
Research Article
Invariant Solutions and Conservation Laws of the
(2 + 1)-Dimensional Boussinesq Equation

Wenjuan Rui,1 Peiyi Zhao,2 and Yufeng Zhang1

1 College of Science, China University of Mining and Technology, Xuzhou 221116, China
2 Shandong Provincial Academy of Education Recruitment and Examination, Jinan 250011, China

Correspondence should be addressed to Wenjuan Rui; ruiwj@126.com

Received 8 June 2014; Accepted 17 July 2014; Published 7 August 2014

Academic Editor: Huanhe Dong

Copyright © 2014 Wenjuan Rui et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Invariant solutions and conservation laws of the (2 + 1)-dimensional Boussinesq equation are studied.TheLie symmetry approach is
used to obtain the invariant solutions. Conservation laws for the underlying equation are derived by utilizing the new conservation
theorem and the partial Lagrange approach.

1. Introduction

In recent years, searching for explicit solutions of nonlinear
evolution equations (NEEs) has attracted the attention of
many mathematicians and physicists. Particularly, various
effective methods have been used to explore different kinds
of solutions of NEEs, such as the inverse scattering method
[1], the Darboux transformation [2] and the Bäcklund trans-
formation [3], the Hirota method [4], the homogeneous
balance method [5, 6], the similarity reduced method [7,
8], the tanh method [9], and the sine-cosine method [10].
But up to now a unified method that can be used to deal
with all types of NEEs has not been discovered. Among
the above mentioned methods, the Lie symmetry method
is one of the most effective methods to determine solutions
of differential equations. In the past decades, there have
been considerable developments in symmetry methods for
differential equations [11, 12].

In the present paper we consider the (2 + 1)-dimensional
Boussinesq equation:

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
− 𝑢
𝑦𝑦
− (𝑢
2
)
𝑥𝑥
− 𝑢
𝑥𝑥𝑥𝑥

= 0. (1)

A well-known soliton equation is the Boussinesq equation:

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
− 3(𝑢

2
)
𝑥𝑥
− 𝑢
𝑥𝑥𝑥𝑥

= 0. (2)

Equation (2) was introduced by Boussinesq to describe
motions of longwaves in shallowwater [13, 14]. It also appears

in a wide variety of physical systems such as nonlinear lattice
waves, iron sound waves in plasma, and vibrations in a
nonlinear string. For the transonic speed perturbations, by
neglecting the interaction of waves moving in the opposite
directions, the Boussinesq equation (2) can be reduced to
the KdV equation. Equation (2) itself is also a dimensional
reduction of the KP equation in themoving frame.Moreover,
the Boussinesq equation (2) is completely integrable and
admits inverse scattering. Owing to its profound importance
and nice mathematical properties, a great deal of research
work has been invested in recent years for the study of
the Boussinesq equation. Krishnan et al. [15] studied the
dynamics of shallow water waves that are governed by the
Boussinesq equations. Yang et al. [16] obtained solutions
of homogeneous and inhomogeneous dissipative Boussinesq
equation by using the modified Jacobi elliptic function
expansionmethod and the pseudospectralmethod.However,
there has also been a growing interest in the study of NEEs in
multidimensions, especially in (1 + 2) and (1 + 3) dimensions.
To find some exact soliton solutions in higher dimensions
is much more difficult than in 1 + 1 dimensions. Recently,
El-Sayed and Kaya [17] used the decomposition method to
obtain the exact solitary-wave solutions of (1). Senthilvelan
[18] obtained the travelling wave solutions for (2 + 1)-
dimensional Boussinesq equation and (3 + 1)-dimensional
KP equation by homogeneous balance method and explored
certain new solutions of the equations. Chen et al. [19]
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obtained many explicit exact solutions of (1) by using the
new generalized transformation in homogeneous balance
method. More new double periodic and multiple soliton
solutions are obtained for the generalized (2 + 1)-dimensional
Boussinesq equation [20].

The main goal of this paper is to use the Lie symmetry
method [21, 22] to obtain the invariant solutions. In addition
to this, conservation laws will be derived for (1) by using the
new conservation theorem [23, 24] and the partial Lagrange
approach [25, 26].

The outline of this paper is as follows. In Section 2,
we present symmetry group analysis and group-invariant
solutions of (1). In Section 3, the conservation laws for (1) are
established. Finally, some conclusions are given in Section 4.

2. Method of Lie Symmetries

2.1. Preliminaries. In this section we briefly present the
notation and pertinent results used in this paper [21, 22].

Consider a 𝑘th-order system of PDEs of 𝑛 independent
variables 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) and𝑚 dependent variables 𝑢 =

(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
):

𝐸
𝛼
(𝑥, 𝑢, 𝑢

(1)
, . . . , 𝑢

(𝑘)
) = 0, 𝛼 = 1, . . . , 𝑚, (3)

where 𝑢
(1)
, 𝑢
(2)
, . . . , 𝑢

(𝑘)
denote the collections of all first,

second,. . ., 𝑘th-order partial derivatives; that is, 𝑢𝛼
𝑖

=

𝐷
𝑖
(𝑢
𝛼
), 𝑢
𝛼

𝑖𝑗
= 𝐷

𝑗
𝐷
𝑖
(𝑢
𝛼
), . . ., respectively, with the total

derivative operator with respect to 𝑥𝑖 given by

𝐷
𝑖
=

𝜕

𝜕𝑥
𝑖
+ 𝑢
𝛼

𝑖

𝜕

𝜕𝑢
𝛼
+ 𝑢
𝛼

𝑖𝑗

𝜕

𝜕𝑢
𝛼

𝑗

+ ⋅ ⋅ ⋅ , 𝑖 = 1, . . . , 𝑛, (4)

where the summation convention is usedwhenever appropri-
ate.

The Euler-Lagrange operator, for each 𝛼, is given by

𝛿

𝛿𝑢
𝛼
=

𝜕

𝜕𝑢
𝛼
+∑

𝑠≥1

(−1)
𝑠
𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

𝜕

𝜕𝑢
𝛼

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

, (5)

and the Lie-Bäcklund operator is

𝑋 = 𝜉
𝑖 𝜕

𝜕𝑥
𝑖
+ 𝜂
𝛼 𝜕

𝜕𝑢
𝛼
, 𝜉
𝑖
, 𝜂
𝛼
∈ A, (6)

where A is the space of differential functions. The operator
(6) is an abbreviated form of infinite formal sum:

𝑋 = 𝜉
𝑖 𝜕

𝜕𝑥
𝑖
+ 𝜂
𝛼 𝜕

𝜕𝑢
𝛼
+∑

𝑠≥1

𝜁
𝛼

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

𝜕

𝜕𝑢
𝛼

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

, (7)

where the additional coefficients are determined uniquely by
the prolongation formulae:

𝜁
𝛼

𝑖
= 𝐷
𝑖
(𝑊
𝛼
) + 𝜉
𝑗
𝑢
𝛼

𝑖𝑗
,

𝜁
𝛼

𝑖
1
⋅⋅⋅𝑖
𝑠

= 𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

(𝑊
𝛼
) + 𝜉
𝑗
𝑢
𝛼

𝑗𝑖
1
⋅⋅⋅𝑗
𝑠

, 𝑠 > 1,

(8)

in which𝑊𝛼 is the Lie characteristic function:

𝑊
𝛼
= 𝜂
𝛼
− 𝜉
𝑗
𝑢
𝛼

𝑗
. (9)

One can write the Lie-Bäcklund operator (7) in characteristic
form as follows:

𝑋 = 𝜉
𝑖
𝐷
𝑖
+𝑊
𝛼 𝜕

𝜕𝑢
𝛼
+∑

𝑠≥1

𝐷
𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

(𝑊
𝛼
)

𝜕

𝜕𝑢
𝛼

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

. (10)

The Noether operators associated with a Lie-Bäcklund sym-
metry operator𝑋 are given by

𝑁
𝑖
= 𝜉
𝑖
+𝑊
𝛼 𝛿

𝛿𝑢
𝛼

𝑖

+∑

𝑠≥1

𝐷
𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

(𝑊
𝛼
)

𝛿

𝛿𝑢
𝛼

𝑖𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

,

𝑖 = 1, 2, . . . , 𝑛,

(11)

where the Euler-Lagrange operators with respect to deriva-
tives of 𝑢𝛼 are obtained from (5) by replacing 𝑢

𝛼 by the
corresponding derivatives. For example,

𝛿

𝛿𝑢
𝛼

𝑖

=

𝜕

𝜕𝑢
𝛼

𝑖

+∑

𝑠≥1

(−1)
𝑠
𝐷
𝑗
1

⋅ ⋅ ⋅ 𝐷
𝑗
𝑠

𝜕

𝜕𝑢
𝛼

𝑖𝑗
1
𝑗
2
⋅⋅⋅𝑗
𝑠

,

𝑖 = 1, . . . , 𝑛, 𝛼 = 1, . . . , 𝑚,

(12)

and the Euler-Lagrange, Lie-Bäcklund, and Noether opera-
tors are connected by the operator identity:

𝑋 + 𝐷
𝑖
(𝜉
𝑖
) = 𝑊

𝛼 𝛿

𝛿𝑢
𝛼
+ 𝐷
𝑖
𝑁
𝑖
. (13)

The 𝑛-tuple vector 𝑇 = (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
), 𝑇
𝑗
∈ A, 𝑗 = 1, . . . , 𝑛

is a conserved vector of (3) if 𝑇𝑖 satisfies

𝐷
𝑖
𝑇
𝑖
|
(3)

= 0. (14)

Equation (14) defines a local conservation law of system (3).

2.2. Lie Point Symmetries. Now, we consider the following Lie
group of transformations with independent variables 𝑥, 𝑦, 𝑡
and dependent variable 𝑢:

𝑥
∗
= 𝑥
∗
(𝑥, 𝑦, 𝑡, 𝜀) , 𝑦

∗
= 𝑦
∗
(𝑥, 𝑦, 𝑡, 𝜀) ,

𝑡
∗
= 𝑡
∗
(𝑥, 𝑦, 𝑡, 𝜀) , 𝑢

∗
= 𝑢
∗
(𝑥, 𝑦, 𝑡, 𝜀) ,

(15)

where 𝜀 is the group parameter. The infinitesimal generator
for the Lie group transformations can be expressed in the
following form:

𝑋 = 𝜉

𝜕

𝜕𝑥

+ 𝜙

𝜕

𝜕𝑦

+ 𝜏

𝜕

𝜕𝑡

+ 𝜂

𝜕

𝜕𝑢

. (16)

Applying the fourth prolongation pr(4)𝑋 to (1), we obtain the
following determining equations:

𝜉
𝑦
= 𝜉
𝑡
= 𝜉
𝑢
= 𝜙
𝑥
= 𝜙
𝑢
= 𝜏
𝑥
= 𝜏
𝑢
= 0,

𝜉
𝑥𝑥
= 𝜂
𝑥𝑥
= 𝜂
𝑥𝑢
= 𝜂
𝑢𝑢
= 0,

𝜏
𝑡
− 𝜙
𝑦
= 0, 𝜏

𝑡
− 2𝜉
𝑥
= 0, 𝜙

𝑡
− 𝜏
𝑦
= 0,

𝜏
𝑡𝑡
+ 2𝜂
𝑢𝑡
+ 𝜏
𝑦𝑦
= 0, 𝜙

𝑡𝑡
− 2𝜂
𝑢𝑡
+ 𝜙
𝑦𝑦
= 0,

𝜂
𝑥𝑥
+ 𝜂
𝑦𝑦
− 𝜂
𝑡𝑡
+ 𝜂
𝑥𝑥𝑥𝑥

= 0,

𝜂 − 𝜉
𝑥
+ 𝜏
𝑡
+ 2𝑢 (𝜏

𝑡
− 𝜉
𝑥
) = 0,

𝜂
𝑢
+ 2𝜏
𝑡
− 2𝜉
𝑥
= 0, 4𝜂

𝑥
+ 𝜉
𝑡𝑡
+ 2𝜂
𝑥𝑢
− 𝜉
𝑦𝑦
= 0.

(17)



Abstract and Applied Analysis 3

Solving the above system (17) we reach that the symmetry of
(1) is spanned by the five vector fields:

𝑋
1
=

𝜕

𝜕𝑥

, 𝑋
2
=

𝜕

𝜕𝑦

, 𝑋
3
=

𝜕

𝜕𝑡

,

𝑋
4
= 𝑦

𝜕

𝜕𝑡

+ 𝑡

𝜕

𝜕𝑦

,

𝑋
5
= 𝑥

𝜕

𝜕𝑥

+ 2𝑦

𝜕

𝜕𝑦

+ 2𝑡

𝜕

𝜕𝑡

+ (2𝑢 + 1)

𝜕

𝜕𝑢

.

(18)

2.3. Group-Invariant Solutions. In this section we present the
reduction forms of (1) by using symmetry group method.
To do this, particular linear combinations of infinitesimals
are considered and their corresponding invariants are deter-
mined. For example, for the symmetry operator 𝑋 = 𝑋

1
+

𝑋
2
+ 𝑋
3
, we can compute the invariants by integrating the

characteristic equations:

𝑑𝑥

1

=

𝑑𝑦

1

=

𝑑𝑡

1

. (19)

The corresponding invariants are 𝑞 = 𝑥 − 𝑦, 𝑝 = 𝑡 − 𝑦, 𝜔 =

𝑢. Now treating 𝑝, 𝑞 as the new independent variables and
𝜔 as the new dependent variable, we obtain the ordinary
differential equation:

(2𝜔 (𝑞) + 1) 𝜔

(𝑞) + 2(𝜔


(𝑞))

2

+ 𝜔
(4)
(𝑞) = 0. (20)

Integrating (20) twice with respect to 𝑞 we obtain

𝜔

(𝑞) + 𝜔

2
(𝑞) + 𝜔 (𝑞) = 𝑐

0
𝑞 + 𝑐
1
, 𝑐
0
, 𝑐
1
∈ 𝑅. (21)

Taking 𝑐
0
= 0 and 𝜔(𝑞) = 𝜓(𝜔) we get

𝜓

(𝜔) 𝜓 (𝜔) + 𝜔

2
+ 𝜔 = 𝑐

1
. (22)

The solution of (22) is

𝜓 (𝜔) = ±

1

3

√−6𝜔
3
+ 18𝑐
1
𝜔 − 9𝜔

2
+ 9𝑐
2
, (23)

where 𝑐
2
is a constant. Notice that 𝜔(𝑞) = 𝜓(𝜔); we have

𝜔

(𝑞) = ±

1

3

√−6𝜔
3
+ 18𝑐
1
𝜔 − 9𝜔

2
+ 9𝑐
2
, (24)

so we get

𝑞 = ±3∫

1

√−6𝜔
3
+ 18𝑐
1
𝜔 − 9𝜔

2
+ 9𝑐
2

𝑑𝜔. (25)

Recall 𝑞 = 𝑥 − 𝑦, 𝜔 = 𝑢; we get the solution of (1):

𝑥 − 𝑦 = ±3∫

1

√−6𝑢
3
+ 18𝑐
1
𝑢 − 9𝑢

2
+ 9𝑐
2

𝑑𝑢. (26)

3. Conservation Law

Here we briefly present the pertinent results of the two
variational methods we utilize below.

3.1. Variational Method for a System and Its Adjoint. The
system of adjoint equations to the system of 𝑘th-order
differential equation (3) is defined by [23]

𝐸
∗

𝛼
(𝑥, 𝑢, V, . . . , 𝑢

(𝑘)
, V
(𝑘)
) = 0, 𝛼 = 1, . . . , 𝑚, (27)

where

𝐸
∗

𝛼
(𝑥, 𝑢, V, . . . , 𝑢

(𝑘)
, V
(𝑘)
) =

𝛿 (]𝛽𝐸
𝛽
)

𝛿𝑢
𝛼

,

𝛼 = 1, . . . , 𝑚, ] = ] (𝑥) ,

(28)

and ] = (]1, ]2, . . . , ]𝑚) are new dependent variables.
We recall here the following results as given in Ibragimov

[23].
A system of (3) is said to be self-adjoint if the substitution

of ] = 𝑢 into the system of adjoint equation (27) yields the
same system (3).

Assume the systemof (3) admits the symmetry generator:

𝑋 = 𝜉
𝑖 𝜕

𝜕𝑥
𝑖
+ 𝜂
𝛼 𝜕

𝜕𝑢
𝛼
, (29)

and then the system of adjoint equation (27) admits the
operator:

𝑌 = 𝜉
𝑖 𝜕

𝜕𝑥
𝑖
+ 𝜂
𝛼 𝜕

𝜕𝑢
𝛼
+ 𝜂
𝛼

∗

𝜕

𝜕]𝛼
,

𝜂
𝛼

∗
= − [𝜆

𝛼

𝛽
]𝛽 + ]𝛼𝐷

𝑖
(𝜉
𝑖
)] ,

(30)

where the operator (30) is an extension of (29) to the variable
]𝛼 and the 𝜆𝛼

𝛽
are obtainable from

𝑋(𝐸
𝛼
) = 𝜆
𝛽

𝛼
𝐸
𝛽
. (31)

Theorem 1 (see [23]). Every Lie point, Lie-Bäcklund, and
nonlocal symmetry (29) admitted by the system of (3) gives
rise to a conservation law for the system consisting of (3) and
the adjoint equation (27), where the components 𝑇𝑖 of the
conserved vector 𝑇 = (𝑇

1
, . . . , 𝑇

𝑛
) are determined by

𝑇
𝑖
= 𝜉
𝑖
𝐿 +𝑊

𝛼 𝛿𝐿

𝛿𝑢
𝛼

𝑖

+∑

𝑠≥1

𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

(𝑊
𝛼
)

𝛿𝐿

𝛿𝑢
𝛼

𝑖𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

,

𝑖 = 1, . . . , 𝑛,

(32)

with Lagrangian given by

𝐿 = ]𝛼𝐸
𝛼
(𝑥, 𝑢, . . . , 𝑢

(𝑘)
) . (33)

3.2. Partial Noether Approach for a System of PDEs. The
following results are due to Kara and Mahomed [26] that
are based on the partial Lagrangian approach to construct
conservation laws for a system of PDEs.

Suppose that the system of (3) is written as

𝐸
𝛼
= 𝐸
0

𝛼
+ 𝐸
1

𝛼
= 0, 𝛼 = 1, . . . , 𝑚. (34)
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If there exist a function 𝐿 = 𝐿(𝑥, 𝑢, 𝑢
(1)
, . . . , 𝑢

(𝑙)
) ∈ A, 𝑙 ≤ 𝑘

and nonzero functions 𝑓𝛽
𝛼
∈ A such that (34) can be written

as 𝛿𝐿/𝛿𝑢𝛼 = 𝑓
𝛽

𝛼
𝐸
1

𝛽
, provided 𝐸

1

𝛽
̸= 0, then 𝐿 is known

as a partial Lagrangian of (34); otherwise it is the standard
Lagrangian. The differential equations of the form

𝛿𝐿

𝛿𝑢
𝛼
= 𝑓
𝛽

𝛼
𝐸
1

𝛽
(35)

are called a system of partial Euler-Lagrange equations.
The operator 𝑋 in (10) is a partial Noether operator

corresponding to a partial Lagrangian 𝐿 ∈ A of the system
(35) if it can be determined from

𝑋(𝐿) + 𝐿𝐷
𝑖
(𝜉
𝑖
) = 𝑊

𝛼 𝛿𝐿

𝛿𝑢
𝛼
+ 𝐷
𝑖
(𝐵
𝑖
) , (36)

for some vector 𝐵 = (𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛
), 𝐵
𝑖
∈ A. Here 𝑊 =

(𝑊
1
,𝑊
2
, . . . ,𝑊

𝑚
), 𝑊
𝛼
∈ A is the characteristic of𝑋.

Theorem 2 (see [26]). If the operator 𝑋 as in (10) is a partial
Noether operator of a partial Lagrangian 𝐿 corresponding to a
partial Eule-Lagrange system of the form (35), the components
𝑇
𝑖 of the conserved vector 𝑇 of (3) or (35) can be constructed

by the following formula:

𝑇
𝑖
= 𝐵
𝑖
− 𝜉
𝑖
𝐿 −𝑊

𝛼 𝛿𝐿

𝛿𝑢
𝛼

𝑖

−∑

𝑠≥1

𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

(𝑊
𝛼
)

𝛿𝐿

𝛿𝑢
𝛼

𝑖𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑠

,

𝑖 = 1, . . . , 𝑛,

(37)

where the characteristic𝑊 = (𝑊
1
,𝑊
2
, . . . ,𝑊

𝑚
), 𝑊
𝛼
∈ A of

𝑋 is also the characteristic of the conservation law𝐷
𝑖
𝑇
𝑖
= 0 of

(3).

3.3. Conservation Law. We now construct conservation law
of (1) using the two approaches outlined above.

Application of the New Conservation Theorem. The (2 + 1)-
dimensional Boussinesq equation is given by

𝐸
𝛼
= 𝑢
𝑡𝑡
− (2𝑢 + 1) 𝑢

𝑥𝑥
− 2𝑢
2

𝑥
− 𝑢
𝑦𝑦
− 𝑢
𝑥𝑥𝑥𝑥

= 0. (38)

We recall that (38) admits the following five Lie point
symmetry generators:

𝑋
1
=

𝜕

𝜕𝑥

, 𝑋
2
=

𝜕

𝜕𝑦

,

𝑋
3
=

𝜕

𝜕𝑡

, 𝑋
4
= 𝑦

𝜕

𝜕𝑡

+ 𝑡

𝜕

𝜕𝑦

,

𝑋
5
= 𝑥

𝜕

𝜕𝑥

+ 2𝑦

𝜕

𝜕𝑦

+ 2𝑡

𝜕

𝜕𝑡

+ (2𝑢 + 1)

𝜕

𝜕𝑢

.

(39)

The adjoint equation of (38), by invoking (27), is

𝐸
∗

𝛼
=

𝛿 [V (𝑢
𝑡𝑡
− (2𝑢 + 1) 𝑢

𝑥𝑥
− 2𝑢
2

𝑥
− 𝑢
𝑦𝑦
− 𝑢
𝑥𝑥𝑥𝑥

)]

𝛿𝑢

= 0,

(40)

where V = V(𝑥, 𝑦, 𝑡) is a newdependent variable and (40) gives

V
𝑡𝑡
− 2𝑢
𝑥𝑥
V − 4𝑢

𝑥
V
𝑥
− (2𝑢 + 1) V

𝑥𝑥
− V
𝑦𝑦
− V
𝑥𝑥𝑥𝑥

= 0. (41)

By using Theorem 1, we obtain the following Lagrangian for
the system of (38) and (40):

𝐿 = V (𝑢
𝑡𝑡
− (2𝑢 + 1) 𝑢

𝑥𝑥
− 2𝑢
2

𝑥
− 𝑢
𝑦𝑦
− 𝑢
𝑥𝑥𝑥𝑥

) . (42)

(1) We first consider the Lie point symmetry generator
𝑋
1
= 𝜕/𝜕𝑥, and we have𝑊 = −𝑢

𝑥
. Hence using (32),

we obtain the following components of the conserved
vector 𝑇:

𝑇
1

𝑥
= (2𝑢 + 2V − 1) 𝑢

𝑥
V
𝑥
− 𝑢
𝑥𝑥
V
𝑥𝑥
− 𝑢
𝑥
V
𝑥𝑥𝑥

,

𝑇
1

𝑡
= − 𝑢

𝑥𝑡
V + 𝑢
𝑥
V
𝑡
,

𝑇
1

𝑦
= 𝑢
𝑥𝑦
V − 𝑢
𝑥
V
𝑦
.

(43)

(2) The Lie point symmetry generator 𝑋
2
= 𝜕/𝜕𝑦 has

the Lie characteristic function 𝑊 = −𝑢
𝑦
. Thus by

using (32), the components of the conserved vector
are given by

𝑇
2

𝑥
= [2𝑢

𝑥
𝑢
𝑦
+ (2𝑢 + 1) 𝑢

𝑥𝑦
+ 𝑢
𝑦𝑥𝑥𝑥

] V

− (2𝑢𝑢
𝑦
+ 𝑢
𝑦
) V
𝑥
− 𝑢
𝑥𝑦
V
𝑥𝑥
− 𝑢
𝑦
V
𝑥𝑥𝑥

,

𝑇
2

𝑡
= − 𝑢

𝑦𝑡
V + 𝑢
𝑦
V
𝑡
,

𝑇
2

𝑦
= [𝑢
𝑡𝑡
− (2𝑢 + 1) 𝑢

𝑥𝑥
− 2𝑢
2

𝑥
] V − 𝑢

𝑦
V
𝑦
− VV
𝑥𝑥𝑥𝑥

.

(44)

(3) Now the Lie point symmetry generator𝑋
3
= 𝜕/𝜕𝑡 has

the Lie characteristic function 𝑊 = −𝑢
𝑡
. Hence we

can obtain the conserved vector whose components
are

𝑇
3

𝑥
= [2𝑢

𝑥
𝑢
𝑡
+ (2𝑢 + 1) 𝑢

𝑥𝑡
+ 𝑢
𝑥𝑥𝑥𝑡

] V − (2𝑢 + 1) 𝑢
𝑡
V
𝑥

− 𝑢
𝑥𝑡
V
𝑥𝑥
− 𝑢
𝑡
V
𝑥𝑥𝑥

,

𝑇
3

𝑡
= − [2𝑢

2

𝑥
+ (2𝑢 + 1) 𝑢

𝑥𝑥
+ 𝑢
𝑦𝑦
] V + 𝑢

𝑡
V
𝑡
− VV
𝑥𝑥𝑥𝑥

,

𝑇
3

𝑦
= − 𝑢

𝑦𝑡
V − 𝑢
𝑡
V
𝑦
.

(45)

(4) The Lie point symmetry generator 𝑋
4
= 𝑦(𝜕/𝜕𝑡) +

𝑡(𝜕/𝜕𝑦) has the Lie characteristic function 𝑊 =

−𝑡𝑢
𝑦
− 𝑦𝑢
𝑡
. Hence using (32), the components of the

conserved vector are given by

𝑇
4

𝑥
= [2𝑢

𝑥
(𝑡𝑢
𝑦
+ 𝑦𝑢
𝑡
) + (2𝑢 + 1) (𝑡𝑢

𝑥𝑦
+ 𝑦𝑢
𝑥𝑡
)

+ 𝑡𝑢
𝑥𝑥𝑥𝑦

+ 𝑦𝑢
𝑥𝑥𝑥𝑡

] V − (2𝑢 + 1) (𝑡𝑢
𝑦
+ 𝑦𝑢
𝑡
) V
𝑥

− (𝑡𝑢
𝑥𝑦
+ 𝑦𝑢
𝑥𝑡
) V
𝑥𝑥
− (𝑡𝑢
𝑦
+ 𝑦𝑢
𝑡
) V
𝑥𝑥𝑥

,
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𝑇
4

𝑡
= − [𝑢

𝑦
+ 2𝑦𝑢

2

𝑥
+ (2𝑢 + 1) 𝑦𝑢

𝑥𝑥
+ 𝑦𝑢
𝑦𝑦

+ 𝑡𝑢
𝑦𝑡
+ 𝑦𝑢
𝑥𝑥𝑥𝑥

] V + (𝑡𝑢
𝑦
+ 𝑦𝑢
𝑡
) V
𝑡
,

𝑇
4

𝑦
= [𝑢
𝑡
− 2𝑡𝑢
2

𝑥
+ 𝑡𝑢
𝑡𝑡
− (2𝑢 + 1) 𝑡𝑢

𝑥𝑥
+ 𝑦𝑢
𝑦𝑡
− 𝑡𝑢
𝑥𝑥𝑥𝑥

] V

− (𝑡𝑢
𝑦
+ 𝑦𝑢
𝑡
) V
𝑦
.

(46)

(5) Finally, we consider the Lie point symmetry generator
𝑋
5
= 𝑥(𝜕/𝜕𝑥) + 2𝑦(𝜕/𝜕𝑦)+2𝑡(𝜕/𝜕𝑡)+ (2𝑢+1)(𝜕/𝜕𝑢)

and the Lie characteristic function 𝑊 = (2𝑢 + 1) −

𝑥𝑢
𝑥
−2𝑦𝑢

𝑦
−2𝑡𝑢
𝑡
. Hence we can obtain the conserved

vector whose components are

𝑇
5

𝑥
= [𝑥𝑢

𝑡𝑡
− 𝑢
𝑦𝑦

+ 2𝑢
𝑥
(2𝑦𝑢
𝑦
+ 2𝑡𝑢
𝑡
− 2𝑢 − 1)

+ (4𝑢 + 2) (𝑦𝑢
𝑥𝑦
+ 𝑡𝑢
𝑥𝑡
) − 𝑢
𝑥𝑥𝑥

−2𝑦𝑢
𝑥𝑥𝑥𝑦

− 2𝑡𝑢
𝑥𝑥𝑥𝑡

] V

+ (2𝑢 + 1) [(2𝑢 + 1) − 𝑥𝑢
𝑥
− 2𝑦𝑢

𝑦
− 2𝑡𝑢
𝑡
] V
𝑥

− (𝑥𝑢
𝑥𝑥
+ 2𝑦𝑢

𝑥𝑦
+ 2𝑡𝑢
𝑥𝑡
) V
𝑥𝑥

+ [(2𝑢 + 1) − 𝑥𝑢
𝑥
− 2𝑦𝑢

𝑦
− 2𝑡𝑢
𝑡
] V
𝑥𝑥𝑥

,

𝑇
5

𝑡
= V [−2 (2𝑢 + 1) 𝑡𝑢

𝑥𝑥
− 4𝑡𝑢
2

𝑥
− 2𝑡𝑢
𝑦
𝑦

−2𝑡𝑢
𝑥𝑥𝑥𝑥

− 𝑥𝑢
𝑥𝑡
− 2𝑦𝑢

𝑦𝑡
]

− V
𝑡
[(2𝑢 + 1) − 𝑥𝑢

𝑥
− 2𝑦𝑢

𝑦
− 2𝑡𝑢
𝑡
] ,

𝑇
5

𝑦
= V [2𝑦𝑢

𝑡𝑡
− 2𝑦 (2𝑢 + 1) 𝑢

𝑥𝑥
− 4𝑦𝑢

2

𝑥

−2𝑦𝑢
𝑥𝑥𝑥𝑥

+ 𝑥𝑢
𝑥𝑦
+ 2𝑡𝑢
𝑦𝑡
]

+ V
𝑦
(2𝑢 + 1 − 𝑥𝑢

𝑥
− 2𝑦𝑢

𝑦
− 2𝑡𝑢
𝑡
) .

(47)

Remark 3. The conserved vector contains the arbitrary solu-
tion V of the adjoint equation (40) and hence one can obtain
an infinite number of conservation laws.

Application of the Partial Lagrange Method. Consider the
partial Lagrange approach given by Kara andMahomed [26].
A partial Lagrange for (1) is

𝐿 =

1

2

𝑢
2

𝑡
− (𝑢 +

1

2

) 𝑢
2

𝑥
−

1

2

𝑢
2

𝑦
−

1

2

𝑢
2

𝑥𝑥
. (48)

The Euler-Lagrange-type equation is

𝛿𝐿

𝛿𝑢

= −𝑢
𝑡𝑡
+ (2𝑢 + 1) 𝑢

𝑥𝑥
+ 𝑢
2

𝑥
+ 𝑢
𝑦𝑦
+ 𝑢
𝑥𝑥𝑥𝑥

. (49)

So (1) can be written as

𝛿𝐿

𝛿𝑢

= −𝑢
2

𝑥
, (50)

to determine theNoether-type operators. If we substitute (48)
and (50) into the partial Noether-type operators determining
(36), we obtain

𝜉 = 𝜙 = 𝜏 = 𝜂
𝑢
= 0, 𝜂 = 𝐶 (𝑥, 𝑦, 𝑡) ,

𝐵
1
= − 𝐶

𝑡
𝑢 + 𝛼 (𝑥, 𝑦, 𝑡) ,

𝐵
2
= − (𝑢

2
+ 𝑢)𝐶

𝑥
+ 𝛽 (𝑥, 𝑦, 𝑡) ,

𝐵
3
= − 𝐶

𝑦
𝑢 + 𝛾 (𝑥, 𝑦, 𝑡) ,

(51)

subject to the condition

𝐵
1

𝑡
+ 𝐵
2

𝑥
+ 𝐵
3

𝑦
= 0. (52)

The conserved components, using (37), are

𝑇
1
= 𝐶
𝑡
𝑢 − 𝐶𝑢

𝑡
+ 𝛼,

𝑇
2
= − (𝑢

2
+ 𝑢)𝐶

𝑥
+ 𝐶 (2𝑢 + 1) 𝑢

𝑥
+ 𝐶
𝑥
𝑢
𝑥𝑥
+ 𝛽,

𝑇
3
= − 𝐶

𝑦
𝑢 + 𝐶𝑢

𝑦
+ 𝛾.

(53)

4. Conclusions

In this paper, we investigate Lie point symmetries, similarity
reduction, invariant solutions, and conservation laws of the
(2 + 1)-dimensional Boussinesq equation. One of the most
important applications of theory of Lie groups is to obtain the
conservation laws of differential equations. It is well known
that the famous Noether theorem establishes a connection
between symmetries and conservation laws of differential
equations provided that the equations are Euler-Lagrange
equations. However, (1) does not admit Lagrangians. We
obtain conservation laws of (1) by utilizing the new conser-
vation theorem and the partial Lagrange approach.
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