

√𝑡

) ,

𝜕] (𝑥, 𝑡)
𝜕𝑡

≡ −

1

2

𝑥𝑡
−3/2]󸀠 (

𝑥

√𝑡

) ,

𝜕
2
𝜇 (𝑥, 𝑡)

𝜕𝑥
2

≡ 𝑡
−1
𝜇
󸀠󸀠
(

𝑥

√𝑡

) ,

𝜕
2] (𝑥, 𝑡)
𝜕𝑥
2

≡ 𝑡
−1]󸀠󸀠 (

𝑥

√𝑡

) .

(17)

The system of PDEs (16) can be written asmodel (15).

In that case, the simpler form (model (15)) will be ana-
lyzed in the following subsections in order to obtain some
properties of ](𝑧).

Before deducing that ](𝑥, 𝑡) = ](𝑧) is bounded for 𝑧 in
[0, 𝛿] (𝛿 is very small), we must know the behavior of total
cells.

Lemma 2. The movement of total cells (𝑢-cell and V-cell)
can be modelled as a classical diffusion equation 𝜔󸀠󸀠(𝑧) +
(𝑧/2𝑘)𝜔

󸀠
(𝑧) = 0.

Proof. Adding the two equations in the system (15), we obtain

𝜇
󸀠󸀠
(𝑧) +

𝑧

2𝑘

𝜇
󸀠
(𝑧) + ]󸀠󸀠(𝑧) +

𝑧

2𝑘

]󸀠(𝑧) = 0. (18)

Imposing𝜔(𝑧)upon (18), equation (18) could be rewritten
as follows:

𝜔
󸀠󸀠
(𝑧) +

𝑧

2𝑘

𝜔
󸀠
(𝑧) = 0. (19)

In consequence,

𝜔 (𝑧) = 𝜔 (𝑧0
) + 𝜔
󸀠
(𝑧
0
) ∫

𝑧

𝑧0

𝑒
−𝑟
2
/4𝑘
𝑑𝑟, (20)

where 𝑧
0
= 𝑥
0
/√𝑡0

, for some site 𝑥
0
at initial time 𝑡

0
.

According to above assumptions, 𝜔(𝑥, 𝑡) ≡ 𝜔(𝑧) = 𝜇(𝑧) +
](𝑧) and 𝜇(𝑧) = 𝑢(𝑧)/𝑇 and ](𝑧) = V(𝑧)/𝑇, 𝜔(𝑧) can be
restored to (𝑢(𝑧)/𝑇) + (V(𝑧)/𝑇), where 𝑇 is a constant. In that
case, equation (20) can be transformed into the form

(

𝑢 + V
𝑇

) (𝑧) = (

𝑢 + V
𝑇

) (𝑧
0
) + (

𝑢 + V
𝑇

)

󸀠

(𝑧) ∫

𝑧

𝑧0

𝑒
−𝑟
2
/4𝑘
𝑑𝑟

(21)

and then written as

(𝑢 + V) (𝑧) = (𝑢 + V) (𝑧0) + (𝑢 + V)
󸀠
(𝑧
0
) ∫

𝑧

𝑧0

𝑒
−𝑟
2
/4𝑘
𝑑𝑟, (22)

where 𝑧 is 𝑥/√𝑡 and 𝑘 is a constant. The last equation shows
the behavior of total cells; moreover, that is the classical
representation of the solution of the fundamental diffusion
equation.

After describing the behavior of total cells, following (15),
we replace 𝜇 by 𝜔 − ] in the equation

−

1

2

𝑧𝜇
󸀠
(𝑧) = 𝑘 ((1 − ]) 𝜇󸀠󸀠 (𝑧) + 𝜇]󸀠󸀠 (𝑧)) . (23)

Hence,

−

1

2

𝑧(𝜔 − ])󸀠 (𝑧) = 𝑘 ((1 − ]) (𝜔 − ])󸀠󸀠 (𝑧) + (𝜔 − ]) ]󸀠󸀠 (𝑧)) .

(24)

Given that −(𝑧/2𝑘)𝜔󸀠 = 𝜔󸀠󸀠, the equation (24) is simpli-
fied as

(𝜔 (𝑧) − 1) ]󸀠󸀠 (𝑧) −
𝑧

2𝑘

]󸀠 (𝑧) − 𝜔󸀠󸀠 (𝑧) ] (𝑧) = 0, (25)

where 𝜔(𝑧) is as (20), with the consequence that

]󸀠󸀠 (𝑧) +
(−𝑧)

2𝑘 (𝜔 (𝑧) − 1)

]󸀠 (𝑧) +
(−𝜔
󸀠󸀠
(𝑧))

𝜔 (𝑧) − 1

] (𝑧) = 0. (26)

Lemma 3. Equation (26) can be transformed to

]󸀠󸀠 (𝑧) + 𝑎 (𝑧) ] (𝑧) = 0, (27)

where

𝑎 (𝑧) =

1 + 2𝜔
󸀠
(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘

4𝑘 (𝜔 (𝑧) − 1)

−

4𝑘𝜔
󸀠
(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘
+ 𝑧
2

16𝑘
2
(𝜔 (𝑧) − 1)

2
.

(28)

Proof. Assuming that ](𝑧) = ](𝑧) exp((1/2) ∫𝑧 𝑝(𝑟)𝑑𝑟), equa-
tion (26) is transformed as follows:

]󸀠󸀠 (𝑧) + (𝑞 (𝑧) −
1

2

𝑝
󸀠
(𝑧) −

1

4

𝑝
2
(𝑧)) ] (𝑧) = 0, (29)

where 𝑝(𝑧) = −𝑧/2𝑘(𝜔(𝑧)−1) and 𝑞(𝑧) = −𝜔󸀠󸀠(𝑧)/(𝜔(𝑧)−1).
Hence we denote 𝑎(𝑧) as 𝑞(𝑧) − (1/2)𝑝󸀠(𝑧) − (1/4)𝑝2(𝑧).

Therefore,

𝑎 (𝑧) =

−𝜔
󸀠󸀠
(𝑧)

𝜔 (𝑧) − 1

−

1

2

−2𝑘 (𝜔 (𝑧) − 1) + 𝑧2𝑘𝜔
󸀠
(𝑧)

4𝑘
2
(𝜔 (𝑧) − 1)

2

−

1

4

(−𝑧)
2

4𝑘
2
(𝜔 (𝑧) − 1)

2

=

𝜔
󸀠
(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘

2𝑘 (𝜔 (𝑧) − 1)

+

4𝑘 (𝜔 (𝑧) − 1) − 4𝑘𝜔
󸀠
(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘
− 𝑧
2

16𝑘
2
(𝜔 (𝑧) − 1)

2
.

(30)

Hence, ]󸀠󸀠(𝑧) + 𝑎(𝑧)](𝑧) = 0, where ](𝑧) =

](𝑧)𝑒(1/2) ∫
𝑧

𝑝(𝑟)𝑑𝑟.
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In order to simplify the representation of the following
equations, we let

𝑎
1 (
𝑧) =

𝜔
󸀠
(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘

2𝑘 (𝜔 (𝑧) − 1)

,

𝑎
2 (
𝑧) =

1

4𝑘 (𝜔 (𝑧) − 1)

,

𝑎
3 (
𝑧) = −

𝜔
󸀠
(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘

4𝑘(𝜔 (𝑧) − 1)
2
,

(31)

𝑎
4 (
𝑧) = −

𝑧
2

16𝑘
2
(𝜔 (𝑧) − 1)

2
. (32)

The following theorem would show that ](𝑧) and ](𝑧) are
bounded on [0, 𝛿] for some small 𝛿.

Before wemake the following theorem complete, the sub-
stantiation of the next lemma must be finished.

Theorem 4. The solution of ]󸀠󸀠(𝑧) + (−𝑀2
0
+ 𝑏(𝑧))](𝑧) = 0 is

bounded where𝑀
0
is a constant and 𝑏(𝑧) is closed to zero as

𝑧 ≪ 1 if the solution of ]󸀠󸀠(𝑧) + (−𝑀2
0
)](𝑧) = 0 is bounded as

𝑧 ≪ 1.

Proof. Assume 𝑧 ≪ 1; the solution of ]󸀠󸀠(𝑧) + (−𝑀2
0
)](𝑧) = 0

is given by

] (𝑧) = 𝑐1𝑒
𝑀0𝑧

+ 𝑐
2
𝑒
−𝑀0𝑧

, (33)

where 𝑐
1
and 𝑐
2
are constants.

We say that ]
1
(𝑧) is the solution of ]󸀠󸀠(𝑧)+ (−𝑀2

0
)](𝑧) = 0

and ]
2
(𝑧) is the solution of ]󸀠󸀠(𝑧) + (−𝑀2

0
+ 𝑏(𝑧))](𝑧) = 0.

Then we have
󵄨
󵄨
󵄨
󵄨
]
1

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
1
𝑒
𝑀0𝑧

+ 𝑐
2
𝑒
−𝑀0𝑧

󵄨
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑐
1

󵄨
󵄨
󵄨
󵄨
𝑒
𝑀0𝑧

+
󵄨
󵄨
󵄨
󵄨
𝑐
2

󵄨
󵄨
󵄨
󵄨
𝑒
−𝑀0𝑧

≤
󵄨
󵄨
󵄨
󵄨
𝑐
1

󵄨
󵄨
󵄨
󵄨
𝑒
𝑀0𝛿

+
󵄨
󵄨
󵄨
󵄨
𝑐
2

󵄨
󵄨
󵄨
󵄨
, ∀𝑧 ∈ [0, 𝛿] , 𝛿 < 1.

(34)

Let ]
21
(𝑧) = ]

2
(𝑧), ]
22
(𝑧) = ]󸀠

2
(𝑧), and

𝑉 (𝑧) = [

]
21 (
𝑧)

]
22 (
𝑧)
] , 𝐴 = [

0 1

𝑀
2

0
0

] ,

𝐵 (𝑧) = [

0 0

−𝑏 (𝑧) 0
] .

(35)

The equation ]󸀠󸀠(𝑧)+(−𝑀2
0
+𝑏(𝑧))](𝑧) = 0 can be written

as
𝑑

𝑑𝑧

𝑉 (𝑧) = 𝐴𝑉 (𝑧) + 𝐵 (𝑧)𝑉. (36)

Let Φ(𝑧) be a fundamental solution matrix of Φ󸀠(𝑧) =
𝐴Φ(𝑧). Then

𝑉 = Φ (𝑧)Φ
−1
(𝑧
0
) 𝑉 (𝑧

0
)

+ Φ (𝑧) ∫

𝑧

𝑧0

Φ
−1
(𝑟) 𝐵 (𝑟) 𝑉 (𝑟) 𝑑𝑟,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑉

󵄩
󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
󵄩
Φ (𝑧)Φ

−1
(𝑧
0
) 𝑉 (𝑧

0
)

󵄩
󵄩
󵄩
󵄩
󵄩

+ ∫

𝑧

𝑧0

󵄩
󵄩
󵄩
󵄩
󵄩
Φ (𝑧 − 𝑟 + 𝑧

0
)Φ
−1
(𝑧
0
) 𝐵 (𝑟) 𝑉 (𝑟)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑𝑟

≤ 𝑀
1
𝑀
2
+ ∫

𝑧

𝑧0

𝑀
1 ‖
𝐵 (𝑟)‖

󵄩
󵄩
󵄩
󵄩
󵄩
𝑉

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑𝑟,

(37)

where ‖ ⋅ ‖ is the super norm and𝑀
1
= ‖Φ(𝑧)Φ

−1
(𝑧
0
)‖,𝑀
2
=

‖𝑉(𝑧
0
)‖.

By Granwall’s inequality and ∫

𝑧

𝑧0

𝑀
1
‖𝐵(𝑟)‖𝑑𝑟 ≤

𝑀
1
‖𝐵(𝑧)‖𝛿 for all 𝑧 in [0, 𝛿], then

󵄩
󵄩
󵄩
󵄩
󵄩
𝑉

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝑀
1
𝑀
2
exp(∫

𝑧

𝑧0

𝑀
1 ‖
𝐵 (𝑟)‖ 𝑑𝑟)

≤ 𝑀
1
𝑀
2
exp (𝑀

1 ‖
𝐵 (𝑧)‖ 𝛿) < ∞,

(38)

for all 𝑧 in [0, 𝛿].
Hence, the solution of ]󸀠󸀠(𝑧) + (−𝑀2

0
+ 𝑏(𝑧))](𝑧) = 0 is

bounded as 𝑧 ≪ 1.

Theorem 5. ](𝑧) is bounded on [0, 𝛿] for some small 𝛿; more-
over, ](𝑧) is bounded on [0, 𝛿].

Proof. Supposing that 𝜔(𝑧) = 𝜔(𝑧
0
) + 𝜔
󸀠
(𝑧
0
) ∫

𝑧

𝑧0

𝑒
−𝑟
2
/4𝑘
𝑑𝑟 is

closed to 𝜔(𝑧
0
) as 𝑧 → 0

+ and 𝜔(𝑧
0
) < 1, then 𝜔(𝑧) − 1 < 0

when 𝑧 → 0
+.

According to the above assumptions, we have

𝑎
1 (
𝑧) =

𝜔
󸀠
(𝑧) 𝑧𝑒

−𝑧
2
/4𝑘

2𝑘 (𝜔 (𝑧)) − 1

∼ 0 as 𝑧 ∼ 0,

𝑎
2 (
𝑧) =

1

4𝑘 (𝜔 (𝑧) − 1)

∼ −𝑀
2

0
as 𝑧 ∼ 0,

𝑎
3 (
𝑧) =

−𝜔
󸀠
(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘

4𝑘(𝜔 (𝑧) − 1)
2
∼ 0 as 𝑧 ∼ 0,

𝑎
4 (
𝑧) =

−𝑧
2

16𝑘
2
(𝜔 (𝑧) − 1)

2
∼ 0 as 𝑧 ∼ 0.

(39)

For 𝑧 ≪ 1, 𝑎
1
(𝑧)+𝑎

3
(𝑧)+𝑎

4
(𝑧) = 𝑏(𝑧), 𝑎(𝑧) = −𝑀2

0
+𝑏(𝑧)

can be estimated immediately.
Thus the equation ]󸀠󸀠(𝑧) + 𝑎(𝑧)](𝑧) = 0 can be written as

]󸀠󸀠 (𝑧) + (−𝑀2
0
+ 𝑏 (𝑧)) ] (𝑧) = 0 (40)

for all 𝑧 ≪ 1.
Because the solution of ]󸀠󸀠(𝑧)+(−𝑀2

0
)](𝑧) = 0 is bounded

as 𝑧 → 0, the solution of ]󸀠󸀠(𝑧) + (−𝑀2
0
+ 𝑏(𝑧))](𝑧) = 0 is

also bounded as 𝑧 → 0. Consequently, ](𝑧), the solution of
]󸀠󸀠(𝑧) + (−𝑀2

0
+ 𝑏(𝑧))](𝑧) = 0 for all 𝑧 ≪ 1, is bounded on

[0, 𝛿] for some small 𝛿, saying that |](𝑧)| ≤ 𝑀 and 𝑀 is a
constant.
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Hence,

] (𝑧) = ] (𝑧) exp(−1
2

∫

𝑧

𝑝 (𝑟) 𝑑𝑟)

≤ 𝑀 exp(−1
2

∫

𝑧

𝑝 (𝑟) 𝑑𝑟) ,

(41)

where 𝑝(𝑧) = (−𝑧)/(2𝑘(𝜔(𝑧) − 1)) > 0 for some 𝑘 > 0;
moreover, since 𝑝(𝑧) > 0, 𝑒((−1)/2) ∫

𝑧

𝑝(𝑟)𝑑𝑟
≤ 1 for all 𝑧 in

[0, 𝛿] and for some 𝑘 > 0. In consequence, ](𝑧) is bounded by
𝑀 exp((−1/2) ∫𝑧 𝑝(𝑟)𝑑𝑟) where𝑀 is a constant and 𝑝(𝑧) =
−𝑧/2𝑘(𝜔(𝑧) − 1) on [0, 𝛿] for some 𝑘 > 0.

It is verified that ](𝑧) is bounded by
𝑀 exp((−1/2) ∫𝑧 𝑝(𝑟)𝑑𝑟) where 𝑀 is a constant and
𝑝(𝑧) = −𝑧/2𝑘(𝜔(𝑧) − 1) on [0, 𝛿], where 𝑧 is 𝑥/√𝑡 and 𝛿
is very small. Furthermore, we restore ](𝑧) to V(𝑥/√𝑡)/𝑇,
where 𝑇 is a positive constant. 𝑧 → 0 expresses that time
𝑡 approximates infinite. Therefore, Theorem 5 indicates that
the density of V-cell population approximates finite number
as time approaches infinite. Through writing 𝑢(𝑥/√𝑡) as
𝑤(𝑥/√𝑡) − V(𝑥/√𝑡), it could be deduced immediately that
the density of 𝑢-cell population is finite no matter how long
time passes.

5. The Behavior and the Meaning of
](𝑥, 𝑡) = ](𝑧) as 𝑧 → ∞

Near 𝑧 = 0 (namely, 𝑥/√𝑡 approaches zero), the boundedness
of ](𝑧) has been shown. Hence, we obtain that the density of
𝑢-cell and V-cell populations would not blow up when time
approached infinity. In this section, through justifying that
](𝑧) is bounded by 𝑒𝑧

2
/8𝑘𝛿 first, we will show that ](𝑧) is also

bounded when 𝑧 approaches∞.

Theorem 6. The solution of ]󸀠󸀠(𝑧) + 𝑎(𝑧)](𝑧) = 0, got by
Lemma 3, is bounded by 𝑒𝑧

2
/8𝑘𝛿 as 𝑧 approaches ∞, where

𝛿 > 0.

Proof. Supposing 𝜔(𝑧) = 𝜔(𝑧
0
) + 𝜔

󸀠
(𝑧
0
) ∫

𝑧 exp(−𝑟2/4𝑘)𝑑𝑟
approaches 1−, there is a 𝛿 > 0 such that 𝜔 − 1 approaches
−𝛿 as 𝑧 → ∞. As 𝑧 tends to infinity, 𝑎(𝑧) could be rewritten
as the following asymptotic form:

𝑎 (𝑧) =

2𝜔
󸀠
(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘
+ 1

4𝑘 (𝜔 (𝑧) − 1)

−

4𝑘𝜔
󸀠
(𝑧
0
) 𝑧𝑒
−𝑧
2
/4𝑘
+ 𝑧
2

16𝑘
2
(𝜔 (𝑧) − 1)

2

∼

−1

4𝑘𝛿

− (

𝑧

4𝑘𝛿

)

2

, as 𝑧 󳨀→ ∞.

(42)

Consider

]󸀠󸀠 (𝑧) + (
−1

4𝑘𝛿

− (

𝑧

4𝑘𝛿

)

2

) ] (𝑧) = 0 (43)

and let ]
1
(𝑧) = 𝑒

𝑓(𝑧) be a solution of (43). Immediately,

𝑓
󸀠󸀠
(𝑧) + (𝑓

󸀠
(𝑧))

2

=

1

4𝑘𝛿

+ (

𝑧

4𝑘𝛿

)

2

(44)

is obtained. Assume 𝑓(𝑧) = 𝑏
0
𝑧
2
+ 𝑏
1
𝑧 + 𝑏
2
, where 𝑏

0
, 𝑏
1
, and

𝑏
2
are constants; then

4𝑏
2

0
𝑧
2
+ 4𝑏
0
𝑏
1
𝑧 + 𝑏
2

1
+ 2𝑏
0
=

1

4𝑘𝛿

+ (

1

4𝑘𝛿

)

2

𝑧
2
. (45)

Consequently, 𝑏
0
= 1/8𝑘𝛿 and 𝑏

1
= 0; then 𝑓(𝑧) =

(𝑧
2
/8𝑘𝛿) + 𝑏

2
. Hence, we get ]

1
(𝑧) = 𝑏𝑒

𝑧
2
/8𝑘𝛿, where 𝑏 ∈ R.

Now let ]
2
be another solution of (43). Assume that ]

2
=

𝑔(𝑧)𝑒
𝑧
2
/8𝑘𝛿, 𝑔󸀠󸀠(𝑧) + (𝑧/2𝑘𝛿)𝑔󸀠(𝑧) = 0, with the consequence

that 𝑔(𝑧) = 𝑔(𝑧
0
) + 𝑔
󸀠
(𝑧
0
) ∫

𝑧

𝑧0

𝑒
(−𝑟
2
)/4𝑘𝛿

𝑑𝑟. We get

]
2 (
𝑧) = 𝑔 (𝑧0

) 𝑒
𝑧
2
/8𝑘𝛿

+ 𝑔
󸀠
(𝑧
0
) ∫

𝑧

𝑧0

𝑒
((𝑧
2
/8𝑘𝛿)+(−𝑟

2
/4𝑘𝛿))

𝑑𝑟,

(46)

Moreover, ∫

𝑧

𝑒
((𝑧
2
/8𝑘𝛿)+(−𝑟

2
/4𝑘𝛿))

𝑑𝑟 is convergent since
(𝑧
2
/8𝑘𝛿) + (−𝑟

2
/4𝑘𝛿) = (𝑧

2
− 2𝑟
2
)/8𝑘𝛿 < 0, as 𝑟 > 𝑧/√2.

Therefore, the solution of ]󸀠󸀠(𝑧) + 𝑎(𝑧)](𝑧) = 0 is

𝑏𝑒
𝑧
2
/8𝑘𝛿

+ (𝑔 (𝑧
0
) exp( 𝑧

2

8𝑘𝛿

) + 𝑔
󸀠
(𝑧
0
)

× ∫

𝑧

𝑧0

exp( 𝑧
2

8𝑘𝛿

+

−𝑟
2

4𝑘𝛿

)𝑑𝑟) ,

(47)

and then

] (𝑧) ≤ (𝑏 + 𝑔 (𝑧0)) 𝑒
𝑧
2
/8𝑘𝛿

+𝑀, (48)

where 𝑏 is a constant and 𝑀 is defined as
𝑔
󸀠
(𝑧
0
)(∫

𝑧

𝑧0

exp((𝑧2/8𝑘𝛿) + (−𝑟2/4𝑘𝛿))𝑑𝑟).

After substantiating that ](𝑧) is bounded by 𝑒𝑧
2
/8𝑘𝛿 as 𝑧

approaches∞, where 𝛿 > 0, it is not difficult to verify that
](𝑧) is also bounded as 𝑧 approaches∞.

Theorem 7. ](𝑧) is bounded when 𝑧 approaches∞.

Proof. Given 𝑧 ≫ 1, in above Theorem 6, we have trans-
formed

]󸀠󸀠 (𝑧) +
(−𝑧)

2𝑘 (𝜔 (𝑧) − 1)

]󸀠 (𝑧) +
(−𝜔
󸀠󸀠
(𝑧))

𝜔 (𝑧) − 1

] (𝑧) = 0 (49)

to ]󸀠󸀠(𝑧) + 𝑎(𝑧)](𝑧) = 0 through changing ](𝑧) to
](𝑧)𝑒(−1/2) ∫

𝑧

(−𝑧/2𝑘(𝜔(𝑧)−1))𝑑𝑟, and

] (𝑧) exp(−1
2

∫

𝑧
−𝑧

2𝑘 (𝜔 (𝑧) − 1)

𝑑𝑟)

≤ ((𝑏 + 𝑔 (𝑧
0
)) 𝑒
𝑧
2
/8𝑘𝛿

+𝑀) exp(−1
2

∫

𝑧
𝑟

2𝑘𝛿

𝑑𝑟) .

(50)

In consequence,

] (𝑧) ≤ ((𝑏 + 𝑔 (𝑧0)) 𝑒
𝑧
2
/8𝑘𝛿

+𝑀) 𝑒
−𝑧
2
/8𝑘𝛿

= (𝑏 + 𝑔 (𝑧
0
)) + 𝑀𝑒

−𝑧
2
/8𝑘𝛿
,

(51)
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where 𝑏 ∈ R and𝑀 ≡ 𝑔
󸀠
(𝑧
0
)(∫

𝑧

𝑒
((𝑧
2
/8𝑘𝛿)+(−𝑟

2
/4𝑘𝛿))

𝑑𝑟). Hence,
](𝑧) is bounded by

(𝑏 + 𝑔 (𝑧
0
)) + 𝑀𝑒

−𝑧
2
/8𝑘𝛿 (52)

as 𝑧 → ∞.

Restoring 𝑧 to 𝑥/√𝑡, according to Theorem 7, we know
that ](𝑥/√𝑡) is bounded by (𝑏 + 𝑔(𝑧

0
)) +𝑀 exp(−𝑥2/(8𝑘𝛿𝑡))

as 𝑥/√𝑡 approaches∞; namely, 𝑡 approaches initial time. In
consequence, it is obtained immediately that the density of
V-cell population which is denoted by ](𝑥/√𝑡)/𝑇 tends to a
finite number as V-cell population has begun moving for a
fleeting time. Furthermore, the density of 𝑢-cell population
would also approximate a finite number for the same time.

If it is possible, we hope the solutions of (10) could be
obtained by using our methods that were analytically used in
[11–18] or numerically used in [19, 20].
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