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We consider a predator-prey systemwithMichaelis-Menten type functional response and two delays.We focus on the case with two
unequal and non-zero delays present in the model, study the local stability of the equilibria and the existence of Hopf bifurcation,
and then obtain explicit formulas to determine the properties of Hopf bifurcation by using the normal form method and center
manifold theorem. Special attention is paid to the global continuation of local Hopf bifurcation when the delays 𝜏

1
̸= 𝜏
2
.

1. Introduction

In [1], Xu and Chaplain studied the following delayed
predator-prey model with Michaelis-Menten type functional
response:
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with initial conditions

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] , 𝜙

𝑖
(0) > 0, 𝑖 = 1, 2, 3, (2)

where 𝑥
1
(𝑡), 𝑥

2
(𝑡), and 𝑥

3
(𝑡) denote the densities of the

prey, predator, and top predator population, respectively.

𝑎
𝑖
, 𝑎
𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3) are positive constants. 𝜏

11
, 𝜏
21
, 𝜏
22
, 𝜏
32
,

and 𝜏
33

are nonnegative constants. 𝜏
11
, 𝜏
22
, 𝜏
33

denote the
delay in the negative feedback of the prey, predator, and
top predator crowding, respectively. 𝜏

21
, 𝜏
32
, are constant

delays due to gestation; that is, mature adult predators can
only contribute to the production of predator biomass. 𝜏 =

max{𝜏
11
, 𝜏
21
, 𝜏
22
, 𝜏
32
, 𝜏
33
}. 𝜙
𝑖
(𝑡) (𝑖 = 1, 2, 3) are continuous

bounded functions in the interval [−𝜏, 0]. The authors
proved that the system is uniformly persistent under some
appropriate conditions. By means of constructing suitable
Lyapunov functional, sufficient conditions are derived for the
global asymptotic stability of the positive equilibrium of the
system.

Time delays of one type or another have been incorpo-
rated into systems by many researchers since a time delay
could cause a stable equilibrium to become unstable and
fluctuation. In [2–12], authors showed effects of two delays
on dynamical behaviors of system.

It is well known that periodic solutions can arise through
theHopf bifurcation in delay differential equations. However,
these periodic solutions bifurcating from Hopf bifurcations
are generally local. Under some circumstances, periodic
solutions exist when the parameter is far away from the
critical value. Therefore, global existence of Hopf bifurcation
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is a more interesting and difficult topic. A great deal of
research has been devoted to the topics [13–21]. In this paper,
let 𝜏
11

= 𝜏
22

= 𝜏
33

= 0, 𝜏
21

= 𝜏
1
, 𝜏
32

= 𝜏
2
in (1); we

considerHopf bifurcation and global periodic solutions of the
following system with two unequal and nonzero delays:
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with initial conditions

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] , 𝜙

𝑖
(0) > 0,

𝑖 = 1, 2, 3; 𝜏 = max {𝜏
1
, 𝜏
2
} .

(4)

Our goal is to investigate the possible stability switches of the
positive equilibrium and stability of periodic orbits arising
due to a Hopf bifurcation when one of the delays is treated
as a bifurcation parameter. Special attention is paid to the
global continuation of local Hopf bifurcation when the delays
𝜏
1

̸= 𝜏
2
.

This paper is organized as follows. In Section 2, by
analyzing the characteristic equation of the linearized system
of system (3) at positive equilibrium, the sufficient conditions
ensuring the local stability of the positive equilibrium and
the existence of Hopf bifurcation are obtained [22]. Some
explicit formulas determining the direction and stability
of periodic solutions bifurcating from Hopf bifurcations
are demonstrated by applying the normal form method
and center manifold theory due to Hassard et al. [23] in
Section 3. In Section 4, we consider the global existence of
these bifurcating periodic solutions [24] with two different
delays. Some numerical simulation results are included in
Section 5.

2. Stability of the Positive Equilibrium and
Local Hopf Bifurcations

In this section, we first study the existence and local stability
of the positive equilibrium and then investigate the effect of
delay and the conditions for existence of Hopf bifurcations.

There are at most four nonnegative equilibria for system
(3):
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where 𝐸
3
is a nonnegative equilibrium point if there is a

positive solution of (6), and 𝐸
∗
is a nonnegative equilibrium

point if there is a positive solution of (7).
Let
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From [1, 25], we know that if (𝐻
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hold, 𝐸
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and 𝐸
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respectively; then the linearized system of the corresponding
equations at 𝐸 is as follows:
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where
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𝑏
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We consider the following cases.

(1) 𝐸 = 𝐸
1
. The characteristic equation reduces to

(𝜆 − 𝑎
1
) (𝜆 + 𝑎

2
) (𝜆 + 𝑎

3
) = 0. (12)

There are always a positive root 𝑎
1
and two negative roots

𝑎
2
, 𝑎
3
of (12); hence 𝐸

1
is a saddle point.

(2) 𝐸 = 𝐸
2
. Equation (10) takes the form

(𝜆 + 𝑎
1
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+ 𝑎
1
) > 𝑎
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(3) 𝐸 = 𝐸
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. The characteristic equation is
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𝑏
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− 𝑏
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𝑐
21
𝑒
−𝜆𝜏
1
] = 0. (14)

We will analyse the distribution of the characteristic root of
(14) from Ruan and Wei [26], which is stated as follows.

Lemma 1. Consider the exponential polynomial
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where 𝜏
𝑖
⩾ 0 (𝑖 = 1, 2, . . . , 𝑚) and 𝑝

(𝑖)

𝑗
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1
, 𝜏
2
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𝑚
) vary, the sum of

the order of the zeros of 𝑃(𝜆, 𝑒−𝜆𝜏1 , . . . , 𝑒−𝜆𝜏𝑚) on the open right
half plane can change only if a zero appears on or crosses the
imaginary axis.

By using Lemma 1, we can easily obtain the following
results.

Lemma 2. If 𝐸
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is a nonnegative equilibrium point, then

(1) 𝐸
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33
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> 0, then 𝐸
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the following equation instead of (14):
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Assume that 𝑖𝜔 with 𝜔 > 0 is a solution of (16). Substituting
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+ 𝑏
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)(𝑏
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− 𝑏
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0, there is no real root of (16). Hence there is no purely
imaginary root of (18). When 𝜏

1
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11
𝑏
22

− 𝑏
12
𝑐
21

= 0. (19)
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+ 𝑏
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𝑏
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− 𝑏
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(4)𝐸 = 𝐸
∗
.The characteristic equation about𝐸

∗
is (10). In the

following, we will analyse the distribution of roots of (10).We
consider four cases.

Case a. Consider
𝜏
1
= 𝜏
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= 0.

The associated characteristic equation of system (3) is

𝜆
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+ 𝑝
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By Routh-Hurwitz criterion, we have the following.
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1
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2
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1
)–(𝐻
5
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= 𝜏
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∗
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∗
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2
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3
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𝜏
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The associated characteristic equation of system (3) is
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We want to determine if the real part of some root
increases to reach zero and eventually becomes positive as 𝜏
varies. Let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of (21); then we have

− 𝑖𝜔
3
− 𝑝
2
𝜔
2
+ 𝑖 (𝑝
1
+ 𝑞
1
) 𝜔 + (𝑝

0
+ 𝑞
0
)

+ (𝑟
1
𝜔𝑖 + 𝑟

0
) (cos𝜔𝜏

2
− 𝑖 sin𝜔𝜏

2
) = 0.

(22)

Separating the real and imaginary parts, we have

−𝜔
3
+ (𝑝
1
+ 𝑞
1
) 𝜔 = 𝑟

0
sin𝜔𝜏

2
− 𝑟
1
𝜔 cos𝜔𝜏

2
,

−𝑝
2
𝜔
2
+ (𝑝
0
+ 𝑞
0
) = −𝑟

1
𝜔 sin𝜔𝜏

2
− 𝑟
0
cos𝜔𝜏

2
.

(23)

It follows that

𝜔
6
+ 𝑚
12
𝜔
4
+ 𝑚
11
𝜔
2
+ 𝑚
10

= 0, (24)

where 𝑚
12

= 𝑝
2

2
− 2(𝑝

1
+ 𝑞
1
), 𝑚
11

= (𝑝
1
+ 𝑞
1
)
2
− 2𝑝
2
(𝑝
0
+

𝑞
0
) − 𝑟
2

1
, 𝑚
10

= (𝑝
0
+ 𝑞
0
)
2
− 𝑟
2

0
.

Denoting 𝑧 = 𝜔
2, (24) becomes

𝑧
3
+ 𝑚
12
𝑧
2
+ 𝑚
11
𝑧 + 𝑚

10
= 0. (25)

Let

ℎ
1
(𝑧) = 𝑧

3
+ 𝑚
12
𝑧
2
+ 𝑚
11
𝑧 + 𝑚

10
; (26)

we have

𝑑ℎ
1
(𝑧)

𝑑𝑧

= 3𝑧
2
+ 2𝑚
12
𝑧 + 𝑚

11
. (27)

If 𝑚
10

= (𝑝
0
+ 𝑞
0
)
2
− 𝑟
2

0
< 0, then ℎ

1
(0) <

0, lim
𝑧→+∞

ℎ
1
(𝑧) = +∞. We can know that (25) has at least

one positive root.
If 𝑚
10

= (𝑝
0
+ 𝑞
0
)
2
− 𝑟
2

0
≥ 0, we obtain that when Δ =

𝑚
2

12
− 3𝑚
11

≤ 0, (25) has no positive roots for 𝑧 ∈ [0, +∞).
On the other hand, when Δ = 𝑚

2

12
− 3𝑚
11

> 0, the following
equation

3𝑧
2
+ 2𝑚
12
𝑧 + 𝑚

11
= 0 (28)

has two real roots: 𝑧∗
11

= (−𝑚
12

+ √Δ)/3, 𝑧
∗

12
= (−𝑚

12
−

√Δ)/3. Because of ℎ󸀠󸀠
1
(𝑧
∗

11
) = 2√Δ > 0, ℎ

󸀠󸀠

1
(𝑧
∗

12
) = −2√Δ <

0, 𝑧
∗

11
and 𝑧∗
12
are the local minimum and the localmaximum

of ℎ
1
(𝑧), respectively. By the above analysis, we immediately

obtain the following.

Lemma 4. (1) If 𝑚
10

≥ 0 and Δ = 𝑚
2

12
− 3𝑚
11

≤ 0, (25) has
no positive root for 𝑧 ∈ [0, +∞).

(2) If 𝑚
10

≥ 0 and Δ = 𝑚
2

12
− 3𝑚
11

> 0, (25) has at least
one positive root if and only if 𝑧∗

11
= (−𝑚

12
+ √Δ)/3 > 0 and

ℎ
1
(𝑧
∗

11
) ≤ 0.

(3) If 𝑚
10

< 0, (25) has at least one positive root.

Without loss of generality, we assume that (25) has three
positive roots, defined by 𝑧

11
, 𝑧
12
, 𝑧
13
, respectively. Then

(24) has three positive roots:

𝜔
11

= √𝑧
11
, 𝜔

12
= √𝑧
12
, 𝜔

13
= √𝑧
13
. (29)

From (23) we have

cos𝜔
1𝑘
𝜏
2
1𝑘

=

𝑟
1
𝜔
4

1𝑘
+ [𝑝
2
𝑟
0
− (𝑞
1
+ 𝑝
1
) 𝑟
1
] 𝜔
2

1𝑘
− 𝑟
0
(𝑞
0
+ 𝑝
0
)

𝑟
2

0
+ 𝑟
2

1
𝜔
2

1𝑘

.

(30)

Thus, if we denote

𝜏
(𝑗)

2
1𝑘

=

1

𝜔
1𝑘

× {arccos ((𝑟
1
𝜔
4

1𝑘
+ [𝑝
2
𝑟
0
− (𝑞
1
+ 𝑝
1
) 𝑟
1
] 𝜔
2

1𝑘

− 𝑟
0
(𝑞
0
+ 𝑝
0
))

× (𝑟
2

0
+ 𝑟
2

1
𝜔
2

1𝑘
)

−1

) + 2𝑗𝜋} ,

(31)

where 𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . . then ±𝑖𝜔
1𝑘
is a pair of purely

imaginary roots of (21) corresponding to 𝜏
(𝑗)

2
1𝑘

. Define

𝜏
2
10

= 𝜏
(0)

2
1𝑘0

= min
𝑘=1,2,3

{𝜏
(0)

2
1𝑘

} , 𝜔
10

= 𝜔
1𝑘
0

. (32)

Let 𝜆(𝜏
2
) = 𝛼(𝜏

2
)+𝑖𝜔(𝜏

2
) be the root of (21) near 𝜏

2
= 𝜏
(𝑗)

2
1𝑘

satisfying

𝛼 (𝜏
(𝑗)

2
1𝑘

) = 0, 𝜔 (𝜏
(𝑗)

2
1𝑘

) = 𝜔
1𝑘
. (33)

Substituting 𝜆(𝜏
2
) into (21) and taking the derivative with

respect to 𝜏
2
, we have

{3𝜆
2
+ 2𝑝
2
𝜆 + (𝑝

1
+ 𝑞
1
) + 𝑟
1
𝑒
−𝜆𝜏
2
− 𝜏
2
(𝑟
1
𝜆 + 𝑟
0
) 𝑒
−𝜆𝜏
2
}

𝑑𝜆

𝑑𝜏
2

= 𝜆 (𝑟
1
𝜆 + 𝑟
0
) 𝑒
−𝜆𝜏
2
.

(34)

Therefore,

[

𝑑𝜆

𝑑𝜏
2

]

−1

=

[3𝜆
2
+ 2𝑝
2
𝜆 + (𝑝

1
+ 𝑞
1
)] 𝑒
𝜆𝜏
2

𝜆 (𝑟
1
𝜆 + 𝑟
0
)

+

𝑟
1

𝜆 (𝑟
1
𝜆 + 𝑟
0
)

−

𝜏
2

𝜆

.

(35)

When 𝜏
2

= 𝜏
(𝑗)

2
1𝑘

, 𝜆(𝜏
(𝑗)

2
1𝑘

) = 𝑖𝜔
1𝑘

(𝑘 = 1, 2, 3), {𝜆(𝑟
1
𝜆 +

𝑟
0
)}|
𝜏
2
=𝜏
(𝑗)

2
1𝑘

= −𝑟
1
𝜔
2

1𝑘
+ 𝑖𝑟
0
𝜔
1𝑘
, {[3𝜆
2

+ 2𝑝
2
𝜆 + (𝑝

1
+

𝑞
1
)]𝑒
𝜆𝜏
2
}|
𝜏
2
=𝜏
(𝑗)

2
1𝑘

= {[−3𝜔
2

1𝑘
+ (𝑝
1
+ 𝑞
1
)] cos(𝜔

1𝑘
𝜏
(𝑗)

2
1𝑘

) −

2𝑝
2
𝜔
1𝑘
sin(𝜔
1𝑘
𝜏
(𝑗)

2
1𝑘

)} + 𝑖{2𝑝
2
𝜔
1𝑘
cos(𝜔

1𝑘
𝜏
(𝑗)

2
1𝑘

) + [−3𝜔
2

1𝑘
+ (𝑝
1
+

𝑞
1
)] sin(𝜔

1𝑘
𝜏
(𝑗)

2
1𝑘

)}.
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According to (35), we have

[

Re 𝑑 (𝜆 (𝜏
2
))

𝑑𝜏
2

]

−1

𝜏
2
=𝜏
(𝑗)

2
1𝑘

= Re[
[3𝜆
2
+ 2𝑝
2
𝜆 + (𝑝

1
+ 𝑞
1
)] 𝑒
𝜆𝜏
2

𝜆 (𝑟
1
𝜆 + 𝑟
0
)

]

𝜏
2
=𝜏
(𝑗)

2
1𝑘

+ Re[ 𝑟
1

𝜆 (𝑟
1
𝜆 + 𝑟
0
)

]

𝜏
2
=𝜏
(𝑗)

2
1𝑘

=

1

Λ
1

{ − 𝑟
1
𝜔
2

1𝑘
[−3𝜔
2

1𝑘
+ (𝑝
1
+ 𝑞
1
)] cos (𝜔

1𝑘
𝜏
(𝑗)

2
1𝑘

)

+ 2𝑟
1
𝑝
2
𝜔
3

1𝑘
sin (𝜔

1𝑘
𝜏
(𝑗)

2
1𝑘

) − 𝑟
2

1
𝜔
2

1𝑘

+ 2𝑟
0
𝑝
2
𝜔
2

1𝑘
cos (𝜔

1𝑘
𝜏
(𝑗)

2
1𝑘

)

+ 𝑟
0
[−3𝜔
2

1𝑘
+ (𝑝
1
+ 𝑞
1
)] 𝜔
1𝑘
sin (𝜔

1𝑘
𝜏
(𝑗)

2
1𝑘

)}

=

1

Λ
1

{3𝜔
6

1𝑘
+ 2 [𝑝

2

2
− 2 (𝑝

1
+ 𝑞
1
)] 𝜔
4

1𝑘

+ [(𝑝
1
+ 𝑞
1
)
2

− 2𝑝
2
(𝑝
0
+ 𝑞
0
) − 𝑟
2

1
] 𝜔
2

1𝑘
}

=

1

Λ
1

{𝑧
1𝑘
(3𝑧
2

1𝑘
+ 2𝑚
12
𝑧
1𝑘

+ 𝑚
11
)}

=

1

Λ
1

𝑧
1𝑘
ℎ
󸀠

1
(𝑧
1𝑘
) ,

(36)

where Λ
1
= 𝑟
2

1
𝜔
4

1𝑘
+ 𝑟
2

0
𝜔
2

1𝑘
> 0. Notice that Λ

1
> 0, 𝑧
1𝑘

> 0,

sign
{

{

{

[

Re 𝑑 (𝜆 (𝜏
2
))

𝑑𝜏
2

]

𝜏
2
=𝜏
(𝑗)

2
1𝑘

}

}

}

= sign
{

{

{

[

Re 𝑑 (𝜆 (𝜏
2
))

𝑑𝜏
2

]

−1

𝜏
2
=𝜏
(𝑗)

2
1𝑘

}

}

}

;

(37)

then we have the following lemma.

Lemma 5. Suppose that 𝑧
1𝑘

= 𝜔
2

1𝑘
and ℎ

󸀠

1
(𝑧
1𝑘
) ̸= 0, where

ℎ
1
(𝑧) is defined by (26); then 𝑑(Re 𝜆(𝜏(𝑗)

2
1𝑘

))/𝑑𝜏
2
has the same

sign with ℎ
󸀠

1
(𝑧
1𝑘
).

From Lemmas 1, 4, and 5 and Theorem 3, we can easily
obtain the following theorem.

Theorem6. For 𝜏
1
= 0, 𝜏

2
> 0, suppose that (𝐻

1
)–(𝐻
5
) hold.

(i) If 𝑚
10

≥ 0 and Δ = 𝑚
2

12
− 3𝑚
11

≤ 0, then all roots
of (10) have negative real parts for all 𝜏

2
≥ 0, and the

positive equilibrium 𝐸
∗
is locally asymptotically stable

for all 𝜏
2
≥ 0.

(ii) If either 𝑚
10

< 0 or 𝑚
10

≥ 0, Δ = 𝑚
2

12
− 3𝑚
11

>

0, 𝑧
∗

11
> 0, and ℎ

1
(𝑧
∗

11
) ≤ 0, then ℎ

1
(𝑧) has at least one

positive roots, and all roots of (23) have negative real
parts for 𝜏

2
∈ [0, 𝜏

2
10

), and the positive equilibrium 𝐸
∗

is locally asymptotically stable for 𝜏
2
∈ [0, 𝜏

2
10

).

(iii) If (ii) holds and ℎ
󸀠

1
(𝑧
1𝑘
) ̸= 0, then system (3)undergoes

Hopf bifurcations at the positive equilibrium𝐸
∗
for 𝜏
2
=

𝜏
(𝑗)

2
1𝑘

, (𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . .).

Case c. Consider
𝜏
1
> 0, 𝜏
2
= 0.

The associated characteristic equation of system (3) is

𝜆
3
+ 𝑝
2
𝜆
2
+ (𝑝
1
+ 𝑟
1
) 𝜆 + (𝑝

0
+ 𝑟
0
) + (𝑞

1
𝜆 + 𝑞
0
) 𝑒
−𝜆𝜏
1
= 0.

(38)

Similar to the analysis of Case 𝑏, we get the following
theorem.

Theorem7. For 𝜏
1
> 0, 𝜏

2
= 0, suppose that (𝐻

1
)–(𝐻
5
) hold.

(i) If 𝑚
20

≥ 0 and Δ = 𝑚
2

22
− 3𝑚
21

≤ 0, then all roots
of (38) have negative real parts for all 𝜏

1
≥ 0, and the

positive equilibrium 𝐸
∗
is locally asymptotically stable

for all 𝜏
1
≥ 0.

(ii) If either 𝑚
20

< 0 or 𝑚
20

≥ 0, Δ = 𝑚
2

22
− 3𝑚
21

> 0,
𝑧
∗

21
> 0 and ℎ

2
(𝑧
∗

21
) ≤ 0, then ℎ

2
(𝑧) has at least one

positive root 𝑧
2𝑘
, and all roots of (38) have negative real

parts for 𝜏
1
∈ [0, 𝜏

1
20

), and the positive equilibrium 𝐸
∗

is locally asymptotically stable for 𝜏
1
∈ [0, 𝜏

1
20

).

(iii) If (ii) holds and ℎ
󸀠

2
(𝑧
2𝑘
) ̸= 0, then system (3) undergoes

Hopf bifurcations at the positive equilibrium𝐸
∗
for 𝜏
1
=

𝜏
(𝑗)

1
2𝑘

, (𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . .),

where

𝑚
22

= 𝑝
2

2
− 2 (𝑝

1
+ 𝑟
1
) ,

𝑚
21

= (𝑝
1
+ 𝑟
1
)
2

− 2𝑝
2
(𝑝
0
+ 𝑟
0
) − 𝑞
2

1
,

𝑚
20

= (𝑝
0
+ 𝑟
0
)
2

− 𝑞
2

0
;

ℎ
2
(𝑧) = 𝑧

3
+ 𝑚
22
𝑧
2
+ 𝑚
21
𝑧 + 𝑚

20
, 𝑧
∗

21
=

−𝑚
22

+ √Δ

3

;

𝜏
(𝑗)

1
2𝑘

=

1

𝜔
2𝑘

× {arccos ((𝑞
1
𝜔
4

2𝑘
+ [𝑝
2
𝑞
0
− (𝑟
1
+ 𝑝
1
) 𝑞
1
] 𝜔
2

2𝑘

− 𝑞
0
(𝑟
0
+ 𝑝
0
) )

× (𝑞
2

0
+ 𝑞
2

1
𝜔
2

2𝑘
)

−1

) + 2𝑗𝜋} ,

(39)

where 𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . .; then ±𝑖𝜔
2𝑘
is a pair of purely

imaginary roots of (38) corresponding to 𝜏
(𝑗)

1
2𝑘

. Define

𝜏
1
20

= 𝜏
(0)

1
2𝑘0

= min
𝑘=1,2,3

{𝜏
(0)

1
2𝑘

} , 𝜔
10

= 𝜔
1𝑘
0

. (40)
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Case d. Consider
𝜏
1
> 0, 𝜏
2
> 0, 𝜏
1

̸= 𝜏
2
.

The associated characteristic equation of system (3) is

𝜆
3
+𝑝
2
𝜆
2
+𝑝
1
𝜆+𝑝
0
+ (𝑞
1
𝜆 + 𝑞
0
) 𝑒
−𝜆𝜏
1
+ (𝑟
1
𝜆+𝑟
0
) 𝑒
−𝜆𝜏
2
=0.

(41)

We consider (41) with 𝜏
2
= 𝜏
∗

2
in its stable interval [0, 𝜏

2
10

).
Regard 𝜏

1
as a parameter.

Let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of (41); then we have

− 𝑖𝜔
3
− 𝑝
2
𝜔
2
+ 𝑖𝑝
1
𝜔 + 𝑝
0
+ (𝑖𝑞
1
𝜔 + 𝑞
0
) (cos𝜔𝜏

1
− 𝑖 sin𝜔𝜏

1
)

+ (𝑟
0
+ 𝑖𝑟
1
𝜔) (cos𝜔𝜏∗

2
− 𝑖 sin𝜔𝜏

∗

2
) = 0.

(42)

Separating the real and imaginary parts, we have

𝜔
3
− 𝑝
1
𝜔 − 𝑟
1
𝜔 cos𝜔𝜏∗

2
+ 𝑟
0
sin𝜔𝜏

∗

2

= 𝑞
1
𝜔 cos𝜔𝜏

1
− 𝑞
0
sin𝜔𝜏

1
,

𝑝
2
𝜔
2
− 𝑝
0
− 𝑟
0
cos𝜔𝜏∗

2
− 𝑟
1
𝜔 sin𝜔𝜏

∗

2

= 𝑞
0
cos𝜔𝜏

1
+ 𝑞
1
𝜔 sin𝜔𝜏

1
.

(43)

It follows that

𝜔
6
+ 𝑚
33
𝜔
4
+ 𝑚
32
𝜔
3
+ 𝑚
31
𝜔
2
+ 𝑚
30

= 0, (44)

where

𝑚
33

= 𝑝
2

2
− 2𝑝
1
− 2𝑟
1
cos𝜔𝜏∗

2
,

𝑚
32

= 2 (𝑟
0
− 𝑝
2
𝑟
1
) sin𝜔𝜏

∗

2
,

𝑚
31

= 𝑝
2

1
− 2𝑝
0
𝑝
2
− 2 (𝑝

2
𝑟
0
− 𝑝
1
𝑟
1
) cos𝜔𝜏∗

2
+ 𝑟
2

1
− 𝑞
2

1
,

𝑚
30

= 𝑝
2

0
+ 2𝑝
0
𝑟
0
cos𝜔𝜏∗

2
+ 𝑟
2

0
− 𝑞
2

0
.

(45)

Denote 𝐹(𝜔) = 𝜔
6
+ 𝑚
33
𝜔
4
+ 𝑚
32
𝜔
3
+ 𝑚
31
𝜔
2
+ 𝑚
30
. If

𝑚
30

< 0, then

𝐹 (0) < 0, lim
𝜔→+∞

𝐹 (𝜔) = +∞. (46)

We can obtain that (44) has at most six positive roots
𝜔
1
, 𝜔
2
, . . . , 𝜔

6
. For every fixed 𝜔

𝑘
, 𝑘 = 1, 2, . . . , 6, there exists

a sequence {𝜏(𝑗)
1𝑘

| 𝑗 = 0, 1, 2, 3, . . .}, such that (43) holds.
Let

𝜏
10

= min {𝜏
(𝑗)

1𝑘
| 𝑘 = 1, 2, . . . , 6; 𝑗 = 0, 1, 2, 3, . . .} . (47)

When 𝜏
1

= 𝜏
(𝑗)

1𝑘
, (41) has a pair of purely imaginary roots

±𝑖𝜔
(𝑗)

1𝑘
for 𝜏∗
2
∈ [0, 𝜏

2
10

).
In the following, we assume that

(H
6
) ((𝑑Re(𝜆))/𝑑𝜏

1
)|
𝜆=±𝑖𝜔

(𝑗)

1𝑘

̸= 0.

Thus, by the general Hopf bifurcation theorem for FDEs
in Hale [22], we have the following result on the stability and
Hopf bifurcation in system (3).

Theorem 8. For 𝜏
1

> 0, 𝜏
2

> 0, 𝜏
1

̸= 𝜏
2
, suppose that

(𝐻
1
)–(𝐻
6
) is satisfied. If 𝑚

30
< 0 and 𝜏

∗

2
∈ [0, 𝜏

2
10

], then
the positive equilibrium 𝐸

∗
is locally asymptotically stable for

𝜏
1

∈ [0, 𝜏
10
). System (3) undergoes Hopf bifurcations at the

positive equilibrium 𝐸
∗
for 𝜏
1
= 𝜏
(𝑗)

1𝑘
.

3. Direction and Stability of
the Hopf Bifurcation

In Section 2, we obtain the conditions underwhich system (3)
undergoes the Hopf bifurcation at the positive equilibrium
𝐸
∗
. In this section, we consider with 𝜏

2
= 𝜏
∗

2
∈ [0, 𝜏

2
10

)

and regard 𝜏
1
as a parameter. We will derive the explicit

formulas determining the direction, stability, and period of
these periodic solutions bifurcating from equilibrium 𝐸

∗
at

the critical values 𝜏
1
by using the normal form and the center

manifold theory developed by Hassard et al. [23]. Without
loss of generality, denote any one of these critical values 𝜏

1
=

𝜏
(𝑗)

1𝑘
(𝑘 = 1, 2, . . . , 6; 𝑗 = 0, 1, 2, . . .) by 𝜏

1
, at which (43) has a

pair of purely imaginary roots ±𝑖𝜔 and system (3) undergoes
Hopf bifurcation from 𝐸

∗
.

Throughout this section, we always assume that 𝜏∗
2
< 𝜏
10
.

Let 𝑢
1
= 𝑥
1
− 𝑥
∗

1
, 𝑢
2
= 𝑥
1
− 𝑥
∗

2
, 𝑢
3
= 𝑥
2
− 𝑥
∗

3
, 𝑡 = 𝜏

1
𝑡

and 𝜇 = 𝜏
1
− 𝜏
1
, 𝜇 ∈ R. Then 𝜇 = 0 is the Hopf bifurcation

value of system (3). System (3) may be written as a functional
differential equation inC([−1, 0],R3)

𝑢̇ (𝑡) = 𝐿
𝜇
(𝑢
𝑡
) + 𝑓 (𝜇, 𝑢

𝑡
) , (48)

where 𝑢 = (𝑢
1
, 𝑢
2
, 𝑢
3
)
𝑇
∈ R3, and

𝐿
𝜇
(𝜙) = (𝜏

1
+ 𝜇) 𝐵[

[

𝜙
1
(0)

𝜙
2
(0)

𝜙
3
(0)

]

]

+ (𝜏
1
+ 𝜇)𝐶[

[

𝜙
1
(−1)

𝜙
2
(−1)

𝜙
3
(−1)

]

]

+ (𝜏
1
+ 𝜇)𝐷

[
[
[
[
[
[
[
[
[
[

[

𝜙
1
(−

𝜏
∗

2

𝜏
1

)

𝜙
2
(−

𝜏
∗

2

𝜏
1

)

𝜙
3
(−

𝜏
∗

2

𝜏
1

)

]
]
]
]
]
]
]
]
]
]

]

,

(49)

𝑓 (𝜇, 𝜙) = (𝜏
1
+ 𝜇)[

[

𝑓
1

𝑓
2

𝑓
3

]

]

, (50)
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where 𝜙 = (𝜙
1
, 𝜙
2
, 𝜙
3
)
𝑇
∈ C([−1, 0],R3), and

𝐵 = [

[

𝑏
11

𝑏
12

0

0 𝑏
22

𝑏
23

0 0 𝑏
33

]

]

, 𝐶 = [

[

0 0 0

𝑐
21

0 0

0 0 0

]

]

,

𝐷 = [

[

0 0 0

0 0 0

0 𝑑
32

0

]

]

,

𝑓
1
= − (𝑎

11
+ 𝑙
3
) 𝜙
2

1
(0) − 𝑙

1
𝜙
1
(0) 𝜙
2
(0) − 𝑙

2
𝜙
2

1
(0) 𝜙
2
(0)

− 𝑙
5
𝜙
3

1
(0) − 𝑙

4
𝜙
3

1
(0) 𝜙
2
(0) + ⋅ ⋅ ⋅ ,

𝑓
2
= −𝑙
6
𝜙
2
(0) 𝜙
3
(0) − (𝑙

7
+ 𝑎
22
) 𝜙
2

2
(0) + 𝑙

1
𝜙
1
(−1) 𝜙

2
(0)

+ 𝑙
3
𝜙
2

1
(−1) − 𝑙

8
𝜙
3

2
(0) − 𝑙

9
𝜙
2

2
(0) 𝜙
3
(0)

+ 𝑙
2
𝜙
2

1
(−1) 𝜙

2
(0) + 𝑙

3
𝜙
3

1
(−1) + 𝑙

4
𝜙
3

1
(−1) 𝜙

2
(0)

− 𝑙
10
𝜙
3

2
(0) 𝜙
3
(0) + ⋅ ⋅ ⋅ ,

𝑓
3
= 𝑙
6
𝜙
2
(−

𝜏
∗

2

𝜏
1

)𝜙
3
(0) + 𝑙

7
𝜙
2

2
(−

𝜏
∗

2

𝜏
1

) − 𝑎
33
𝜙
2

3
(0)

+ 𝑙
9
𝜙
2

2
(−

𝜏
∗

2

𝜏
1

)𝜙
3
(0) + 𝑙

8
𝜙
3

2
(−

𝜏
∗

2

𝜏
1

)

+ 𝑙
10
𝜙
3

2
(−

𝜏
∗

2

𝜏
1

)𝜙
3
(0) + ⋅ ⋅ ⋅ ,

𝑝
1
(𝑥) =

𝑎
1
𝑥

1 + 𝑏
1
𝑥

, 𝑝
2
(𝑥) =

𝑎
2
𝑥

1 + 𝑏
2
𝑥

, 𝑙
1
= 𝑝
󸀠

1
(𝑥
∗
) ,

𝑙
2
=

1

2!

𝑝
󸀠󸀠

1
(𝑥
∗
) , 𝑙
3
=

1

2!

𝑝
󸀠󸀠

1
(𝑥
∗
) 𝑦
1∗
,

𝑙
4
=

1

3!

𝑝
󸀠󸀠󸀠

1
(𝑥
∗
) , 𝑙
5
=

1

3!

𝑝
󸀠󸀠󸀠

1
(𝑥
∗
) 𝑦
1∗
,

𝑙
6
= 𝑝
󸀠

2
(𝑦
1∗
) , 𝑙
7
=

1

2!

𝑝
󸀠󸀠

2
(𝑦
1∗
) 𝑦
2∗
,

𝑙
8
=

1

3!

𝑝
󸀠󸀠󸀠

2
(𝑦
1∗
) 𝑦
2∗
, 𝑙
9
=

1

2!

𝑝
󸀠󸀠

2
(𝑦
1∗
) ,

𝑙
10

=

1

3!

𝑝
󸀠󸀠󸀠

2
(𝑦
1∗
) .

(51)

Obviously, 𝐿
𝜇
(𝜙) is a continuous linear function mapping

C([−1, 0],R3) intoR3. By the Riesz representation theorem,
there exists a 3 × 3 matrix function 𝜂(𝜃, 𝜇) (−1 ⩽ 𝜃 ⩽ 0),
whose elements are of bounded variation such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , for 𝜙 ∈ C ([−1, 0] ,R
3
) . (52)

In fact, we can choose

𝑑𝜂 (𝜃, 𝜇) = (𝜏
1
+ 𝜇) [𝐵𝛿 (𝜃) + 𝐶𝛿 (𝜃 + 1) + 𝐷𝛿(𝜃 +

𝜏
∗

2

𝜏
1

)] ,

(53)

where 𝛿 is Dirac-delta function. For 𝜙 ∈ C([−1, 0],R3),
define

𝐴 (𝜇) 𝜙 =

{
{
{
{

{
{
{
{

{

𝑑𝜙 (𝜃)

𝑑𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑𝜂 (𝑠, 𝜇) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {

0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝜇, 𝜙) , 𝜃 = 0.

(54)

Then when 𝜃 = 0, the system is equivalent to

𝑥̇
𝑡
= 𝐴 (𝜇) 𝑥

𝑡
+ 𝑅 (𝜇) 𝑥

𝑡
, (55)

where 𝑥
𝑡
(𝜃) = 𝑥(𝑡+𝜃), 𝜃 ∈ [−1, 0]. For𝜓 ∈ C1([0, 1], (R3)

∗
),

define

𝐴
∗
𝜓 (𝑠) =

{
{
{
{

{
{
{
{

{

−

𝑑𝜓 (𝑠)

𝑑𝑠

, 𝑠 ∈ (0, 1] ,

∫

0

−1

𝑑𝜂
𝑇
(𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(56)

and a bilinear inner product

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩=𝜓 (0) 𝜙 (0)−∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉−𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(57)

where 𝜂(𝜃) = 𝜂(𝜃, 0). Let 𝐴 = 𝐴(0); then 𝐴 and 𝐴
∗

are adjoint operators. By the discussion in Section 2, we
know that ±𝑖𝜔𝜏

1
are eigenvalues of 𝐴. Thus, they are also

eigenvalues of 𝐴∗. We first need to compute the eigenvector
of 𝐴 and 𝐴

∗ corresponding to 𝑖𝜔𝜏
1
and −𝑖𝜔𝜏

1
, respectively.

Suppose that 𝑞(𝜃) = (1, 𝛼, 𝛽)
𝑇
𝑒
𝑖𝜃𝜔𝜏
1 is the eigenvector of 𝐴

corresponding to 𝑖𝜔𝜏
1
. Then 𝐴𝑞(𝜃) = 𝑖𝜔𝜏

1
𝑞(𝜃). From the

definition of 𝐴,𝐿
𝜇
(𝜙) and 𝜂(𝜃, 𝜇), we can easily obtain 𝑞(𝜃) =

(1, 𝛼, 𝛽)
𝑇
𝑒
𝑖𝜃𝜔𝜏
1 , where

𝛼 =

𝑖𝜔 − 𝑏
11

𝑏
12

, 𝛽 =

𝑑
32
(𝑖𝜔 − 𝑏

11
)

𝑏
12
(𝑖𝜔 − 𝑏

33
) 𝑒
𝑖𝜔𝜏
∗

2

(58)

and 𝑞(0) = (1, 𝛼, 𝛽)
𝑇. Similarly, let 𝑞∗(𝑠) = 𝐷(1, 𝛼

∗
, 𝛽
∗
)𝑒
𝑖𝑠𝜔𝜏
1

be the eigenvector of 𝐴
∗ corresponding to −𝑖𝜔𝜏

1
. By the

definition of 𝐴∗, we can compute

𝛼
∗
=

−𝑖𝜔 − 𝑏
11

𝑐
21
𝑒
𝑖𝜔𝜏
1

, 𝛽
∗
=

𝑏
23
(−𝑖𝜔 − 𝑏

11
)

𝑐
21
(𝑖𝜔 − 𝑏

33
) 𝑒
𝑖𝜔𝜏
1

. (59)

From (57), we have
⟨𝑞
∗
(𝑠) , 𝑞 (𝜃)⟩

= 𝐷(1, 𝛼
∗
, 𝛽

∗

) (1, 𝛼, 𝛽)
𝑇

− ∫

0

−1

∫

𝜃

𝜉=0

𝐷(1, 𝛼
∗
, 𝛽

∗

) 𝑒
−𝑖𝜔𝜏
1
(𝜉−𝜃)

𝑑𝜂 (𝜃)

× (1, 𝛼, 𝛽)
𝑇

𝑒
𝑖𝜔𝜏
1
𝜉
𝑑𝜉

= 𝐷{1 + 𝛼𝛼
∗
+ 𝛽𝛽

∗

+ 𝑐
21
𝛼
∗
𝜏
1
𝑒
−𝑖𝜔𝜏
1
+ 𝑑
32
𝛼𝛽

∗

𝜏
∗

2
𝑒
−𝑖𝜔𝜏
∗

2
} .

(60)
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Thus, we can choose

𝐷 = {1 + 𝛼𝛼
∗
+ 𝛽𝛽

∗

+ 𝑐
21
𝛼
∗
𝜏
1
𝑒
−𝑖𝜔𝜏
1
+ 𝑑
32
𝛼𝛽

∗

𝜏
∗

2
𝑒
−𝑖𝜔𝜏
∗

2
}

−1

,

(61)

such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞
∗
(𝑠), 𝑞(𝜃)⟩ = 0.

In the remainder of this section, we follow the ideas in
Hassard et al. [23] and use the same notations as there to
compute the coordinates describing the center manifold 𝐶

0

at 𝜇 = 0. Let 𝑥
𝑡
be the solution of (48) when 𝜇 = 0. Define

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑥
𝑡
⟩, 𝑊 (𝑡, 𝜃) = 𝑥

𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(62)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

= 𝑊
20
(𝜃)

𝑧
2

2

+𝑊
11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧
2

2

+𝑊
30
(𝜃)

𝑧
3

6

+ ⋅ ⋅ ⋅ ,

(63)

where 𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0
in

the direction of 𝑞 and 𝑞. Note that 𝑊 is real if 𝑥
𝑡
is real. We

consider only real solutions. For the solution 𝑥
𝑡
∈ 𝐶
0
of (48),

since 𝜇 = 0, we have

𝑧̇ = 𝑖𝜔𝜏
1
𝑧 + ⟨𝑞

∗
(𝜃) , 𝑓 (0,𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

+ 2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝜔𝜏
1
𝑧+𝑞
∗
(0) 𝑓 (0,𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 0) +2Re {𝑧 (𝑡) 𝑞 (0)})

= 𝑖𝜔𝜏
1
𝑧 + 𝑞
∗
(0) 𝑓
0
(𝑧, 𝑧) ≜ 𝑖𝜔𝜏

1
𝑧 + 𝑔 (𝑧, 𝑧) ,

(64)

where

𝑔 (𝑧, 𝑧) = 𝑞
∗
(0) 𝑓
0
(𝑧, 𝑧) = 𝑔

20

𝑧
2

2

+ 𝑔
11
𝑧𝑧

+ 𝑔
02

𝑧
2

2

+ 𝑔
21

𝑧
2
𝑧

2

+ ⋅ ⋅ ⋅ .

(65)

By (62), we have 𝑥
𝑡
(𝜃) = (𝑥

1𝑡
(𝜃), 𝑥
2𝑡
(𝜃), 𝑥
3𝑡
(𝜃))
𝑇
= 𝑊(𝑡, 𝜃) +

𝑧𝑞(𝜃) + 𝑧 𝑞(𝜃), and then

𝑥
1𝑡
(0) = 𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧
2

2

+𝑊
(1)

11
(0) 𝑧𝑧

+𝑊
(1)

02
(0)

𝑧
2

2

+ 𝑜 (|(𝑧, 𝑧)|
3
) ,

𝑥
2𝑡
(0) = 𝑧𝛼 + 𝑧 𝛼 +𝑊

(2)

20
(0)

𝑧
2

2

+𝑊
(2)

11
(0) 𝑧𝑧 +𝑊

(2)

02
(0)

𝑧
2

2

+ 𝑜 (|(𝑧, 𝑧)|
3
) ,

𝑥
3𝑡
(0) = 𝑧𝛽 + 𝑧𝛽 +𝑊

(3)

20
(0)

𝑧
2

2

+𝑊
(3)

11
(0) 𝑧𝑧

+𝑊
(3)

02
(0)

𝑧
2

2

+ 𝑜 (|(𝑧, 𝑧)|
3
) ;

𝑥
1𝑡
(−1) = 𝑧𝑒

−𝑖𝜔𝜏
1
+ 𝑧𝑒
𝑖𝜔𝜏
1
+𝑊
(1)

20
(−1)

𝑧
2

2

+𝑊
(1)

11
(−1) 𝑧𝑧 +𝑊

(1)

02
(−1)

𝑧
2

2

+ 𝑜 (|(𝑧, 𝑧)|
3
) ,

𝑥
2𝑡
(−1) = 𝑧𝛼𝑒

−𝑖𝜔𝜏
1
+ 𝑧 𝛼𝑒

𝑖𝜔𝜏
1
+𝑊
(2)

20
(−1)

𝑧
2

2

+𝑊
(2)

11
(−1) 𝑧𝑧 +𝑊

(2)

02
(−1)

𝑧
2

2

+ 𝑜 (|(𝑧, 𝑧)|
3
) ,

𝑥
3𝑡
(−1) = 𝑧𝛽𝑒

−𝑖𝜔𝜏
1
+ 𝑧𝛽𝑒

𝜔𝜏
1
+𝑊
(3)

20
(−1)

𝑧
2

2

+𝑊
(3)

11
(−1) 𝑧𝑧 +𝑊

(3)

02
(−1)

𝑧
2

2

+ 𝑜 (|(𝑧, 𝑧)|
3
) ;

𝑥
1𝑡
(−

𝜏
∗

2

𝜏
10

) = 𝑧𝑒
−𝑖𝜔𝜏
∗

2
+ 𝑧𝑒
𝑖𝜔𝜏
∗

2
+𝑊
(1)

20
(−

𝜏
∗

2

𝜏
1

)

𝑧
2

2

+𝑊
(1)

11
(−

𝜏
∗

2

𝜏
1

)𝑧𝑧 +𝑊
(1)

02
(−

𝜏
∗

2

𝜏
1

)

𝑧
2

2

+ 𝑜 (|(𝑧, 𝑧)|
3
) ,

𝑥
2𝑡
(−

𝜏
∗

2

𝜏
1

) = 𝑧𝛼𝑒
−𝑖𝜔𝜏
∗

2
+ 𝑧 𝛼𝑒

𝑖𝜔𝜏
∗

2
+𝑊
(2)

20
(−

𝜏
∗

2

𝜏
1

)

𝑧
2

2

+𝑊
(2)

11
(−

𝜏
∗

2

𝜏
1

)𝑧𝑧 +𝑊
(2)

02
(−

𝜏
∗

2

𝜏
1

)

𝑧
2

2

+ 𝑜 (|(𝑧, 𝑧)|
3
) ,

𝑥
3𝑡
(−

𝜏
∗

2

𝜏
1

) = 𝑧𝛽𝑒
−𝑖𝜔𝜏
∗

2
+ 𝑧𝛽𝑒

𝜔𝜏
∗

2
+𝑊
(3)

20
(−

𝜏
∗

2

𝜏
1

)

𝑧
2

2

+𝑊
(3)

11
(−

𝜏
∗

2

𝜏
1

)𝑧𝑧 +𝑊
(3)

02
(−

𝜏
∗

2

𝜏
1

)

𝑧
2

2

+ 𝑜 (|(𝑧, 𝑧)|
3
) .

(66)



Abstract and Applied Analysis 9

It follows together with (50) that

𝑔 (𝑧, 𝑧)=𝑞
∗
(0) 𝑓
0
(𝑧, 𝑧) =𝐷𝜏

1
(1, 𝛼
∗
, 𝛽

∗

) (𝑓
(0)

1
𝑓
(0)

2
𝑓
(0)

3
)

𝑇

= 𝐷𝜏
1
{[− (𝑎

11
+ 𝑙
3
) 𝜙
2

1
(0) − 𝑙

1
𝜙
1
(0) 𝜙
2
(0)

− 𝑙
2
𝜙
2

1
(0) 𝜙
2
(0) − 𝑙

5
𝜙
3

1
(0) − 𝑙

4
𝜙
3

1
(0) 𝜙
2
(0)

+ ⋅ ⋅ ⋅ ]

+ 𝛼
∗
[𝑙
6
𝜙
2
(0) 𝜙
3
(0) (𝑙
7
+ 𝑎
22
) 𝜙
2

2
(0)

+ 𝑙
1
𝜙
1
(−1) 𝜙

2
(0)

+ 𝑙
3
𝜙
2

1
(−1) − 𝑙

8
𝜙
3

2
(0) − 𝑙

9
𝜙
2

2
(0) 𝜙
3
(0)

+ 𝑙
2
𝜙
2

1
(−1) 𝜙

2
(0) + 𝑙

3
𝜙
3

1
(−1) + ⋅ ⋅ ⋅ ]

+ 𝛽

∗

[𝑙
6
𝜙
2
(−

𝜏
∗

2

𝜏
1

)𝜙
3
(0) + 𝑙

7
𝜙
2

2
(−

𝜏
∗

2

𝜏
1

)

− 𝑎
33
𝜙
2

3
(0) + 𝑙

8
𝜙
3

2
(−

𝜏
∗

2

𝜏
1

) + ⋅ ⋅ ⋅ ]} .

(67)

Comparing the coefficients with (65), we have

𝑔
20

= 𝐷𝜏
1
{[−2 (𝑎

11
+ 𝑙
3
) − 2𝛼𝑙

1
]

+ 𝛼
∗
[2𝑙
1
𝛼𝑒
−𝑖𝜔𝜏
1
+ 2𝑙
3
𝑒
−2𝑖𝜔𝜏

1

−2𝑙
6
𝛼𝛽 − 2 (𝑙

7
+ 𝑎
22
) 𝛼
2
]

+ 𝛽

∗

[2𝑙
6
𝛼𝛽𝑒
−𝑖𝜔𝜏
∗

2
+ 2 (𝑙
7
+ 𝑎
22
) 𝛼
2
𝑒
−2𝑖𝜔𝜏

∗

2

−2𝑎
33
𝛽
2
]} ,

𝑔
11

= 𝐷𝜏
1
{[−2 (𝑎

11
+ 𝑙
3
) − 𝑙
1
(𝛼 + 𝛼)]

+ 𝛼
∗
[𝑙
1
(𝛼𝑒
𝑖𝜔𝜏
1
+ 𝛼𝑒
−𝑖𝜔𝜏
1
) − 𝑙
6
(𝛼𝛽 + 𝛼𝛽)

−2 (𝑙
7
+ 𝑎
22
) 𝛼𝛼 + 2𝑙

3
]

+ 𝛽

∗

[𝑙
6
(𝛽𝛼𝑒
𝑖𝜔𝜏
∗

2
+ 𝛼𝛽𝑒

−𝑖𝜔𝜏
∗

2
)

+ 2𝑙
7
𝛼𝛼 − 𝑎

33
𝛽𝛽]} ,

𝑔
02

= 2𝐷𝜏
1
{[−2 (𝑎

11
+ 𝑙
3
) − 2𝑙
1
𝛼]

+ 𝛼
∗
[−2𝑙
6
𝛼𝛽 − 2 (𝑙

7
+ 𝑎
22
) 𝛼
2
+ 2𝑙
1
𝛼𝑒
𝑖𝜔𝜏
1

+2𝑙
3
𝑒
2𝑖𝜔𝜏
1
]

+ 𝛽

∗

[2𝑙
6
𝛼𝛽𝑒
𝑖𝜔𝜏
∗

2
+ 2𝑙
7
𝛼
2
𝑒
2𝑖𝜔𝜏
∗

2
− 𝑎
33
𝛽

2

]} ,

𝑔
21

= 𝐷𝜏
1
{[− (𝑎

11
+ 𝑙
3
) (2𝑊

(1)

20
(0) + 4𝑊

(1)

11
(0))

− 𝑙
1
(2𝛼𝑊

(1)

11
(0) + 𝛼𝑊

(1)

20
(0) + 𝑊

(2)

20
(0)

+ 2𝑊
(2)

11
(0))]

+ 𝛼
∗
[−𝑙
6
(2𝛽𝑊

(2)

11
(0) + 𝛼𝑊

(3)

20
(0) + 𝛽𝑊

(2)

20
(0)

+ 2𝛼𝑊
(3)

11
(0)) − (𝑙

7
+ 𝑎
22
)

× (4𝛼𝑊
(2)

11
(0) + 2𝛼𝑊

(2)

20
(0))

+ 𝑙
1
(2𝛼𝑊

(1)

11
(−1) + 𝛼𝑊

(1)

20
(−1)

+ 𝑊
(2)

20
(0) 𝑒
𝑖𝜔𝜏
1
+ 2𝑊

(2)

11
(0) 𝑒
−𝑖𝜔𝜏
1
)

+ 𝑙
3
(4𝑊
(1)

11
(−1) 𝑒

−𝑖𝜔𝜏
1
+2𝑊
(1)

20
(−1) 𝑒

𝑖𝜔𝜏
1
)]

+ 𝛽

∗

[𝑙
6
(2𝛽𝑊

(2)

11
(−

𝜏
∗

2

𝜏
1

) + 𝛽𝑊
(2)

20
(−

𝜏
∗

2

𝜏
1

)

+ 𝛼𝑊
(3)

20
(0) 𝑒
𝑖𝜔𝜏
∗

2
+ 2𝛼𝑊

(3)

11
(0) 𝑒
−𝑖𝜔𝜏
∗

2
)

+ 𝑙
7
(4𝛼𝑊

(2)

11
(−

𝜏
∗

2

𝜏
1

) 𝑒
−𝑖𝜔𝜏
∗

2

+2𝛼𝑊
(2)

20
(−

𝜏
∗

2

𝜏
1

) 𝑒
𝑖𝜔𝜏
∗

2
)

− 𝑎
33
(4𝛽𝑊

(3)

11
(0) + 2𝛽𝑊

(3)

20
(0))]} ,

(68)

where

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜔𝜏
1

𝑞 (0) 𝑒
𝑖𝜔𝜏
1
𝜃
+

𝑖𝑔
02

3𝜔𝜏
1

𝑞 (0) 𝑒
−𝑖𝜔𝜏
1
𝜃
+ 𝐸
1
𝑒
2𝑖𝜔𝜏
1
𝜃
,

𝑊
11
(𝜃) = −

𝑖𝑔
11

𝜔𝜏
1

𝑞 (0) 𝑒
𝑖𝜔𝜏
1
𝜃
+

𝑖𝑔
11

𝜔𝜏
1

𝑞 (0) 𝑒
−𝑖𝜔𝜏
1
𝜃
+ 𝐸
2
,

𝐸
1
= 2

[
[
[
[
[

[

2𝑖𝜔 − 𝑏
11

−𝑏
12

0

−𝑐
21
𝑒
−2𝑖𝜔𝜏

1
2𝑖𝜔 − 𝑏

22
−𝑏
23

0 −𝑑
32
𝑒
−2𝑖𝜔𝜏

∗

2
2𝑖𝜔 − 𝑏

33

]
]
]
]
]

]

−1

×

[
[
[
[
[

[

−2 (𝑎
11

+ 𝑙
3
) − 2𝛼𝑙

1

2𝑙
1
𝛼𝑒
−𝑖𝜔𝜏
1
+ 2𝑙
3
𝑒
−2𝑖𝜔𝜏

1
− 2𝑙
6
𝛼𝛽 − 2 (𝑙

7
+ 𝑎
22
) 𝛼
2

2𝑙
6
𝛼𝛽𝑒
−𝑖𝜔𝜏
∗

2
+ 2 (𝑙
7
+ 𝑎
22
) 𝛼
2
𝑒
−2𝑖𝜔𝜏

∗

2
− 2𝑎
33
𝛽
2

]
]
]
]
]

]

,
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𝐸
2
= 2

[
[
[
[

[

−𝑏
11

−𝑏
12

0

−𝑐
21

−𝑏
22

−𝑏
23

0 −𝑑
32

−𝑏
33

]
]
]
]

]

−1

×

[
[
[
[

[

−2 (𝑎
11

+ 𝑙
3
) − 𝑙
1
(𝛼 + 𝛼)

𝑙
1
(𝛼𝑒
𝑖𝜔𝜏
1
+ 𝛼𝑒
−𝑖𝜔𝜏
1
) − 𝑙
6
(𝛼𝛽 + 𝛼𝛽) − 2 (𝑙

7
+ 𝑎
22
) 𝛼𝛼 + 2𝑙

3

𝑙
6
(𝛽𝛼𝑒
𝑖𝜔𝜏
∗

2
+ 𝛼𝛽𝑒

−𝑖𝜔𝜏
∗

2
) + 2𝑙
7
𝛼𝛼 − 𝑎

33
𝛽𝛽

]
]
]
]

]

.

(69)

Thus, we can determine𝑊
20
(𝜃) and𝑊

11
(𝜃). Furthermore,

we can determine each 𝑔
𝑖𝑗
by the parameters and delay in (3).

Thus, we can compute the following values:

𝑐
1
(0) =

𝑖

2𝜔𝜏
1

(𝑔
20
𝑔
11

− 2
󵄨
󵄨
󵄨
󵄨
𝑔
11

󵄨
󵄨
󵄨
󵄨

2

−

1

3

󵄨
󵄨
󵄨
󵄨
𝑔
02

󵄨
󵄨
󵄨
󵄨

2

) +

1

2

𝑔
21
,

𝜇
2
= −

Re {𝑐
1
(0)}

Re {𝜆󸀠 (𝜏
1
)}

,

𝑇
2
= −

Im {𝑐
1
(0)} + 𝜇

2
Im {𝜆

󸀠
(𝜏
1
)}

𝜔𝜏
1

, 𝛽
2
= 2Re {𝑐

1
(0)} ,

(70)

which determine the quantities of bifurcating periodic solu-
tions in the center manifold at the critical value 𝜏

1
. Suppose

Re{𝜆󸀠(𝜏
1
)} > 0. 𝜇

2
determines the directions of the Hopf

bifurcation: if 𝜇
2

> 0(< 0), then the Hopf bifurcation
is supercritical (subcritical) and the bifurcation exists for
𝜏 > 𝜏

1
(< 𝜏
1
); 𝛽
2
determines the stability of the bifurcation

periodic solutions: the bifurcating periodic solutions are
stable (unstable) if 𝛽

2
< 0(> 0); and𝑇

2
determines the period

of the bifurcating periodic solutions: the period increases
(decreases) if 𝑇

2
> 0(< 0).

4. Numerical Simulation

We consider system (3) by taking the following coefficients:
𝑎
1

= 0.3, 𝑎
11

= 5.8889, 𝑎
12

= 1, 𝑚
1

= 1, 𝑎
2

=

0.1, 𝑎
21

= 27, 𝑎
22

= 12, 𝑎
23

= 12, 𝑚
2

= 1, 𝑎
3

=

0.2, 𝑎
32

= 25, 𝑎
33

= 12. We have the unique positive
equilibrium 𝐸

∗
= (0.0451, 0.0357, 0.0551).

By computation, we get 𝑚
10

= −0.0104, 𝜔
11

= 0.5164,
𝑧
11

= 0.2666, ℎ󸀠
1
(𝑧
11
) = 0.3402, 𝜏

2
0

= 3.2348. From
Theorem 6, we know that when 𝜏

1
= 0, the positive

equilibrium 𝐸
∗
is locally asymptotically stable for 𝜏

2
∈

[0, 3.2348). When 𝜏
2
crosses 𝜏

2
0

, the equilibrium 𝐸
∗
loses its

stability and Hopf bifurcation occurs. From the algorithm in
Section 3, we have 𝜇

2
= 566.46, 𝛽

2
= −315.83, 𝑇

2
= 54.45,

whichmeans that the bifurcation is supercritical and periodic
solution is stable. The trajectories and the phase graphs are
shown in Figures 1 and 2.

Regarding 𝜏
1
as a parameter and let 𝜏

2
= 2.9 ∈

[0, 3.2348), we can observe that with 𝜏
1
increasing, the pos-

itive equilibrium 𝐸
∗
loses its stability and Hopf bifurcation

occurs (see Figures 3 and 4).

5. Global Continuation
of Local Hopf Bifurcations

In this section, we study the global continuation of peri-
odic solutions bifurcating from the positive equilibrium
(𝐸
∗
, 𝜏
(𝑗)

1𝑘
), (𝑘 = 1, 2, . . . , 6; 𝑗 = 0, 1, . . .). Throughout this

section, we follow closely the notations in [24] and assume
that 𝜏

2
= 𝜏
∗

2
∈ [0, 𝜏

2
10

) regarding 𝜏
1
as a parameter. For

simplification of notations, setting 𝑧
𝑡
(𝑡) = (𝑥

1𝑡
, 𝑥
2𝑡
, 𝑥
3𝑡
)
𝑇, we

may rewrite system (3) as the following functional differential
equation:

𝑧̇ (𝑡) = 𝐹 (𝑧
𝑡
, 𝜏
1
, 𝑝) , (71)

where 𝑧
𝑡
(𝜃) = (𝑥

1𝑡
(𝜃), 𝑥
2𝑡
(𝜃), 𝑥
3𝑡
(𝜃))
𝑇

= (𝑥
1
(𝑡 + 𝜃), 𝑥

2
(𝑡 +

𝜃), 𝑥
3
(𝑡 + 𝜃))

𝑇 for 𝑡 ≥ 0 and 𝜃 ∈ [−𝜏
1
, 0]. Since 𝑥

1
(𝑡), 𝑥
2
(𝑡),

and 𝑥
3
(𝑡) denote the densities of the prey, the predator, and

the top predator, respectively; the positive solution of system
(3) is of interest and its periodic solutions only arise in the first
quadrant. Thus, we consider system (3) only in the domain
𝑅
3

+
= {(𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ 𝑅
3
, 𝑥
1
> 0, 𝑥

2
> 0, 𝑥

3
> 0}. It is obvious

that (71) has a unique positive equilibrium 𝐸
∗
(𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) in

𝑅
3

+
under the assumption (𝐻

1
)–(𝐻
4
). Following the work of

[24], we need to define

𝑋 = 𝐶([−𝜏
1
, 0] , 𝑅

3

+
) ,

Γ = 𝐶𝑙 {(𝑧, 𝜏
1
, 𝑝) ∈ X × R × R+;

𝑧 is a 𝑝-periodic solution of system (71)} ,

N = {(𝑧, 𝜏
1
, 𝑝) ; 𝐹 (𝑧, 𝜏

1
, 𝑝) = 0} .

(72)

Let ℓ
(𝐸
∗
,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

(𝑗)

1𝑘
)
denote the connected component pass-

ing through (𝐸
∗
, 𝜏
(𝑗)

1𝑘
, 2𝜋/𝜔

(𝑗)

1𝑘
) in Γ, where 𝜏

(𝑗)

1𝑘
is defined by

(43). We know that ℓ
(𝐸
∗
,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

(𝑗)

1𝑘
)
through (𝐸

∗
, 𝜏
(𝑗)

1𝑘
, 2𝜋/𝜔

(𝑗)

1𝑘
)

is nonempty.
For the benefit of readers, we first state the global Hopf

bifurcation theory due to Wu [24] for functional differential
equations.

Lemma 9. Assume that (𝑧
∗
, 𝜏, 𝑝) is an isolated center satis-

fying the hypotheses (A1)–(A4) in [24]. Denote by ℓ
(𝑧
∗
,𝜏,𝑝)

the
connected component of (𝑧

∗
, 𝜏, 𝑝) in Γ. Then either

(i) ℓ
(𝑧
∗
,𝜏,𝑝)

is unbounded, or
(ii) ℓ
(𝑧
∗
,𝜏,𝑝)

is bounded, ℓ
(𝑧
∗
,𝜏,𝑝)

∩ Γ is finite and

∑

(𝑧,𝜏,𝑝)∈ℓ
(𝑧∗,𝜏,𝑝)
∩N

𝛾
𝑚
(𝑧
∗
, 𝜏, 𝑝) = 0, (73)

for all 𝑚 = 1, 2, . . ., where 𝛾
𝑚
(𝑧
∗
, 𝜏, 𝑝) is the 𝑚𝑡ℎ crossing

number of (𝑧
∗
, 𝜏, 𝑝) if𝑚 ∈ 𝐽(𝑧

∗
, 𝜏, 𝑝), or it is zero if otherwise.

Clearly, if (ii) in Lemma 9 is not true, then ℓ
(𝑧
∗
,𝜏,𝑝)

is
unbounded. Thus, if the projections of ℓ

(𝑧
∗
,𝜏,𝑝)

onto 𝑧-space
and onto 𝑝-space are bounded, then the projection of ℓ

(𝑧
∗
,𝜏,𝑝)

onto 𝜏-space is unbounded. Further, if we can show that the
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.
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projection of ℓ
(𝑧
∗
,𝜏,𝑝)

onto 𝜏-space is away from zero, then
the projection of ℓ

(𝑧
∗
,𝜏,𝑝)

onto 𝜏-space must include interval
[𝜏, ∞). Following this ideal, we can prove our results on the
global continuation of local Hopf bifurcation.

Lemma 10. If the conditions (𝐻
1
)–(𝐻
4
) hold, then all nontriv-

ial periodic solutions of system (71) with initial conditions

𝑥
1
(𝜃) = 𝜑 (𝜃) ≥ 0, 𝑥

2
(𝜃) = 𝜓 (𝜃) ≥ 0,

𝑥
3
(𝜃) = 𝜙 (𝜃) ≥ 0, 𝜃 ∈ [−𝜏

1
, 0) ;

𝜑 (0) > 0, 𝜓 (0) > 0, 𝜙 (0) > 0

(74)

are uniformly bounded.

Proof. Suppose that (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) are nonconstant peri-

odic solutions of system (3) and define

𝑥
1
(𝜉
1
) = min {𝑥

1
(𝑡)} , 𝑥

1
(𝜂
1
) = max {𝑥

1
(𝑡)} ,

𝑥
2
(𝜉
2
) = min {𝑥

2
(𝑡)} , 𝑥

2
(𝜂
2
) = max {𝑥

2
(𝑡)} ,

𝑥
3
(𝜉
3
) = min {𝑥

3
(𝑡)} , 𝑥

3
(𝜂
3
) = max {𝑥

3
(𝑡)} .

(75)

It follows from system (3) that

𝑥
1
(𝑡) = 𝑥

1
(0) exp{∫

𝑡

0

[𝑎
1
− 𝑎
11
𝑥
1
(𝑠) −

𝑎
12
𝑥
2
(𝑠)

𝑚
1
+ 𝑥
1
(𝑠)

] 𝑑𝑠} ,

𝑥
2
(𝑡) = 𝑥

2
(0) exp{∫

𝑡

0

[−𝑎
2
+

𝑎
21
𝑥
1
(𝑠 − 𝜏
1
)

𝑚
1
+ 𝑥
1
(𝑠 − 𝜏
1
)

− 𝑎
22
𝑥
2
(𝑠) −

𝑎
23
𝑥
3
(𝑠)

𝑚
2
+ 𝑥
2
(𝑠)

] 𝑑𝑠} ,

𝑥
3
(𝑡) = 𝑥

3
(0) exp{∫

𝑡

0

[−𝑎
3
+

𝑎
32
𝑥
2
(𝑠 − 𝜏

∗

2
)

𝑚
2
+ 𝑥
2
(𝑠 − 𝜏

∗

2
)

− 𝑎
33
𝑥
3
(𝑠)] 𝑑𝑠}

(76)

which implies that the solutions of system (3) cannot cross
the 𝑥
𝑖
-axis (𝑖 = 1, 2, 3). Thus, the nonconstant periodic orbits

must be located in the interior of first quadrant. It follows
from initial data of system (3) that 𝑥

1
(𝑡) > 0, 𝑥

2
(𝑡) >

0, 𝑥
3
(𝑡) > 0 for 𝑡 ≥ 0.

From the first equation of system (3), we can get

0 = 𝑎
1
− 𝑎
11
𝑥
1
(𝜂
1
) −

𝑎
12
𝑥
2
(𝜂
1
)

𝑚
1
+ 𝑥
1
(𝜂
1
)

≤ 𝑎
1
− 𝑎
11
𝑥
1
(𝜂
1
) ; (77)

thus, we have

𝑥
1
(𝜂
1
) ≤

𝑎
1

𝑎
11

. (78)

From the second equation of (3), we obtain

0 = − 𝑎
2
+

𝑎
21
𝑥
1
(𝜂
2
− 𝜏
1
)

𝑚
1
+ 𝑥
1
(𝜂
2
− 𝜏
1
)

− 𝑎
22
𝑥
2
(𝜂
2
)

−

𝑎
23
𝑥
3
(𝜂
2
)

𝑚
2
+ 𝑥
2
(𝜂
2
)

≤ −𝑎
2
+

𝑎
21
(𝑎
1
/𝑎
11
)

𝑚
1
+ (𝑎
1
/𝑎
11
)

− 𝑎
22
𝑥
2
(𝜂
2
) ;

(79)

therefore, one can get

𝑥
2
(𝜂
2
) ≤

−𝑎
2
(𝑎
11
𝑚
1
+ 𝑎
1
) + 𝑎
1
𝑎
21

𝑎
22
(𝑎
11
𝑚
1
+ 𝑎
1
)

≜ 𝑀
1
. (80)

Applying the third equation of system (3), we know

0 = −𝑎
3
+

𝑎
32
𝑥
2
(𝜂
3
− 𝜏
∗

2
)

𝑚
2
+ 𝑥
2
(𝜂
3
− 𝜏
∗

2
)

− 𝑎
33
𝑥
3
(𝜂
3
)

≤ −𝑎
3
+

𝑎
32
𝑀
1

𝑚
2
+𝑀
1

− 𝑎
33
𝑥
3
(𝜂
3
) .

(81)

It follows that

𝑥
3
(𝜂
3
) ≤

−𝑎
3
(𝑚
2
+𝑀
1
) + 𝑎
32
𝑀
1

𝑎
33
(𝑚
2
+𝑀
1
)

≜ 𝑀
2
. (82)

This shows that the nontrivial periodic solution of system (3)
is uniformly bounded and the proof is complete.

Lemma 11. If the conditions (𝐻
1
)–(𝐻
4
) and

(H
7
) 𝑎
22

− (𝑎
21
/𝑚
2
) > 0, [(𝑎

11
− 𝑎
1
/𝑚
1
)𝑎
22

−

(𝑎
12
𝑎
21
/𝑚
2

1
)]𝑎
33

− (𝑎
11

− (𝑎
1
/𝑚
1
))[(𝑎
21
/𝑚
2
)𝑎
33

+

(𝑎
23
𝑎
32
/𝑚
2

2
)] > 0

hold, then system (3) has no nontrivial 𝜏
1
-periodic solution.

Proof. Suppose for a contradiction that system (3) has non-
trivial periodic solution with period 𝜏

1
. Then the following

system (83) of ordinary differential equations has nontrivial
periodic solution:

𝑑𝑥
1

𝑑𝑡

= 𝑥
1
(𝑡) [𝑎
1
− 𝑎
11
𝑥
1
(𝑡) −

𝑎
12
𝑥
2
(𝑡)

𝑚
1
+ 𝑥
1
(𝑡)

] ,

𝑑𝑥
2

𝑑𝑡

= 𝑥
2
(𝑡) [−𝑎

2
+

𝑎
21
𝑥
1
(𝑡)

𝑚
1
+ 𝑥
1
(𝑡)

− 𝑎
22
𝑥
2
(𝑡) −

𝑎
23
𝑥
3
(𝑡)

𝑚
2
+ 𝑥
2
(𝑡)

] ,

𝑑𝑥
3

𝑑𝑡

= 𝑥
3
(𝑡) [−𝑎

3
+

𝑎
32
𝑥
2
(𝑡 − 𝜏

∗

2
)

𝑚
2
+ 𝑥
2
(𝑡 − 𝜏

∗

2
)

− 𝑎
33
𝑥
3
(𝑡)] ,

(83)

which has the same equilibria to system (3); that is,

𝐸
1
= (0, 0, 0) , 𝐸

2
= (

𝑎
1

𝑎
11

, 0, 0) ,

𝐸
3
= (𝑥
1
, 𝑥
2
, 0) , 𝐸

∗
= (𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) .

(84)

Note that 𝑥
𝑖
-axis (𝑖 = 1, 2, 3) are the invariable manifold of

system (83) and the orbits of system (83) do not intersect each
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other. Thus, there are no solutions crossing the coordinate
axes. On the other hand, note the fact that if system (83) has
a periodic solution, then there must be the equilibrium in its
interior, and that 𝐸

1
, 𝐸
2
, 𝐸
3
are located on the coordinate

axis. Thus, we conclude that the periodic orbit of system (83)
must lie in the first quadrant. If (𝐻

7
) holds, it is well known

that the positive equilibrium 𝐸
∗
is globally asymptotically

stable in the first quadrant (see [1]).Thus, there is no periodic
orbit in the first quadrant too. The above discussion means
that (83) does not have any nontrivial periodic solution. It is
a contradiction. Therefore, the lemma is confirmed.

Theorem 12. Suppose the conditions of Theorem 8 and (𝐻
7
)

hold; let𝜔
𝑘
and 𝜏(𝑗)
1𝑘

be defined in Section 2; then when 𝜏
1
> 𝜏
(𝑗)

1𝑘

system (3) has at least 𝑗 − 1 periodic solutions.

Proof. It is sufficient to prove that the projection of
ℓ
(𝐸
∗
,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

𝑘
)
onto 𝜏

1
-space is [𝜏

1
, +∞) for each 𝑗 ≥ 1, where

𝜏
1
≤ 𝜏
(𝑗)

1𝑘
.

In following we prove that the hypotheses (A1)–(A4) in
[24] hold.

(1) From system (3) we know easily that the following
conditions hold:

(A1) 𝐹 ∈ 𝐶
2
(𝑅
3

+
×𝑅
+
×𝑅
+
), where 𝐹 = 𝐹|

𝑅
3

+
×𝑅
+
×𝑅
+

→

𝑅
3

+
.

(A3) 𝐹(𝜙, 𝜏
1
, 𝑝) is differential with respect to 𝜙.

(2) It follows from system (3) that

𝐷
𝑧
𝐹 (𝑧, 𝜏

1
, 𝑝) =

[
[
[
[
[
[
[
[
[
[
[

[

𝑎
1
− 2𝑎
11
𝑥
1
−

𝑎
12
𝑚
1
𝑥
2

(𝑚
1
+ 𝑥
1
)
2

−

𝑎
12
𝑥
1

𝑚
1
+ 𝑥
1

0

𝑎
21
𝑚
1
𝑥
2

(𝑚
1
+ 𝑥
1
)
2

−𝑎
2
+

𝑎
21
𝑥
1

𝑚
1
+ 𝑥
1

− 2𝑎
22
𝑥
2
−

𝑎
23
𝑚
2
𝑥
3

(𝑚
2
+ 𝑥
2
)
2

−

𝑎
23
𝑥
2

𝑚
2
+ 𝑥
2

0

𝑎
32
𝑚
2
𝑥
3

(𝑚
2
+ 𝑥
2
)
2

−𝑎
3
+

𝑎
32
𝑥
2

𝑚
2
+ 𝑥
2

− 2𝑎
33
𝑥
3

]
]
]
]
]
]
]
]
]
]
]

]

. (85)

Then under the assumption (𝐻
1
)–(𝐻
4
), we have

det𝐷
𝑧
𝐹 (𝑧
∗
, 𝜏
1
, 𝑝)

= det

[
[
[
[
[
[
[
[

[

−𝑎
11
𝑥
∗

1
+

𝑎
12
𝑥
∗

1
𝑥
∗

2

(𝑚
1
+ 𝑥
∗

1
)
2

𝑎
12
𝑥
∗

1

𝑚
1
+ 𝑥
∗

1

0

𝑎
21
𝑚
1
𝑥
∗

2

(𝑚
1
+ 𝑥
∗

1
)
2

−𝑎
22
𝑥
∗

2
+

𝑎
23
𝑥
∗

2
𝑥
∗

3

(𝑚
2
+ 𝑥
∗

2
)
2

−

𝑎
23
𝑥
∗

2

𝑚
2
+ 𝑥
∗

2

0

𝑎
32
𝑚
2
𝑥
∗

3

(𝑚
2
+ 𝑥
∗

2
)
2

−𝑎
33
𝑥
∗

3

]
]
]
]
]
]
]
]

]

= −

𝑎
2

2
𝑦
1∗
𝑦
2∗

(1 + 𝑏
2
𝑦
1∗
)
3
[−𝑥
∗
+

𝑎
1
𝑏
1
𝑥
∗
𝑦
1∗

(1 + 𝑏
1
𝑥
∗
)
2
] ̸= 0.

(86)

From (86), we know that the hypothesis (A2) in [24]
is satisfied.

(3) The characteristic matrix of (71) at a stationary
solution (𝑧, 𝜏

0
, 𝑝
0
) where 𝑧 = (𝑧

(1)
, 𝑧
(2)
, 𝑧
(3)
) ∈ 𝑅

3

takes the following form:

Δ (𝑧, 𝜏
1
, 𝑝) (𝜆) = 𝜆𝐼𝑑 − 𝐷

𝜙
𝐹 (𝑧, 𝜏

1
, 𝑝) (𝑒

𝜆
𝐼) ; (87)

that is,

Δ (𝑧, 𝜏
1
, 𝑝) (𝜆)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜆 − 𝑎
1
+ 2𝑎
11
𝑧
(1)

+

𝑎
12
𝑚
1
𝑧
(2)

(𝑚
1
+ 𝑧
(1)
)

2

𝑎
12
𝑧
(1)

𝑚
1
+ 𝑧
(1)

0

−

𝑎
21
𝑚
1
𝑧
(2)

(𝑚
1
+ 𝑧
(1)
)

2
𝑒
−𝜆𝜏
1

𝜆 + 𝑎
2
−

𝑎
21
𝑧
(1)

𝑚
1
+ 𝑧
(1)

+ 2𝑎
22
𝑧
(2)

+

𝑎
23
𝑚
2
𝑧
(3)

(𝑚
2
+ 𝑧
(2)
)

2

𝑎
23
𝑧
(2)

𝑚
2
+ 𝑧
(2)

0 −

𝑎
32
𝑚
2
𝑧
(3)

(𝑚
2
+ 𝑧
(2)
)

2
𝑒
−𝜆𝜏
∗

2
𝜆 + 𝑎
3
−

𝑎
32
𝑧
(2)

𝑚
2
+ 𝑧
(2)

+ 2𝑎
33
𝑧
(3)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(88)
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From (88), we have

det (Δ (𝐸
∗
, 𝜏
1
, 𝑝) (𝜆))

= 𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑝
1
𝜆 + 𝑝
0
+ [(𝑟
1
+ 𝑞
1
) 𝜆 + (𝑞

0
+ 𝑟
0
)] 𝑒
−𝜆𝜏
1
.

(89)

Note that (89) is the same as (20); from the discussion in
Section 2 about the local Hopf bifurcation, it is easy to verify
that (𝐸

∗
, 𝜏
(𝑗)

1𝑘
, 2𝜋/𝜔

𝑘
) is an isolated center, and there exist 𝜖 >

0, 𝛿 > 0 and a smooth curve 𝜆 : (𝜏
(𝑗)

1𝑘
− 𝛿, 𝜏

(𝑗)

1𝑘
+ 𝛿) → C

such that det(Δ(𝜆(𝜏
1
))) = 0, |𝜆(𝜏

1
) − 𝜔
𝑘
| < 𝜖 for all 𝜏

1
∈

[𝜏
(𝑗)

1𝑘
− 𝛿, 𝜏
(𝑗)

1𝑘
+ 𝛿] and

𝜆 (𝜏
(𝑗)

1𝑘
) = 𝜔
𝑘
𝑖,

𝑑Re 𝜆 (𝜏
1
)

𝑑𝜏
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜏
1
=𝜏
(𝑗)

1𝑘

> 0. (90)

Let

Ω
𝜖,2𝜋/𝜔

𝑘

= {(𝜂, 𝑝) ; 0 < 𝜂 < 𝜖,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑝 −

2𝜋

𝜔
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝜖} . (91)

It is easy to see that on [𝜏
(𝑗)

1𝑘
− 𝛿, 𝜏

(𝑗)

1𝑘
+ 𝛿] × 𝜕Ω

𝜖,2𝜋/𝜔
𝑘

,
det(Δ(𝐸

∗
, 𝜏
1
, 𝑝)(𝜂 + (2𝜋/𝑝)𝑖)) = 0 if and only if, 𝜂 = 0,

𝜏
1
= 𝜏
(𝑗)

1𝑘
, 𝑝 = 2𝜋/𝜔

𝑘
, 𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . ..

Therefore, the hypothesis (A4) in [24] is satisfied.
If we define

𝐻
±
(𝐸
∗
, 𝜏
(𝑗)

1𝑘
,

2𝜋

𝜔
𝑘

) (𝜂, 𝑝)

= det(Δ (𝐸
∗
, 𝜏
(𝑗)

1𝑘
± 𝛿, 𝑝) (𝜂 +

2𝜋

𝑝

𝑖)) ,

(92)

then we have the crossing number of isolated center
(𝐸
∗
, 𝜏
(𝑗)

1𝑘
, 2𝜋/𝜔

𝑘
) as follows:

𝛾(𝐸
∗
, 𝜏
(𝑗)

1𝑘
,

2𝜋

𝜔
𝑘

) = deg
𝐵
(𝐻
−
(𝐸
∗
, 𝜏
(𝑗)

1𝑘
,

2𝜋

𝜔
𝑘

) ,Ω
𝜖,2𝜋/𝜔

𝑘

)

− deg
𝐵
(𝐻
+
(𝐸
∗
, 𝜏
(𝑗)

1𝑘
,

2𝜋

𝜔
𝑘

) ,Ω
𝜖,2𝜋/𝜔

𝑘

)

= −1.

(93)

Thus, we have

∑

(𝑧,𝜏
1
,𝑝)∈C

(𝐸∗,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔
𝑘
)

𝛾 (𝑧, 𝜏
1
, 𝑝) < 0,

(94)

where (𝑧, 𝜏
1
, 𝑝) has all or parts of the form

(𝐸
∗
, 𝜏
(𝑘)

1𝑗
, 2𝜋/𝜔

𝑘
) (𝑗 = 0, 1, . . .). It follows from

Lemma 9 that the connected component ℓ
(𝐸
∗
,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

𝑘
)

through (𝐸
∗
, 𝜏
(𝑗)

1𝑘
, 2𝜋/𝜔

𝑘
) is unbounded for each center

(𝑧
∗
, 𝜏
1
, 𝑝), (𝑗 = 0, 1, . . .). From the discussion in Section 2,

we have

𝜏
(𝑗)

1𝑘
=

1

𝜔
𝑘

× {arccos(((𝑝
2
𝜔
2

𝑘
−𝑝
0
) (𝑟
0
+𝑞
0
)

+ 𝜔
2
(𝜔
2
−𝑝
1
) (𝑟
1
+𝑞
1
))

× ((𝑟
0
+𝑞
0
)
2

+ (𝑟
1
+𝑞
1
)
2

𝜔
2

𝑘
)

−1

) +2𝑗𝜋},

(95)

where 𝑘 = 1, 2, 3; 𝑗 = 0, 1, . . ..Thus, one can get 2𝜋/𝜔
𝑘
≤ 𝜏
(𝑗)

1𝑘

for 𝑗 ≥ 1.
Now we prove that the projection of ℓ

(𝐸
∗
,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

𝑘
)
onto

𝜏
1
-space is [𝜏

1
, +∞), where 𝜏

1
≤ 𝜏
(𝑗)

1𝑘
. Clearly, it follows

from the proof of Lemma 11 that system (3) with 𝜏
1

= 0

has no nontrivial periodic solution. Hence, the projection of
ℓ
(𝐸
∗
,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

𝑘
)
onto 𝜏

1
-space is away from zero.

For a contradiction, we suppose that the projection of
ℓ
(𝐸
∗
,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

𝑘
)
onto 𝜏

1
-space is bounded; this means that the

projection of ℓ
(𝐸
∗
,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

𝑘
)
onto 𝜏

1
-space is included in a

interval (0, 𝜏∗). Noticing 2𝜋/𝜔
𝑘
< 𝜏
𝑗

1𝑘
and applying Lemma 11

we have 𝑝 < 𝜏
∗ for (𝑧(𝑡), 𝜏

1
, 𝑝) belonging to ℓ

(𝐸
∗
,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

𝑘
)
.

This implies that the projection of ℓ
(𝐸
∗
,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

𝑘
)
onto 𝑝-

space is bounded. Then, applying Lemma 10 we get that
the connected component ℓ

(𝐸
∗
,𝜏
(𝑗)

1𝑘
,2𝜋/𝜔

𝑘
)
is bounded. This

contradiction completes the proof.

6. Conclusion

In this paper, we take our attention to the stability and Hopf
bifurcation analysis of a predator-prey systemwithMichaelis-
Menten type functional response and two unequal delays.
We obtained some conditions for local stability and Hopf
bifurcation occurring. When 𝜏

1
̸= 𝜏
2
, we derived the explicit

formulas to determine the properties of periodic solutions
by the normal form method and center manifold theorem.
Specially, the global existence results of periodic solutions
bifurcating from Hopf bifurcations are also established by
using a global Hopf bifurcation result due to Wu [24].
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