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We consider the equations involving the one-dimensional 𝑝-Laplacian (𝑃): (𝑢

(𝑡)


𝑝−2

𝑢

(𝑡))


+ 𝜆𝑓(𝑢(𝑡)) = 0, 0 < 𝑡 < 1, and
𝑢(0) = 𝑢(1) = 0, where 𝑝 > 1, 𝜆 > 0, 𝑓 ∈ 𝐶

1
(R;R), 𝑓(𝑠)𝑠 > 0, and 𝑠 ̸= 0. We show the existence of sign-changing solutions under

the assumptions 𝑓
∞

= lim
|𝑠|→∞

(𝑓 (𝑠) /𝑠
𝑝−1

) = +∞ and 𝑓
0
= lim

|𝑠|→0
(𝑓(𝑠)/𝑠

𝑝−1
) ∈ [0,∞]. We also show that (𝑃) has exactly one

solution having specified nodal properties for 𝜆 ∈ (0, 𝜆
∗
) for some 𝜆

∗
∈ (0,∞). Our main results are based on quadrature method.

1. Introduction and Main Results

Existence and multiplicity of positive solutions of nonlinear
second order boundary value problem

𝑢


(𝑡) + 𝜆𝑓 (𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢 (1) = 0

(1)

and its generalized forms have been extensively studied
via the fixed point theorem in cones, bifurcation theory,
quadrature method, and fixed index theorem in the past four
decades; see Erbe and Wang [1], Henderson and Wang [2],
Laetsch [3], Fink et al. [4], Ma andThompson [5, 6], and the
references therein.

Existence and multiplicity of positive solutions of the
corresponding one-dimensional 𝑝-Laplacian

(

𝑢


(𝑡)


𝑝−2

𝑢


(𝑡))


+ 𝜆𝑎 (𝑡) 𝑓 (𝑢 (𝑡)) = 0, 0 < 𝑡 < 1, (2)

𝑢 (0) = 𝑢 (1) = 0 (3)

have also been studied by several authors; see Lee and Sim
[7], Wang [8], Kong and Wang [9], Aranda and Godoy
[10], Bouguima and Lakmeche [11], and de Coster [12] for
references along this line.

Recently, Lee and Sim [7] consider the existence andmul-
tiplicity of positive solutions of (2), (3) under the assumptions

𝑓
∞

= ∞, 𝑓
0
∈ (0,∞) . (4)

They proved the following.

Theorem A (see [7, Theorem 3.14]). Assume (4) hold. Then,
there exist 𝜆

∗
≥ 𝜆
∗

> 0 such that (2), (3) have at least one
positive solution for 𝜆 < 𝜆

∗ and no positive solution for 𝜆 > 𝜆
∗
.

Of course, natural question is as follows. What would
happen if we allow that 𝑓

0
∈ {0,∞}?

It is the purpose of this paper to study sign-changing
solutions of (2), (3) under the assumptions 𝑎(𝑡) ≡ 1 and

𝑓
∞

= ∞, 𝑓
0
= 0, (A)

or

𝑓
∞

= ∞, 𝑓
0
= ∞. (B)

Themain tool is the quadrature method.
We will make the following assumptions:

(H0) 𝑓(𝑠)𝑠 > 0 for 𝑠 ̸= 0;
(H1) lim

|𝑠|→∞
(𝑓(𝑠)/𝑠

𝑝−1
) = +∞;

(H2) lim
𝑠→+∞

(((𝑝 − 1)/𝑝)𝑓(𝑠) − (𝑠/𝑝)𝑓

(𝑠)) < 0 and

lim
𝑠→−∞

(((𝑝 − 1)/𝑝)𝑓(𝑠) − (𝑠/𝑝)𝑓

(𝑠)) > 0.
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Let 𝜆
𝑘

:= 𝑘
𝑝
𝜋
𝑝

𝑝
, 𝑘 ∈ N, where 𝜋

𝑝
:= 2 ∫

(𝑝−1)
1/𝑝

0
1/(1 −

(𝑠
𝑝
/(𝑝 − 1)))

1/𝑝
𝑑𝑠. The main results of this paper are the

following.

Theorem 1. Let (H0), (H1), and (H2) hold. Assume that 𝑓

satisfies

𝑓
0
= lim
|𝑠|→0

𝑓 (𝑠)

𝑠𝑝−1
∈ (0,∞) . (5)

Then, for 𝑘 ∈ N, (2), (3) have two solutions 𝑢+
𝑘
and 𝑢

−

𝑘
for each

𝜆 ∈ (0, 𝜆
𝑘
/𝑓
0
): 𝑢+
𝑘
has 𝑘−1 zeros in (0, 1) and is positive near 0,

and 𝑢
−

𝑘
has 𝑘−1 zeros in (0, 1) and is negative near 0. Moreover,

there exists a constant 𝜆∗ ∈ (0, 𝜆
𝑘
/𝑓
0
), such that for each 𝜆 ∈

(0, 𝜆
∗
) the above solution is unique.

Theorem 2. Let (H0), (H1), and (H2) hold. Assume that 𝑓
0
=

0. Then, for 𝑘 ∈ N, (2), (3) have two solutions 𝑢
+

𝑘
and 𝑢

−

𝑘
for

each 𝜆 ∈ (0,∞): 𝑢+
𝑘
has 𝑘 − 1 zeros in (0, 1) and is positive

near 0, and 𝑢
−

𝑘
has 𝑘 − 1 zeros in (0, 1) and is negative near 0.

Further, there exists a constant 𝜆∗ ∈ (0,∞) independent of 𝑘,
such that for each 𝜆 ∈ (0, 𝜆

∗
) the above solution is unique.

Theorem 3. Let (H0) and (H1) hold. Assume that 𝑓
0

= ∞.
Then, for 𝑘 ∈ N, there exists a constant 𝜆

∗
small independent

of 𝑘, such that for each𝜆 ∈ (0, 𝜆
∗
) (2), (3) have two solutions𝑢+

𝑘

and V+
𝑘
: 𝑢+
𝑘
and V+
𝑘
have 𝑘−1 zeros in (0, 1) and are positive near

0; and problems (2), (3) have two solutions 𝑢
−

𝑘
and V−
𝑘
, where

𝑢
−

𝑘
and V−
𝑘
have 𝑘 − 1 zeros in (0, 1) and are negative near 0.

Remark 4. For 𝑝 = 2, the existence of positive and sign-
changing solutions has been extensively studied by many
authors [1–6], but they did not give any information about
the uniqueness of nodal solutions.

Remark 5. It is worth noticing that Lee and Sim [7] studied
the nonautonomous cases (2), (3) and obtained the existence
of positive solutions with𝑓

∞
= ∞,𝑓

0
∈ (0,∞).They gave no

information about the sign-changing solutions. InTheorem 1,
we show the existence of solutions having specified nodal
properties.

Remark 6. Very little is known in the available literature even
in the special case 𝑝 = 2. We establish uniqueness results in
this paper; see Theorems 1 and 2.

Remark 7. Let us consider the problem

(

𝑢


(𝑡)


8/3−2

𝑢


(𝑡))



+ 𝜆𝑔 (𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢 (1) = 0,

(6)

where 𝑔(𝑠) = 𝑠
11/3

+𝑠
5/3. Obviously, 𝑔 satisfies (H0) and (H1).

Since
8/3 − 1

8/3
𝑔 (𝑠) −

𝑠

8/3
𝑔


(𝑠) = −
3

4
𝑠
11/3

, (7)

it is easy to see that (H2) is fulfilled. Thus, Theorem 1 implies
that, for 𝑘 ∈ N, (6) have two solutions 𝑢

+

𝑘
and 𝑢

−

𝑘
for each

𝜆 ∈ (0, 𝜆
𝑘
/𝑓
0
): 𝑢+
𝑘
has 𝑘 − 1 zeros in (0, 1) and is positive

near 0, and 𝑢
−

𝑘
has 𝑘 − 1 zeros in (0, 1) and is negative near 0.

Moreover, there exists a constant 𝜆∗ ∈ (0, 𝜆
𝑘
/𝑓
0
), such that

for each 𝜆 ∈ (0, 𝜆
∗
) the above solution is unique.

For other results dealing with 𝑝-Laplacian operators and
the bifurcation behavior of solutions, see [13–24] and the
references therein.

The rest of the paper is arranged as follows. In Section 2,
we state and prove some preliminary results. Finally, in
Section 3, we give the proofs of Theorems 1, 2, and 3.

2. Quadrature Method and Preliminaries

Let 𝑓 ∈ 𝐶
1
(R;R), 𝑓(𝑠)𝑠 > 0 for 𝑠 ̸= 0 and 𝐹(𝑠) = ∫

𝑠

0
𝑓(𝑡)𝑑𝑡.

Lemma8. If 𝑢 is any solution of (2), (3) and 𝑥
0
∈ (0, 1) is such

that 𝑢(𝑥
0
) = 0, then 𝑢(𝑥

0
− 𝑡) = 𝑢(𝑥

0
+ 𝑡), 𝑡 ∈ [0,min{𝑥

0
, 1 −

𝑥
0
}].

Proof. Since 𝑓 is autonomous, both 𝑢(𝑥
0
− 𝑡) and 𝑢(𝑥

0
+ 𝑡)

satisfy the initial value problem

(

𝑤


(𝑡)


𝑝−2

𝑤


(𝑡))


+ 𝜆𝑓 (𝑤 (𝑡)) = 0,

𝑡 ∈ [0,min {𝑥
0
, 1 − 𝑥

0
}] ,

𝑤 (0) = 𝑢 (𝑥
0
) , 𝑤



(0) = 0.

(8)

By Reichel andWalter [14,Theorem 2] and [14, (iii) and (v) in
the case (𝛽) of Theorem 4], (8) has a unique solution defined
on 𝑡 ∈ (0,min{𝑥

0
, 1−𝑥
0
}).Therefore, 𝑢(𝑥

0
−𝑡) = 𝑢(𝑥

0
+𝑡).

Now, we divide the discussion into two cases.

Case 1 (𝑘 = 2𝑛+1.). In this case, we attempt to find a solution
of (2), (3) with 2𝑛 zeros in (0, 1) and 𝑢


(0) < 0 and a solution

of (2), (3) with 2𝑛 zeros in (0, 1) and 𝑢

(0) > 0.

Obviously, if𝑢 is a sign-changing solutionwith 2𝑛 zeros in
(0, 1) and𝑢


(0) < 0, then, thanks to Lemma 8 and the fact that

(2) is autonomous, we only need to study 𝑢 on the intervals
[𝑥
0
, 2𝑥
0
] and [2𝑥

0
, 1/2𝑛 + ((𝑛 − 1)/𝑛)𝑥

0
].

Multiplying (2) throughout by 𝑢

(𝑡), we obtain

(

𝑢


𝑝−2

𝑢


(𝑡))


𝑢


(𝑡) + 𝜆𝑓 (𝑢) 𝑢


(𝑡) = 0, (9)

and integrating we have


𝑢


𝑝

= −𝜆
𝑝

𝑝 − 1
𝐹 (𝑢 (𝑡)) +

𝑝

𝑝 − 1
𝑐. (10)

If ℎ = sup
𝑡∈[0,1]

𝑢(𝑡) and 𝑞 = inf
𝑡∈[0,1]

𝑢(𝑡), then 𝑢(𝑥
0
) = 𝑞

and 𝑢(1/2𝑛 + ((𝑛 − 1)/𝑛)𝑥
0
) = ℎ. Substituting 𝑡 = 𝑥

0
and 𝑡 =

1/2𝑛 + ((𝑛 − 1)/𝑛)𝑥
0
in (10), we get 𝑐 = 𝜆𝐹(𝑞) and 𝑐 = 𝜆𝐹(ℎ).

Hence, 𝑞 = 𝑞(ℎ) is such that

𝐹 (𝑞) = 𝐹 (ℎ) . (11)
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Thus, we have

𝑢


(𝑡) = (
𝑝

𝑝 − 1
𝜆)

1/𝑝

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

;

𝑡 ∈ (2𝑥
0
,

1

2𝑛
+

𝑛 − 1

𝑛
𝑥
0
) ,

(12)

𝑢


(𝑡) = (
𝑝

𝑝 − 1
𝜆)

1/𝑝

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

; 𝑡 ∈ (𝑥
0
, 2𝑥
0
) .

(13)

Integrating (12) and (13) on (2𝑥
0
, 1/2𝑛 + ((𝑛 − 1)/𝑛)𝑥

0
) and

(𝑥
0
, 2𝑥
0
), respectively, we obtain

∫

𝑢(𝑡)

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

= (
𝑝

𝑝 − 1
𝜆)

1/𝑝

(𝑡 − 2𝑥
0
) , (14)

∫

0

𝑢(𝑡)

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

= (
𝑝

𝑝 − 1
𝜆)

1/𝑝

(2𝑥
0
− 𝑡) . (15)

Hence, substituting 𝑡 = 1/2𝑛+((𝑛−1)/𝑛)𝑥
0
in (14) and 𝑡 = 𝑥

0

in (15), we have

∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

= (
𝑝

𝑝 − 1
𝜆)

1/𝑝

(
1

2𝑛
−

𝑛 + 1

𝑛
𝑥
0
) ,

(16)

∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

= (
𝑝

𝑝 − 1
𝜆)

1/𝑝

𝑥
0
. (17)

Multiplying (17) by (𝑛 + 1)/𝑛and adding to (16), we can see
that 𝜆 and ℎ satisfy

(𝜆)
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

{𝑛∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

+ (𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

}

:= 𝐺
2𝑛

(ℎ) .

(18)

In fact, the following result holds.

Lemma 9. Given 𝜆 > 0, if there exists ℎ ∈ (0,∞) such that
𝐺
2𝑛

(ℎ) = (𝜆)
1/𝑝, then (2), (3) have a sign-changing solution

with 2𝑛 interior zeros satisfying ‖𝑢‖ = sup
𝑡∈(0,1)

𝑢(𝑡) = ℎ.
Further,𝐺

2𝑛
(ℎ) is a continuous function in (0,∞) and it is also

differentiable with the derivative given by

𝑑𝐺
2𝑛

(ℎ)

𝑑ℎ
= 2(

𝑝 − 1

𝑝
)

1/𝑝

× {𝑛∫

1

0

𝐻(ℎ) − 𝐻 (ℎV)
(𝐹 (ℎ) − 𝐹 (ℎV))(𝑝+1)/𝑝

𝑑V

− (𝑛 + 1)
𝑑𝑞

𝑑ℎ
∫

1

0

𝐻(𝑞) − 𝐻 (𝑞V)

(𝐹 (𝑞) − 𝐹 (𝑞V))(𝑝+1)/𝑝
𝑑V} ,

(19)

where 𝐻(𝑠) = 𝐹(𝑠) − (𝑠/𝑝)𝑓(𝑠).

The proof of the above theorem follows by carefully
extending the arguments used in [15,Theorem 2.2] for second
order differential equation to the case of one-dimensional 𝑝-
Laplacian.

Using the same argument, with obvious changes, we may
deduce the following.

If 𝑢 is a sign-changing solution with 2𝑛 zeros in (0, 1) and
𝑢

(0) > 0, the corresponding 𝐺1

2𝑛
(ℎ) is

𝐺1
2𝑛

(ℎ) = 2(
𝑝 − 1

𝑝
)

1/𝑝

× {(𝑛 + 1) ∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

+𝑛∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

} .

(20)

Case 2 (𝑘 = 2𝑛). In this case, if 𝑢 is a sign-changing solution
with 2𝑛 − 1 zeros in (0, 1) and 𝑢


(0) > 0, the corresponding

𝐺
2𝑛−1

(ℎ) is

𝐺
2𝑛−1

(ℎ) = (𝜆)
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

× {𝑛∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

+𝑛∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

} .

(21)

Similarly, we may get the same function 𝐺
2𝑛−1

(ℎ) as above
when 𝑢 is a sign-changing solutionwith (2𝑛−1) zeros in (0, 1)

with 𝑢

(0) < 0.

3. The Proofs of the Main Results

Proof of Theorem 1. First, we consider 𝑘 = 2𝑛 + 1.
It follows from the quadrature method that a solution

with 2𝑛 zeros in (0,1) exists if for 𝜆 > 0 there exists ℎ ∈ (0,∞)

such that (𝜆)
1/𝑝

= 𝐺
2𝑛

(ℎ). To prove this, we will show that
(0, (2𝑛 + 1)𝜋

𝑝
/𝑓
1/𝑝

0
) ⊂ Range(𝐺

2𝑛
(ℎ)). We achieve this by

proving

(A) lim
ℎ→+∞

𝐺
2𝑛

(ℎ) = 0,

(B) lim
ℎ→0

𝐺
2𝑛

(ℎ) = (2𝑛 + 1)𝜋
𝑝
/𝑓
1/𝑝

0
.

Proof of (A). Recall that

𝐺
2𝑛

(ℎ) = 2(
𝑝 − 1

𝑝
)

1/𝑝

× {𝑛∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

+ (𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

} .

(22)



4 Journal of Applied Mathematics

First let us consider

2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

0

𝑑𝑢

(∫
ℎ

𝑢
𝑓 (𝑡) 𝑑𝑡)

1/𝑝
.

(23)

To this end, we have from (H1) that, for any 𝑘 ∈ N, there
exists 𝑅

𝑘
∈ (0,∞), such that

𝑓 (𝑠) ≥ 𝑘
𝑝
𝑠
𝑝−1

, 𝑠 ≥ 𝑅
𝑘
. (24)

If ℎ > 𝑅
𝑘
, it follows from (23) and (24) that we have that

2(
𝑝 − 1

𝑝
)

1/𝑝

∫

𝑅
𝑘

0

𝑑𝑠

(𝐹 (ℎ) − 𝐹 (𝑠))
1/𝑝

+ 2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

𝑅
𝑘

𝑑𝑠

(𝐹 (ℎ) − 𝐹 (𝑠))
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

𝑅
𝑘

0

𝑑𝑠

(∫
ℎ

𝑠
𝑓 (𝑤) 𝑑𝑤)

1/𝑝

+ 2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

𝑅
𝑘

𝑑𝑠

(∫
ℎ

𝑠
𝑓 (𝑤) 𝑑𝑤)

1/𝑝

≤ 2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

𝑅
𝑘

0

(
𝑘
𝑝

𝑝
(ℎ
𝑝
− 𝑅
𝑘

𝑝
))

−1/𝑝

𝑑𝑠

+ 2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

𝑅
𝑘

(
𝑘
𝑝

𝑝
(ℎ
𝑝
− 𝑠
𝑝
))

−1/𝑝

𝑑𝑠

= 2(𝑝 − 1)
1/𝑝

𝑛
1

𝑘

× {𝑅
𝑘
[(ℎ
𝑝
− 𝑅
𝑘

𝑝
)]
−1/𝑝

+ ∫

1

𝑅
𝑘
/ℎ

1

(1 − V𝑝)1/𝑝
𝑑V}

= 𝑛
1

𝑘
{2(𝑝 − 1)

1/𝑝

𝑅
𝑘
[(ℎ
𝑝
− 𝑅
𝑘

𝑝
)]
−1/𝑝

+2∫

(𝑝−1)
1/𝑝

𝑅
𝑘(𝑝−1)

1/𝑝

/ℎ

1

(1 − (V𝑝/ (𝑝 − 1)))
1/𝑝

𝑑V}

→
𝑛𝐶

𝑘
as ℎ → ∞,

(25)

where

𝐶 := lim
ℎ→∞

{2(𝑝 − 1)
1/𝑝

𝑅
𝑘
[(ℎ
𝑝
− 𝑅
𝑘

𝑝
)]
−1/𝑝

+2∫

(𝑝−1)
1/𝑝

𝑅
𝑘(𝑝−1)

1/𝑝

/ℎ

1

(1 − (V𝑝/ (𝑝 − 1)))
1/𝑝

𝑑V}

= 𝜋
𝑝
.

(26)

It follows from the fact that 𝑘 is sufficiently large and (25) that

2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

= 0. (27)

Next, we know that 𝑞 → −∞ as ℎ → +∞ (𝐹(𝑞) = 𝐹(ℎ)).
We consider

2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(∫
𝑞

𝑢
𝑓 (𝑡) 𝑑𝑡)

1/𝑝
.

(28)

To this end, we have from (H1) that, for any 𝑘 ∈ N, there exists
𝑅
𝑘
∈ (0,∞), such that

−𝑓 (𝑠) ≥ 𝑘
𝑝

|𝑠|
𝑝−1

, 𝑠 ≤ −𝑅
𝑘
. (29)

If 𝑞 < −𝑅
𝑘
, it follows from (28) and (29) that we have that

2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

−𝑅
𝑘

𝑞

𝑑𝑠

(𝐹 (𝑞) − 𝐹 (𝑠))
1/𝑝

+ 2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

0

−𝑅
𝑘

𝑑𝑠

(𝐹 (𝑞) − 𝐹 (𝑠))
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

−𝑅
𝑘

𝑞

𝑑𝑠

(∫
𝑞

𝑠
𝑓 (𝑤) 𝑑𝑤)

1/𝑝

+ 2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

0

−𝑅
𝑘

𝑑𝑠

(∫
𝑞

𝑠
𝑓 (𝑤) 𝑑𝑤)

1/𝑝

≤ 2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

0

−𝑅
𝑘

(
𝑘
𝑝

𝑝
(
𝑞


𝑝

− 𝑅
𝑘

𝑝
))

−1/𝑝

𝑑𝑠

+ 2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

−𝑅
𝑘

𝑞

(
𝑘
𝑝

𝑝
(
𝑞


𝑝

− |𝑠|
𝑝
))

−1/𝑝

𝑑𝑠

= 2(𝑝 − 1)
1/𝑝 (𝑛 + 1)

𝑘
{𝑅
𝑘
[(

𝑞

𝑝

− 𝑅
𝑘

𝑝
)]
−1/𝑝

+∫

1

−𝑅
𝑘
/𝑞

1

(1 − V𝑝)1/𝑝
𝑑V}

=
(𝑛 + 1)

𝑘
{2(𝑝 − 1)

1/𝑝

𝑅
𝑘
[(

𝑞

𝑝

− 𝑅
𝑘

𝑝
)]
−1/𝑝
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+ 2∫

(𝑝−1)
1/𝑝

−𝑅
𝑘(𝑝−1)

1/𝑝

/𝑞

1

(1 − (V𝑝/ (𝑝 − 1)))
1/𝑝

𝑑V}

→
(𝑛 + 1) 𝐶

𝑘
as 𝑞 → −∞,

(30)

where

𝐶 := lim
𝑞→−∞

{2(𝑝 − 1)
1/𝑝

𝑅
𝑘
[(

𝑞

𝑝

− 𝑅
𝑘

𝑝
)]
−1/𝑝

+2∫

(𝑝−1)
1/𝑝

−𝑅
𝑘(𝑝−1)

1/𝑝

/𝑞

1

(1 − (V𝑝/ (𝑝 − 1)))
1/𝑝

𝑑V}

= 𝜋
𝑝
.

(31)

It follows from the fact that 𝑘 is sufficiently large and (30) that

√2 (𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/2

= 0. (32)

Therefore, from (27) and (32), we have that lim
ℎ→∞

𝐺
2𝑛

(ℎ) =

0.

Proof of (B). Recall that

𝐺
2𝑛

(ℎ) = 2(
𝑝 − 1

𝑝
)

1/𝑝

{𝑛∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

+ (𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

} .

(33)

First, let us consider

2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

0

𝑑𝑢

(∫
ℎ

𝑢
𝑓 (𝑡) 𝑑𝑡)

1/𝑝
.

(34)

Since 𝑓
0
∈ (0,∞), then, for any 𝜀 ∈ (0, 𝑓

0
/2), there exists

𝛿 ∈ (0,∞) such that

𝑓
0
− 𝜀 ≤

𝑓 (𝑠)

𝑠𝑝−1
≤ 𝑓
0
+ 𝜀, 0 < 𝑠 < 𝛿. (35)

Thus, if 0 < ℎ < 𝛿, the second part of (35) implies that

2𝑛(
𝑝 − 1

𝑝
)

1/𝑝

∫

ℎ

0

1

(∫
ℎ

𝑢
𝑓 (V) 𝑑V)

1/𝑝
𝑑𝑢

≥ 2𝑛(
𝑝 − 1

𝑝
)

1/𝑝

(
𝑝

𝑓
0
+ 𝜀

)

1/𝑝

∫

ℎ

0

1

(ℎ𝑝 − 𝑢𝑝)
1/𝑝

𝑑𝑢

= 2𝑛(
𝑝 − 1

𝑓
0
+ 𝜀

)

1/𝑝

∫

ℎ

0

1

(ℎ𝑝 − 𝑢𝑝)
1/𝑝

𝑑𝑢

= 2𝑛(
𝑝 − 1

𝑓
0
+ 𝜀

)

1/𝑝
1

(𝑝 − 1)
1/𝑝

× ∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑢𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑢

=
2𝑛

(𝑓
0
+ 𝜀)
1/𝑝

∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑢𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑢

=
𝑛𝜋
𝑝

(𝑓
0
+ 𝜀)
1/𝑝

.

(36)

Similarly, from the first part of (35), we have that

2𝑛(
𝑝 − 1

𝑝
)

1/𝑝

∫

ℎ

0

1

(∫
ℎ

𝑢
𝑓 (V) 𝑑V)

1/𝑝
𝑑𝑢

≤ 2𝑛(
𝑝 − 1

𝑝
)

1/𝑝

(
𝑝

𝑓
0
− 𝜀

)

1/𝑝

∫

ℎ

0

1

(ℎ𝑝 − 𝑢𝑝)
1/𝑝

𝑑𝑢

= 2𝑛(
𝑝 − 1

𝑓
0
− 𝜀

)

1/𝑝

∫

ℎ

0

1

(ℎ𝑝 − 𝑢𝑝)
1/𝑝

𝑑𝑢

= 2𝑛(
𝑝 − 1

𝑓
0
− 𝜀

)

1/𝑝
1

(𝑝 − 1)
1/𝑝

× ∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑢𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑢

=
2𝑛

(𝑓
0
− 𝜀)
1/𝑝

∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑢𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑢

=
𝑛𝜋
𝑝

(𝑓
0
− 𝜀)
1/𝑝

.

(37)

It follows from (36), (37) and the fact 𝜀 is arbitrary that

lim
ℎ→0

2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

=
𝑛𝜋
𝑝

𝑓
0

1/𝑝
. (38)

In fact,𝑞 → 0 as ℎ → 0 (𝐹(ℎ) = 𝐹(𝑞)); we consider

2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

. (39)

From 𝑓
0

∈ (0,∞), then, for any 𝜀 ∈ (0, 𝑓
0
/2), there exists

𝛿 ∈ (0,∞) such that

(𝑓
0
− 𝜀) |𝑠|

𝑝−1
≤ −𝑓 (𝑠) ≤ (𝑓

0
+ 𝜀) |𝑠|

𝑝−1
, −𝛿 < 𝑠 < 0.

(40)



6 Journal of Applied Mathematics

Thus, if −𝛿 < 𝑞 < 0, the second part of (40) implies that

2 (𝑛 + 1) (
𝑝 − 1

𝑝
)

1/𝑝

∫

0

𝑞

1

(∫
𝑞

𝑢
𝑓 (V) 𝑑V)

1/𝑝
𝑑𝑢

≥ 2 (𝑛 + 1) (
𝑝 − 1

𝑝
)

1/𝑝

(
𝑝

𝑓
0
+ 𝜀

)

1/𝑝

× ∫

0

𝑞

1

((−𝑞)
𝑝

− (−𝑢)
𝑝
)
1/𝑝

𝑑𝑢

= 2 (𝑛 + 1) (
𝑝 − 1

𝑓
0
+ 𝜀

)

1/𝑝

∫

0

𝑞

1

((−𝑞)
𝑝

− (−𝑢)
𝑝
)
1/𝑝

𝑑𝑢

= 2 (𝑛 + 1) (
𝑝 − 1

𝑓
0
+ 𝜀

)

1/𝑝
1

(𝑝 − 1)
1/𝑝

× ∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑢𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑢

=
2 (𝑛 + 1)

(𝑓
0
+ 𝜀)
1/𝑝

∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑢𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑢

=
(𝑛 + 1) 𝜋

𝑝

(𝑓
0
+ 𝜀)
1/𝑝

.

(41)

Similarly, from the first part of (40), we have that

2 (𝑛 + 1) (
𝑝 − 1

𝑝
)

1/𝑝

∫

0

𝑞

1

(∫
𝑞

𝑢
𝑓 (V) 𝑑V)

1/𝑝
𝑑𝑢

≤ 2 (𝑛 + 1) (
𝑝 − 1

𝑝
)

1/𝑝

(
𝑝

𝑓
0
− 𝜀

)

1/𝑝

× ∫

0

𝑞

1

((−𝑞)
𝑝

− (−𝑢)
𝑝
)
1/𝑝

𝑑𝑢

= 2 (𝑛 + 1) (
𝑝 − 1

𝑓
0
− 𝜀

)

1/𝑝

∫

0

𝑞

1

((−𝑞)
𝑝

− (−𝑢)
𝑝
)
1/𝑝

𝑑𝑢

= 2 (𝑛 + 1) (
𝑝 − 1

𝑓
0
− 𝜀

)

1/𝑝
1

(𝑝 − 1)
1/𝑝

× ∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑢𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑢

=
2 (𝑛 + 1)

(𝑓
0
− 𝜀)
1/𝑝

∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑢𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑢

=
(𝑛 + 1) 𝜋

𝑝

(𝑓
0
− 𝜀)
1/𝑝

.

(42)

It follows from (41), (42) and the fact that 𝜀 is arbitrary that
we have that

lim
𝑞→0

2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

=
(𝑛 + 1) 𝜋

𝑝

𝑓
0

1/𝑝
.

(43)

Therefore, from (40) and (43), we have that

lim
ℎ→0

𝐺
2𝑛

(ℎ) =
(2𝑛 + 1) 𝜋

𝑝

𝑓
0

1/𝑝
. (44)

By analysing 𝐺1
2𝑛

(ℎ) defined in (20) instead of 𝐺
2𝑛

(ℎ) in the
proof of the above, we have the same result. Thus, we have
shown that there are two solutions with 2𝑛 interior zeros,
which are negative near 0 and positive near 0 for 𝜆 ∈ (0, (2𝑛+

1)
𝑝
𝜋
𝑝

𝑝
/𝑓
0
), respectively.

Now, in order to achieve the existence of 𝜆∗, we will first
establish that 𝐺

2𝑛
(ℎ) < 0 for ℎ large enough. In fact,

𝐺


2𝑛
(ℎ) = 2(

𝑝 − 1

𝑝
)

1/𝑝

× {𝑛∫

1

0

𝐻(ℎ) − 𝐻 (ℎV)
(𝐹 (ℎ) − 𝐹 (ℎV))(𝑝+1)/𝑝

𝑑V

− (𝑛 + 1)
𝑑𝑞

𝑑ℎ
∫

1

0

𝐻(𝑞) − 𝐻 (𝑞V)

(𝐹 (𝑞) − 𝐹 (𝑞V))(𝑝+1)/𝑝
𝑑V} .

(45)

First, we consider

𝑛∫

1

0

𝐻(ℎ) − 𝐻 (ℎV)
(𝐹 (ℎ) − 𝐹 (ℎV))(𝑝+1)/𝑝

𝑑V, (46)

where 𝐻(𝑠) = 𝐹(𝑠) − (𝑠/𝑝)𝑓(𝑠),𝐻

(𝑠) = ((𝑝 − 1)/𝑝)𝑓(𝑠) −

(𝑠/𝑝)𝑓

(𝑠). From the first part of (H2), it follows that

𝐻(ℎ) − 𝐻 (ℎV) ≤ 0, V ∈ [0, 1] (47)

if ℎ is large enough.
Next, let us consider

− (𝑛 + 1)
𝑑𝑞

𝑑ℎ
∫

1

0

𝐻(𝑞) − 𝐻 (𝑞V)

(𝐹 (𝑞) − 𝐹 (𝑞V))(𝑝+1)/𝑝
𝑑V, (48)

where −(𝑑𝑞/𝑑ℎ) > 0,𝐻(𝑠) = 𝐹(𝑠) − (𝑠/𝑝)𝑓(𝑠),𝐻

(𝑠) = ((𝑝 −

1)/𝑝)𝑓(𝑠)−(𝑠/𝑝)𝑓

(𝑠). From the second part of (H2), we have

that 𝐻(𝑞) − 𝐻(𝑞V) ≤ 0 for V ∈ [0, 1] and |𝑞| large enough. In
fact, 𝑞 → −∞ as ℎ → ∞(𝐹(ℎ) = 𝐹(𝑞)). Consequently, we
get that 𝐺

2𝑛
(ℎ) < 0 for ℎ large enough.

Finally, if 𝑘 = 2𝑛, this clearly follows by analysing𝐺
2𝑛−1

(ℎ)

defined in (21) instead of 𝐺
2𝑛

(ℎ) in the proof of the case 𝑘 =

2𝑛 + 1.

Proof of Theorem 2. First, we consider 𝑘 = 2𝑛 + 1.
It follows from the quadrature method that a solution

with 2𝑛 interior zeros exists if for 𝜆 > 0 there exists ℎ ∈ (0,∞)

such that (𝜆)
1/𝑝

= 𝐺
2𝑛

(ℎ). To prove this, we will show that
(0,∞) ⊂ Range(𝐺

2𝑛
(ℎ)). We achieve this by proving
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(A1) lim
ℎ→+∞

𝐺
2𝑛

(ℎ) = 0,
(B1) lim

ℎ→0
𝐺
2𝑛

(ℎ) = ∞.

The proof of (A1) is the same as the proof of (A) ofTheorem 1,
so we omit it here; we are only to prove (B1). Recall that

𝐺
2𝑛

(ℎ) = 2(
𝑝 − 1

𝑝
)

1/𝑝

{𝑛∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

+ (𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

} .

(49)

First let us consider

2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

0

𝑑𝑢

(∫
ℎ

𝑢
𝑓 (𝑡) 𝑑𝑡)

1/𝑝
.

(50)

From 𝑓
0
= 0, then, for any 𝜀 > 0, there exists 𝛿 ∈ (0,∞)

such that

𝑓 (𝑠) ≤ 𝜀
𝑝
𝑠
𝑝−1

, 0 < 𝑠 < 𝛿. (51)

Thus, if 0 < ℎ < 𝛿, from (50), we have that

2𝑛(
𝑝 − 1

𝑝
)

1/𝑝

∫

ℎ

0

1

(∫
ℎ

𝑢
𝑓 (V) 𝑑V)

1/𝑝
𝑑𝑢

≥ 2𝑛(
𝑝 − 1

𝑝
)

1/𝑝
𝑝
1/𝑝

𝜀
∫

ℎ

0

1

(ℎ𝑝 − 𝑢𝑝)
1/𝑝

𝑑𝑢

= 2𝑛
(𝑝 − 1)

1/𝑝

𝜀
∫

1

0

1

(1 − (𝑢/ℎ)
𝑝
)
1/𝑝

𝑑(
𝑢

ℎ
)

= 2𝑛
(𝑝 − 1)

1/𝑝

𝜀

1

(𝑝 − 1)
1/𝑝

× ∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑠𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑠

=
2𝑛

𝜀
∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑠𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑠

=
𝑛

𝜀
𝜋
𝑝
.

(52)

Next, in fact, 𝑞 → 0 as ℎ → 0 (𝐹(𝑞) = 𝐹(ℎ)); we
consider

2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

. (53)

Since 𝑓
0
= 0, then, for any 𝜀 > 0, there exists 𝛿 ∈ (0,∞)

such that

−𝑓 (𝑠) ≤ 𝜀
𝑝

|𝑠|
𝑝−1

, −𝛿 < 𝑠 < 0. (54)

Thus, if −𝛿 < 𝑞 < 0, from (54), we have that

2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(∫
𝑞

𝑢
𝑓 (𝑡) 𝑑𝑡)

1/𝑝

≥ 2 (𝑛 + 1) (
𝑝 − 1

𝑝
)

1/𝑝
𝑝
1/𝑝

𝜀

× ∫

0

𝑞

1

((−𝑞)
𝑝

− (−𝑢)
𝑝
)
1/𝑝

𝑑𝑢

= 2 (𝑛 + 1)
(𝑝 − 1)

1/𝑝

𝜀
∫

1

0

1

(1 − (𝑢/𝑞)
𝑝

)
1/𝑝

𝑑(
𝑢

𝑞
)

= 2 (𝑛 + 1)
(𝑝 − 1)

1/𝑝

𝜀

1

(𝑝 − 1)
1/𝑝

× ∫

(𝑝−1)
1/𝑝

0

1

(1 − (V𝑝/ (𝑝 − 1)))
1/𝑝

𝑑V

=
2 (𝑛 + 1)

𝜀
∫

(𝑝−1)
1/𝑝

0

1

(1 − (V𝑝/ (𝑝 − 1)))
1/𝑝

𝑑V

=
𝑛 + 1

𝜀
𝜋
𝑝
.

(55)

From the fact that 𝜀 is small and combining (52) and (55), we
get that

lim
ℎ→0

𝐺
2𝑛

(ℎ) = ∞. (56)

By analyzing 𝐺1
2𝑛

(ℎ) defined in (20) instead of 𝐺
2𝑛

(ℎ) in the
proof of the above, we have the same result. The proof of 𝜆∗
is similar to the proof of Theorem 1. We omit it here.

Finally, if 𝑘 = 2𝑛, then it clearly follows by analyzing
𝐺
2𝑛−1

(ℎ) defined in (21) instead of 𝐺
2𝑛

(ℎ) in the proof of the
case 𝑘 = 2𝑛 + 1.

Proof of Theorem 3. First, we consider 𝑘 = 2𝑛 + 1.
It follows from the quadrature method that a solution

with 2𝑛 interior zeros exists if for 𝜆 > 0 there exists ℎ ∈ (0,∞)

such that (𝜆)1/𝑝 = 𝐺
2𝑛

(ℎ). We prove this by proving

(A2) lim
ℎ→∞

𝐺
2𝑛

(ℎ) = 0,
(B2) lim

ℎ→0
𝐺
2𝑛

(ℎ) = 0.

The proof of (A2) is the same as the proof of (A) ofTheorem 1,
so we omit it here; we are only to prove (B2).

Recall that

𝐺
2𝑛

(ℎ) = 2(
𝑝 − 1

𝑝
)

1/𝑝

{𝑛∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

+ (𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

} .

(57)
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First, consider

2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

0

𝑑𝑢

(𝐹 (ℎ) − 𝐹 (𝑢))
1/𝑝

= 2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

0

𝑑𝑢

(∫
ℎ

𝑢
𝑓 (𝑡) 𝑑𝑡)

1/𝑝
.

(58)

Since𝑓
0
= ∞, then, for any large 𝜖, there exists𝑅 ∈ (0,∞)

such that

𝑓 (𝑠) ≥ 𝜖
𝑝
𝑠
𝑝−1

, 0 < 𝑠 < 𝑅. (59)

Thus, if 0 < ℎ < 𝑅, from (58) and (59), we have that

2(
𝑝 − 1

𝑝
)

1/𝑝

𝑛∫

ℎ

0

𝑑𝑢

(∫
ℎ

𝑢
𝑓 (𝑡) 𝑑𝑡)

1/𝑝

= 2𝑛(
𝑝 − 1

𝑝
)

1/𝑝

∫

ℎ

0

1

(∫
ℎ

𝑢
𝑓 (𝑡) 𝑑𝑡)

1/𝑝
𝑑𝑢

≤ 2𝑛(
𝑝 − 1

𝑝
)

1/𝑝
𝑝
1/𝑝

𝜖
∫

ℎ

0

1

(ℎ𝑝 − 𝑢𝑝)
1/𝑝

𝑑𝑢

= 2𝑛
(𝑝 − 1)

1/𝑝

𝜖
∫

1

0

1

(1 − (𝑢/ℎ)
𝑝
)
1/𝑝

𝑑(
𝑢

ℎ
)

= 2𝑛
(𝑝 − 1)

1/𝑝

𝜖

1

(𝑝 − 1)
1/𝑝

× ∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑠𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑠

=
2𝑛

𝜖
∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑠𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑠

=
𝑛

𝜖
𝜋
𝑝
.

(60)

Next, in fact, 𝑞 → 0 as ℎ → 0 (𝐹(𝑞) = 𝐹(ℎ)); we consider

2(
𝑝 − 1

𝑝
)

1/𝑝

(𝑛 + 1) ∫

0

𝑞

𝑑𝑢

(𝐹 (𝑞) − 𝐹 (𝑢))
1/𝑝

. (61)

Since𝑓
0
= ∞, then, for any large 𝜖, there exists𝑅 ∈ (0,∞)

such that

−𝑓 (𝑠) ≥ 𝜖
𝑝

|𝑠|
𝑝−1

, −𝑅 < 𝑠 < 0. (62)

Thus, if −𝑅 < 𝑞 < 0, from (62), we have that

2 (𝑛 + 1) (
𝑝 − 1

𝑝
)

1/𝑝

∫

0

𝑞

1

(∫
𝑞

𝑢
𝑓 (𝑡) 𝑑𝑡)

1/𝑝
𝑑𝑢

≤ 2 (𝑛 + 1) (
𝑝 − 1

𝑝
)

1/𝑝
𝑝
1/𝑝

𝜖
∫

0

𝑞

1

((−𝑞)
𝑝

− (−𝑢)
𝑝
)
1/𝑝

𝑑𝑢

= 2 (𝑛 + 1)
(𝑝 − 1)

1/𝑝

𝜖
∫

1

0

1

(1 − (𝑢/𝑞)
𝑝

)
1/𝑝

𝑑(
𝑢

𝑞
)

=
2 (𝑛 + 1)

𝜖
∫

(𝑝−1)
1/𝑝

0

1

(1 − (𝑠𝑝/ (𝑝 − 1)))
1/𝑝

𝑑𝑠 =
𝑛 + 1

𝜖
𝜋
𝑝
.

(63)

From the fact that 𝜖 is arbitrary and large and combining (60)
and (63), we get that

lim
ℎ→0

𝐺
2𝑛

(ℎ) = 0. (64)

By analyzing 𝐺1
2𝑛

(ℎ) defined in (20) instead of 𝐺
2𝑛

(ℎ) in the
proof of the above, we have the same result.

Finally, if 𝑘 = 2𝑛, then it clearly follows by analyzing
𝐺
2𝑛−1

(ℎ) defined in (20) instead of 𝐺
2𝑛

(ℎ) in the proof of the
case 𝑘 = 2𝑛 + 1.
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