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It is well known that martingale difference sequences are very useful in applications and theory. On the other hand, the operator
fractional Brownian motion as an extension of the well-known fractional Brownian motion also plays an important role in both
applications and theory. In this paper, we study the relation between them. We construct an approximation sequence of operator
fractional Brownian motion based on a martingale difference sequence.

1. Introduction

Fractional Brownianmotion (FBM) is a continuous Gaussian
process with stationary increments. It is one of the well-
known self-similar processes. Some studies of financial time
series and telecommunication networks have shown that
this kind of processes with long-range dependency memory
might be a better model in some cases than the traditional
standard Brownian motion. Due to its applications in the
real world and its interesting theoretical properties, fractional
Brownianmotion has become an object of intense study. One
of those studies concerns obtaining its weak limit theorems;
see, for example, Enriquez [1], Nieminen [2], Sottinen [3], Li
and Dai [4], and the references therein.

Based on the study of FBMs,many authors have proposed
a generalization of it and have obtained many new processes.
An extension of FBMs is the operator fractional Brownian
motion (OFBM). OFBMs are multivariate analogues of one-
dimensional FBMs. They arise in the context of multivariate
time series and long range dependence (see, e.g., Chung [5],
Davidson and de Jong [6], Dolado andMarmol [7], Robinson
[8], andMarinucci andRobinson [9]). Another context is that
of queuing systems, where reflected OFBMs model the size
of multiple queues in particular classes of queuing models.
They are also studied in problems related to, for example,

large deviations (see Delgado [10] and Konstantopoulos and
Lin [11]). Similar to those for FBMs, weak limit theorems
for OFBMs have been studied recently. Some new results
on approximations of OFBMs have been obtained. See Dai
[12, 13] and the references therein.

It is well known that a martingale difference sequence is
extremely useful because it imposes muchmilder restrictions
on thememory of the sequence than under independence, yet
most limit theorems that hold for an independent sequence
will also hold for a martingale difference sequence. In recent
years, some researchers have used this type of sequences
to construct approximation sequences of some known pro-
cesses. For example, Nieminen [2] studied the limit theorems
for FBMs based on martingale difference sequences. This is a
natural motivation for this paper.The direct motivation is the
recent works by Dai [12, 13], in which, based on a sequence of
IID random variables, the author presented some weak limit
theorems for some special kinds of OFBMs.

In this short paper, we establish a weak limit theorem
for a special case of OFBMs, which comes from Maejima
and Mason [14], however, based on martingale difference
sequences. The rest of this paper is organized as follows.
In Section 2, we recall OFBMs and martingale-difference
sequences and present the main result of this paper. Section 3
is devoted to prove the main result of this paper.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 791537, 8 pages
http://dx.doi.org/10.1155/2014/791537

http://dx.doi.org/10.1155/2014/791537


2 Abstract and Applied Analysis

2. Operator Fractional Brownian Motion and
Martingale Differences

In this section, we first introduce a special type of OFBMs.
Let End(R𝑑) be the set of linear operators on R𝑑 (endo-
morphisms) and let Aut(R𝑑) be the set of invertible linear
operators (automorphisms) in End(R𝑑). For convenience,
we do not distinguish an operator 𝐷 ∈ End(R𝑑) from its
associated matrix relative to the standard basis of R𝑑. As
usual, for 𝑐 > 0,

𝑐
𝐷
= exp ((log 𝑐)𝐷) =

∞

∑
𝑘=0

1

𝑘!
(log 𝑐)𝑘𝐷𝑘. (1)

Throughout this paper, we use ‖𝑥‖ to denote the usual
Euclidean norm of 𝑥 ∈ R𝑑. Without confusion, for 𝐴 ∈

End(R𝑑), we also let ‖𝐴‖ = max‖𝑥‖=1‖𝐴𝑥‖ denote the
operator norm of𝐴. It is easy to see that, for𝐴, 𝐵 ∈ End(R𝑑),

‖𝐴𝐵‖ ≤ ‖𝐴‖ ⋅ ‖𝐵‖ , (2)

and, for every 𝐴 = (𝐴 𝑖𝑗)𝑑×𝑑 ∈ End(R
𝑑),

max
1≤𝑖,𝑗≤𝑑

󵄨󵄨󵄨󵄨󵄨
𝐴 𝑖𝑗
󵄨󵄨󵄨󵄨󵄨
≤ ‖𝐴‖ ≤ 𝑑

3/2 max
1≤𝑖,𝑗≤𝑑

󵄨󵄨󵄨󵄨󵄨
𝐴 𝑖𝑗
󵄨󵄨󵄨󵄨󵄨
. (3)

Let 𝜎(𝐴) be the collection of all eigenvalues of 𝐴. We let

𝜆𝐴 = min {Re 𝜆 : 𝜆 ∈ 𝜎 (𝐴)} ,

Λ𝐴 = max {Re 𝜆 : 𝜆 ∈ 𝜎 (𝐴)} .
(4)

Let 𝑥󸀠 denote the transpose of a vector 𝑥 ∈ R𝑑. We now
extend the fractional Brownianmotion of Riemann-Liouville
type studied by Lévy [15, page 357] to the multivariate case.

Definition 1. Let𝐷 be a linear operator onR𝑑 with 1/2 < 𝜆𝐷,
Λ𝐷 < 1. For 𝑡 ∈ R+, define

𝑋 (𝑡) = ∫
𝑡

0

(𝑡 − 𝑢)
𝐷−𝐼/2

𝑑𝑊 (𝑢) , (5)

where 𝑊(𝑢) = {𝑊1(𝑢), . . . ,𝑊𝑑(𝑢)}
󸀠

is a standard 𝑑-
dimensional Brownian motion. We call the process 𝑋 =

{𝑋(𝑡)} an operator fractional Brownian motion of Riemann-
Liouville (RL-OFBM).

As is standard for themultivariate context, we assume that
RL-OFBM is proper. A random variable in R𝑑 is proper if
the support of its distribution is not contained in a proper
hyperplane of R𝑑.

Remark 2. The operator fractional Brownian motion in the
current work is a special case of the operator fractional
Brownian motions in the work of Maejima and Mason [14,
Theorem 3.1].

Remark 3. TheRL-OFBM𝑋defined by (5) is an operator self-
similar Gaussian process.

In this short paper, we want to obtain an approximation
of the RL-OFBM 𝑋. Inspired by Nieminen [2], we want to
construct an approximation sequence of RL-OFBM 𝑋 by
martingale differences.

Let {𝜉(𝑛) = (𝜉
(𝑛)

𝑖
,F𝑛

𝑖
)1≤𝑖≤𝑛}𝑛∈N be a sequence of square

integrablemartingale differences such that for every sequence
{𝑖𝑛} with lim𝑛→∞𝑖𝑛 = ∞, where 1 ≤ 𝑖𝑛 ≤ 𝑛,

lim
𝑛→∞

(𝜉
(𝑛)

𝑖
𝑛

)
2

1/𝑛
= 1, a.s., (6)

max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨󵄨
𝜉
(𝑛)

𝑖

󵄨󵄨󵄨󵄨󵄨
≤
𝐶

√𝑛
, a.s., (7)

for some 𝐶 ≥ 1.
The following lemma follows from Jacod and Shiryaev

[16].

Lemma 4. Under condition (7) and the condition

⌊𝑛𝑡⌋

∑
𝑖=1

(𝜉
(𝑛)

𝑖
)
2

󳨀→ 𝑡, 𝑎.𝑠., (8)

the processes

𝐵
𝑛
(𝑡) =

⌊𝑛𝑡⌋

∑
𝑖=1

𝜉
(𝑛)

𝑖
(9)

converge in distribution to a Brownian motion 𝐵, as 𝑛 → ∞.

Remark 5. Such a type of sequences is very useful, since it
is very easy to obtain it in the real world. See, for example,
Nieminen [2].

Below, we extend Lemma 4 to the 𝑑-dimensional case.
Define

𝜂
(𝑛)

𝑖
= (𝜉

(𝑛)

𝑖,1
, . . . , 𝜉

(𝑛)

𝑖,𝑑
)
󸀠

, (10)

where 𝜉(𝑛)
𝑖,𝑘
, 𝑘 = 1, 2 . . . , 𝑑, are independent copies of 𝜉(𝑛)

𝑖
in

Lemma 4. Define

𝜂𝑛 (𝑡) =

⌊𝑛𝑡⌋

∑
𝑖=1

𝜂
(𝑛)

𝑖
. (11)

Then, we can get that {𝜂(𝑛)}𝑛∈N = {𝜂
(𝑛)

𝑖
,F𝑛

𝑖
} is still a sequence

of square integrable martingale differences on the probability
space (Ω,F,P). Inspired by Lemma 4, we have the following
lemma.

Lemma 6. Under conditions (7) and (8), the sequence of
processes 𝜂𝑛(𝑡) converges in law to a d-dimensional Brownian
motion𝑊, as 𝑛 → ∞.

Noting that𝑊𝑖(𝑢), 𝑖 = 1, . . . , 𝑑, aremutually independent
and so are 𝜉(𝑛)

𝑘,𝑖
, we can directly get Lemma 6 from Lemma 4

andTheorem 11.4.4 in Whitt [17, Chapter 12].
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Inspired by Lemma 6 and (5), we construct the approxi-
mation sequence by

𝑋𝑛 (𝑡) =

⌊𝑛𝑡⌋

∑
𝑖=1

𝑛∫
𝑖/𝑛

(𝑖−1)/𝑛

(
⌊𝑛𝑡⌋

𝑛
− 𝑢)

𝐷−(𝐼/2)

+

𝜂
(𝑛)

𝑖
𝑑𝑢. (12)

Our main objective in this paper is to explain and prove
the following theorem.

Theorem 7. The sequence of processes {𝑋𝑛(𝑡), 𝑡 ∈ [0, 1]} given
by (12), as 𝑛 → ∞, converges weakly to the operator fractional
Brownian motion𝑋 given by (5).

In the rest of this paper, most of the estimates contain
unspecified constants. An unspecified positive and finite
constant will be denoted by 𝐾̃, which may not be the same
in each occurrence.

3. Proof of Theorem 7

In order to prove the main result of this paper, we need a
technical lemma. Before we state this technical lemma, we
first introduce the following notation:

𝐾 (𝑡, 𝑠) = (𝑡 − 𝑠)
𝐷−(𝐼/2)

+
= (𝐾𝑖,𝑗 (𝑡, 𝑠))𝑑×𝑑

, (13)

𝐾
𝑛
(𝑡, 𝑠) = (

⌊𝑛𝑡⌋

𝑛
− 𝑠)

𝐷−(𝐼/2)

+

= (𝐾
𝑛

𝑖,𝑗
(𝑡, 𝑠))

𝑑×𝑑
. (14)

The technical lemma is as follows.

Lemma 8. For any 𝑘, 𝑗 ∈ {1, 2, . . . , 𝑑},
𝑛

∑
𝑖=1

𝑛
2
∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾
𝑛

𝑘,𝑗
(𝑡𝑙, 𝑠) 𝑑𝑠 ∫

𝑖/𝑛

(𝑖−1)/𝑛

𝐾
𝑛

𝑘,𝑗
(𝑡𝑞, 𝑠) 𝑑𝑠(𝜉

(𝑛)

𝑖,𝑗
)
2

󳨀→ ∫
1

0

𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) 𝐾𝑘,𝑗 (𝑡𝑞, 𝑠) 𝑑𝑠, 𝑎.𝑠.

(15)

for 𝑡𝑙, 𝑡𝑞 ∈ [0, 1], as 𝑛 → ∞.

Before we prove it, we need the following lemma which is
due to Maejima and Mason [14].

Lemma 9. Let 𝐷 ∈ 𝐸𝑛𝑑(R𝑑). If 𝜆𝐷 > 0 and 𝑟 > 0, then, for
any 𝛿 > 0, there exist positive constants 𝐾1 and 𝐾2 such that

󵄩󵄩󵄩󵄩󵄩
𝑟
𝐷󵄩󵄩󵄩󵄩󵄩
≤ {
𝐾1𝑟

𝜆
𝐷
−𝛿, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ≤ 1,

𝐾2𝑟
Λ
𝐷
+𝛿, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ≥ 1.

(16)

Next, we give the detailed proof of Lemma 8.

Proof of Lemma 8. In order to simplify the discussion, we
split the proof into two steps.

Step 1. We claim that, for any 𝑡 ∈ [0, 1],
𝑛

∑
𝑖=1

𝑛
2
(∫

𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡, 𝑠) 𝑑𝑠)

2

(𝜉
(𝑛)

𝑖,𝑗
)
2

󳨀→ ∫
1

0

𝐾
2

𝑘,𝑗
(𝑡, 𝑠) 𝑑𝑠, a.s.,

(17)

as 𝑛 → ∞.

For convenience, define

𝐺𝑛 (𝑡, 𝑢) = 𝑛

𝑛

∑
𝑖=1

1((𝑖−1)/𝑛,𝑖/𝑛] (𝑢) ∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡, 𝑠) 𝑑𝑠
𝜉
(𝑛)

𝑖,𝑗

(√𝑛)
−1
.

(18)

Therefore, we have

∫
1

0

𝐺
2

𝑛
(𝑡, 𝑢) 𝑑𝑢 =

𝑛

∑
𝑖=1

𝑛
2
(∫

𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡, 𝑠) 𝑑𝑠)

2

(𝜉
(𝑛)

𝑖,𝑗
)
2

≤

𝑛

∑
𝑖=1

𝑛∫
𝑖/𝑛

(𝑖−1)/𝑛

(𝐾𝑘,𝑗 (𝑡, 𝑠))
2

𝑑𝑠(𝜉
(𝑛)

𝑖,𝑗
)
2

,

(19)

where we have used the Cauchy-Schwartz inequality and by
(7).

Therefore,

∫
1

0

𝐺
2

𝑛
(𝑡, 𝑢) 𝑑𝑢 ≤ 𝐾̃∫

1

0

(𝐾𝑘,𝑗 (𝑡, 𝑠))
2

𝑑𝑠. (20)

On the other hand, by (3) and Lemma 9,
󵄨󵄨󵄨󵄨󵄨
𝐾𝑘,𝑗 (𝑡, 𝑠)

󵄨󵄨󵄨󵄨󵄨
≤ ‖𝐾 (𝑡, 𝑠)‖ ≤ 𝐾̃(𝑡 − 𝑠)

(𝜆
𝐷
−𝛿)−(1/2)

+
, (21)

since 𝑡 − 𝑠 ∈ [0, 1].
By (20) and (21), we have

∫
1

0

𝐺
2

𝑛
(𝑡, 𝑢) 𝑑𝑢 ≤ 𝐾̃∫

1

0

(𝐾𝑘,𝑗 (𝑡, 𝑠))
2

𝑑𝑠

≤ 𝐾̃∫
1

0

(𝑡 − 𝑠)
2(𝜆
𝐷
−𝛿)−1

+
< ∞,

(22)

since 𝜆𝐷 − 𝛿 > 1/2. Therefore, {𝐺2
𝑛
(𝑡, 𝑢)} is uniformly inte-

grable.
On the other hand, we have, for any 𝑢 ∈ (0, 1],

𝐺
2

𝑛
(𝑡, 𝑢) 󳨀→ 𝐾

2

𝑘,𝑗
(𝑡, 𝑢) , a.s., (23)

since, for 𝑢 ∈ ((𝑖 − 1)/𝑛, 𝑖/𝑛],

(𝑛∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡, 𝑠) 𝑑𝑠)

2

󳨀→ 𝐾
2

𝑘,𝑗
(𝑡, 𝑢) , as 𝑛 󳨀→ ∞,

(24)

and condition (6).
By (22) and (23), we get that as 𝑛 → ∞

∫
1

0

𝐺
2

𝑛
(𝑡, 𝑢) 𝑑𝑢 󳨀→ ∫

1

0

𝐾
2

𝑘,𝑗
(𝑡, 𝑠) 𝑑𝑠, a.s. (25)

Therefore, (17) holds.

Step 2. We prove the original claim. In order to simplify the
discussion, we let 𝑡𝑛

𝑞
= ⌊𝑛𝑡𝑞⌋/𝑛 and 𝑡

𝑛

𝑙
= ⌊𝑛𝑡𝑙⌋/𝑛. By (17), we

can get that, for 𝑡𝑙, 𝑡𝑞 ∈ [0, 1],
𝑛

∑
𝑖=1

𝑛
2
∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) 𝑑𝑠 ∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑞, 𝑠) 𝑑𝑠(𝜉
(𝑛)

𝑖,𝑗
)
2

󳨀→ ∫
1

0

𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) 𝐾𝑘,𝑗 (𝑡𝑞, 𝑠) 𝑑𝑠, a.s.

(26)
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as 𝑛 → ∞. In fact, it follows from (17) that

𝑛

∑
𝑖=1

𝑛
2
(∫

𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) + 𝐾𝑘,𝑗 (𝑡𝑞, 𝑠) 𝑑𝑠)

2

(𝜉
(𝑛)

𝑖,𝑗
)
2

󳨀→ ∫
1

0

(𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) + 𝐾𝑘,𝑗 (𝑡𝑞, 𝑠))
2

𝑑𝑠.

(27)

On the other hand, we have

(∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) + 𝐾𝑘,𝑗 (𝑡𝑞, 𝑠) 𝑑𝑠)

2

= (∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) 𝑑𝑠)

2

+ (∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑞, 𝑠) 𝑑𝑠)

2

+ 2∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) 𝑑𝑠 ∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑞, 𝑠) 𝑑𝑠.

(28)

Hence (17), (27), and (28) imply (26).
Therefore, in order to prove (15), it suffices to prove that

𝑛

∑
𝑖=1

𝑛
2
(∫

𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) 𝑑𝑠 ∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑞, 𝑠) 𝑑𝑠

−∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡
𝑛

𝑙
, 𝑠) 𝑑𝑠 ∫

𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡
𝑛

𝑞
, 𝑠) 𝑑𝑠) (𝜉

(𝑛)

𝑖,𝑗
)
2

󳨀→ 0, a.s.
(29)

as 𝑛 → ∞.
For the left-hand side of (29), we have

∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) 𝑑𝑠 ∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑞, 𝑠) 𝑑𝑠

− ∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡
𝑛

𝑙
, 𝑠) 𝑑𝑠 ∫

𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡
𝑛

𝑞
, 𝑠) 𝑑𝑠

= ∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) 𝑑𝑠 ∫
𝑖/𝑛

(𝑖−1)/𝑛

(𝐾𝑘,𝑗 (𝑡𝑞, 𝑠)

−𝐾𝑘,𝑗 (𝑡
𝑛

𝑞
, 𝑠)) 𝑑𝑠

− ∫
𝑖/𝑛

(𝑖−1)/𝑛

(𝐾𝑘,𝑗 (𝑡
𝑛

𝑙
, 𝑠) − 𝐾𝑘,𝑗 (𝑡𝑙, 𝑠)) 𝑑𝑠

× ∫
𝑖/𝑛

(𝑖−1)/𝑛

(𝐾𝑘,𝑗 (𝑡
𝑛

𝑞
, 𝑠) − 𝐾𝑘,𝑗 (𝑡𝑞, 𝑠)) 𝑑𝑠

+ ∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑘,𝑗 (𝑡𝑞, 𝑠) 𝑑𝑠 ∫
𝑖/𝑛

(𝑖−1)/𝑛

(𝐾𝑘,𝑗 (𝑡𝑙, 𝑠)

−𝐾𝑘,𝑗 (𝑡
𝑛

𝑙
, 𝑠)) 𝑑𝑠.

(30)

By (3), we have
󵄨󵄨󵄨󵄨󵄨
𝐾𝑘,𝑗 (𝑡𝑞, 𝑠) − 𝐾𝑘,𝑗 (𝑡

𝑛

𝑞
, 𝑠)
󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩󵄩
𝐾 (𝑡𝑞, 𝑠) − 𝐾 (𝑡

𝑛

𝑞
, 𝑠)
󵄩󵄩󵄩󵄩󵄩
. (31)

On the other hand, using the samemethod as in the proof
of inequality (76) below, we have

𝑛

∑
𝑖=1

∫
𝑖/𝑛

(𝑖−1)/𝑛

󵄩󵄩󵄩󵄩󵄩
𝐾 (𝑡𝑞, 𝑠) − 𝐾 (𝑡

𝑛

𝑞
, 𝑠)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

≤ ∫
1

0

󵄩󵄩󵄩󵄩󵄩
𝐾 (𝑡𝑞, 𝑠) − 𝐾 (𝑡

𝑛

𝑞
, 𝑠)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠 ≤ 𝐾̃(𝑡

𝑛

𝑞
− 𝑡𝑞)

2𝐻

,

(32)

where𝐻 = 𝜆𝐷 − 𝛿.
By (7) and (30), (29) can be bounded by

𝐾̃𝑛∫
1

0

󵄩󵄩󵄩󵄩𝐾 (𝑡𝑙, 𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠 ∫

1

0

󵄩󵄩󵄩󵄩󵄩
𝐾 (𝑡𝑞, 𝑠) − 𝐾 (𝑡

𝑛

𝑞
, 𝑠)
󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ 𝐾̃𝑛∫
1

0

󵄩󵄩󵄩󵄩𝐾 (𝑡
𝑛

𝑙
, 𝑠) − 𝐾 (𝑡𝑙, 𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠

× ∫
1

0

󵄩󵄩󵄩󵄩󵄩
𝐾 (𝑡

𝑛

𝑞
, 𝑠) − 𝐾 (𝑡𝑞, 𝑠)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑠

+ 𝐾̃𝑛∫
1

0

󵄩󵄩󵄩󵄩󵄩
𝐾 (𝑡𝑞, 𝑠)

󵄩󵄩󵄩󵄩󵄩
𝑑𝑠 ∫

1

0

󵄩󵄩󵄩󵄩𝐾 (𝑡𝑙, 𝑠) − 𝐾 (𝑡
𝑛

𝑙
, 𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠.

(33)

It follows from (22), (32), and (33) that the left-hand side
of (29) can be bounded by

𝐾̃𝑛
1−2𝐻

, (34)

since |𝑡𝑛
𝑞
− 𝑡𝑞| ≤ 1/𝑛 and |𝑡

𝑛

𝑙
− 𝑡𝑙| ≤ 1/𝑛.

From (29) and (34), we can easily prove the lemma.

From the proof of Lemma 8 and (3), we can easily get the
following.

Corollary 10. Let𝐻(𝑡, 𝑠) = ∑𝑑
𝑘=1
𝑎𝑘𝐾

𝑛

𝑘,𝑗
(𝑡𝑙, 𝑠) for any 𝑎𝑘 ∈ R.

Then
𝑛

∑
𝑖=1

𝑛
2
∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐻(𝑡𝑙, 𝑠) 𝑑𝑠 ∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐻(𝑡𝑞, 𝑠) 𝑑𝑠(𝜉
(𝑛)

𝑖,𝑗
)
2

󳨀→ ∫
1

0

𝐻(𝑡𝑙, 𝑠)𝐻 (𝑡𝑞, 𝑠) 𝑑𝑠, 𝑎.𝑠.

(35)

for any 𝑡𝑙, 𝑡𝑞 ∈ (0, 1].

Next, we prove the main result of this paper. Before we
give the details, we first introduce a technical tool.

Lemma 11. Let 𝑡 ∈ (0, 1], 𝜎2
𝑡
> 0, and let {𝜉(𝑛)} be a sequence of

martingale differences as in Section 2 and satisfy the following
Lindberg condition: for 𝜖 > 0

⌊𝑛𝑡⌋

∑
𝑖=1

E [(𝜉
(𝑛)

𝑖
)
2

𝐼
{|𝜉
(𝑛)

𝑖
|>𝜖}
| F

𝑛

𝑖−1
]

𝑃

󳨀→ 0. (36)

Then
⌊𝑛𝑡⌋

∑
𝑖=1

(𝜉
(𝑛)

𝑖
)
2 𝑃

󳨀→ 𝜎
2

𝑡
(37)
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implies

𝐵
𝑛
(𝑡)

𝐷

󳨀→N ∼ 𝑁(0, 𝜎
2

𝑡
) , (38)

where 𝐷

󳨀→ denotes convergence in distribution.

Lemma 11 can be found in Shiryaev [18, page 511].

Proof of Theorem 7. We will prove this theorem by two steps.

Step 1. First, we show that the finite-dimensional distribu-
tions of 𝑋𝑛 converge to those of 𝑋. It suffices to prove that,
for any 𝑞 ∈ N, 𝑎1, . . . , 𝑎𝑞 ∈ R, and 𝑡1, . . . , 𝑡𝑞 ∈ [0, 1],

𝑞

∑
𝑙=1

𝑎𝑙𝑋𝑛 (𝑡𝑙)
𝐷

󳨀→

𝑞

∑
𝑙=1

𝑎𝑙𝑋(𝑡𝑙) . (39)

By the Cramér-Wold device (see Whitt [17, Chapter 4]), in
order to prove (39), we only need to show

𝑞

∑
𝑙=1

𝑎𝑙𝑏𝑋𝑛 (𝑡𝑙)
𝐷

󳨀→

𝑞

∑
𝑙=1

𝑎𝑙𝑏𝑋 (𝑡𝑙) , (40)

for any vector 𝑏 = (𝑏(1), . . . , 𝑏(𝑑)) ∈ R𝑑.
For convenience, define

𝑋𝑛 (𝑡) = (𝑋
(𝑛)

1
(𝑡) , . . . , 𝑋

(𝑛)

𝑑
(𝑡))

󸀠

, (41)

where

𝑋
(𝑛)

𝑗
(𝑡) = 𝑛

⌊𝑛𝑡⌋

∑
𝑖=1

∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾
𝑛

𝑗
(𝑡, 𝑠) 𝜂

(𝑛)

𝑖
𝑑𝑠 (42)

with

𝐾
𝑛

𝑗
(𝑡, 𝑠) = (𝐾

𝑛

𝑗,1
(𝑡, 𝑠) , . . . , 𝐾

𝑛

𝑗,𝑑
(𝑡, 𝑠)) ,

𝑋 (𝑡) = (𝑋
(1)
(𝑡) , . . . , 𝑋

(𝑑)
(𝑡))

󸀠

,

(43)

where

𝑋
(𝑗)
(𝑡) = ∫

𝑡

0

𝐾𝑗 (𝑡, 𝑠) 𝑑𝑊 (𝑠) (44)

with

𝐾𝑗 (𝑡, 𝑠) = (𝐾𝑗,1 (𝑡, 𝑠) , . . . , 𝐾𝑗,𝑑 (𝑡, 𝑠)) . (45)

By some calculations, we can get that (40) is equivalent to

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑑

∑
𝑗=1

⌊𝑛𝑡
𝑙
⌋

∑
𝑖=1

𝑛∫
𝑖/𝑛

(𝑖−1)/𝑛

𝑎𝑙𝑏
(𝑘)
𝐾
𝑛

𝑘,𝑗
(𝑡𝑙, 𝑠) 𝜉

(𝑛)

𝑖,𝑗
𝑑𝑠

𝐷

󳨀→

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑑

∑
𝑗=1

∫
𝑡

0

𝑎𝑙𝑏
(𝑘)
𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) 𝑑𝑊

𝑗
(𝑠) .

(46)

In order to simplify the discussion, we define

𝑋
𝑛

(𝑙, 𝑘, 𝑗) =

⌊𝑛𝑡
𝑙
⌋

∑
𝑖=1

𝑛∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾
𝑛

𝑘,𝑗
(𝑡𝑙, 𝑠) 𝜉

(𝑛)

𝑖,𝑗
𝑑𝑠,

𝑋 (𝑙, 𝑘, 𝑗) = ∫
𝑡
𝑙

0

𝐾𝑘,𝑗 (𝑡𝑙, 𝑠) 𝑑𝑊
𝑗
(𝑠) .

(47)

Hence, (46) can be rewritten as follows:

𝑞

∑
𝑙=1

𝑑

∑
𝑘,𝑗=1

𝑎𝑙𝑏
(𝑘)
𝑋
𝑛

(𝑙, 𝑘, 𝑗)
𝐷

󳨀→

𝑞

∑
𝑙=1

𝑑

∑
𝑘,𝑗=1

𝑎𝑙𝑏
(𝑘)
𝑋(𝑙, 𝑘, 𝑗) . (48)

By the independence of 𝜉(𝑛)
𝑖,𝑗
, 𝑗 = 1, . . . , 𝑑, it suffices to

show that for every 𝑗 ∈ {1, . . . , 𝑑}

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑋
𝑛

(𝑙, 𝑘, 𝑗)
𝐷

󳨀→

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑋(𝑙, 𝑘, 𝑗) . (49)

We will prove (49) by Lemma 11. We first prove that the
Lindeberg condition holds in our case. For convenience,
define

𝑍
𝑛

𝑘,𝑖
(𝑡) = 𝑛∫

𝑖/𝑛

(𝑖−1)/𝑛

𝐾
𝑛

𝑘,𝑗
(𝑡, 𝑠) 𝜉

(𝑛)

𝑖,𝑗
𝑑𝑠. (50)

We have

(𝑍
𝑛

𝑘,𝑖
(𝑡))

2

= 𝑛
2
(𝜉
(𝑛)

𝑖,𝑗
)
2

(∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾
𝑛

𝑘,𝑗
(𝑡, 𝑠) 𝑑𝑠)

2

≤ 𝑛(𝜉
(𝑛)

𝑖,𝑗
)
2

∫
𝑖/𝑛

(𝑖−1)/𝑛

(𝐾
𝑛

𝑘,𝑗
(𝑡, 𝑠))

2

𝑑𝑠,

(51)

where we have used the Hölder inequality. By (3), we have

󵄨󵄨󵄨󵄨󵄨
𝐾
𝑛

𝑘,𝑗
(𝑡, 𝑠)

󵄨󵄨󵄨󵄨󵄨
≤
󵄩󵄩󵄩󵄩󵄩
(𝑡 − 𝑠)

𝐷−(𝐼/2)

+

󵄩󵄩󵄩󵄩󵄩
. (52)

By Lemma 9, we have

󵄩󵄩󵄩󵄩󵄩
(𝑡 − 𝑠)

𝐷−(𝐼/2)

+

󵄩󵄩󵄩󵄩󵄩
≤ 𝐾̃(𝑡 − 𝑠)

𝜆
𝐷
−(1/2)−𝛿

+
, (53)

since 𝑡, 𝑠 ∈ [0, 1].
By (52) and (53),

∫
𝑖/𝑛

(𝑖−1)/𝑛

󵄩󵄩󵄩󵄩󵄩
𝐾𝑘,𝑗(𝑡, 𝑠)

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑠 ≤ 𝐾̃∫
𝑖/𝑛

(𝑖−1)/𝑛

(𝑡 − 𝑠)
2(𝜆
𝐷
−𝛿)−1

+
𝑑𝑠

≤ 𝐾̃∫
1/𝑛

0

(1 − 𝑠)
2(𝜆
𝐷
−𝛿)−1

𝑑𝑠,

(54)

since (1 − 𝑠)2(𝜆𝐷−𝛿)−1 with 𝜆𝐷 − 𝛿 > 1/2 is decreasing in 𝑠. It
follows from (51) and (54) that

(𝑍
𝑛

𝑘,𝑖
(𝑡))

2

≤ 𝐾̃𝑛(𝜉
(𝑛)

𝑖,𝑗
)
2

𝛿𝑛, (55)

with 𝛿𝑛 = ∫
1/𝑛

0
(1 − 𝑠)

2(𝜆
𝐷
−𝛿)−1

𝑑𝑠.
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On the other hand, from (14), we get, for any 𝑠 ≥ ⌊𝑛𝑡⌋/𝑛,

𝐾
𝑛

𝑘,𝑗
(𝑡, 𝑠) = 0. (56)

Hence, by (56),

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑋
𝑛

(𝑙, 𝑘, 𝑗) =

𝑛

∑
𝑖=1

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑍
𝑛

𝑘,𝑖
(𝑡𝑙) . (57)

Finally, we have

(

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑍
𝑛

𝑘,𝑖
(𝑡𝑙))

2

≤ 𝐾̃

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

(𝑏
(𝑘)
)
2

𝑎
2

𝑙
(𝑍

𝑛

𝑘,𝑖
(𝑡𝑙))

2

. (58)

Combining (54) and (58), we have

(

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑍
𝑛

𝑘,𝑖
(𝑡𝑙))

2

≤ 𝐾̃𝑛(𝜉
𝑛

𝑖,𝑗
)
2

𝛿𝑛. (59)

Noting that

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑍
𝑛

𝑘,𝑖
(𝑡𝑙)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜖}

=
{

{

{

(

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑍
𝑛

𝑘,𝑖
(𝑡𝑙))

2

> 𝜖
2
}

}

}

,

(60)

from (59), we have

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑍
𝑛

𝑘,𝑖
(𝑡𝑙)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜖} ⊂ {𝐾̃𝑛(𝜉
𝑛

𝑖,𝑘
)
2

𝛿𝑛 > 𝜖
2
} . (61)

Therefore, by (59) and (61),

E((

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑍
𝑛

𝑘,𝑖
(𝑡𝑙))

2

𝐼
{| ∑
𝑞

𝑙=1
∑
𝑑

𝑘=1
𝑎
𝑙
𝑏(𝑘)𝑍𝑛
𝑘,𝑖
(𝑡
𝑙
)|>𝜉}

| F
𝑛

𝑖−1
)

≤ 𝐾̃𝑛(𝜉
𝑛

𝑖,𝑗
)
2

𝛿𝑛E (𝐼{𝐾̃𝑛(𝜉𝑛
𝑖,𝑗
)
2

𝛿
𝑛
>𝜖2}

| F
𝑛

𝑖−1
)

≤ 𝐾̃𝛿𝑛E (𝐼{𝐾̃𝛿
𝑛
>𝜖2}

| F
𝑛

𝑖−1
) .

(62)

Combining (57) and (62), one can easily prove that, as 𝑛
approaches∞,

𝑛

∑
𝑖=1

E((

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑍
𝑛

𝑘,𝑖
)

2

𝐼
{| ∑
𝑞

𝑙=1
∑
𝑑

𝑘=1
𝑎
𝑙
𝑏(𝑘)𝑍𝑛
𝑘,𝑖
|>𝜉}
|F

𝑛

𝑖−1
)󳨀→ 0.

(63)

Hence, the Lindeberg condition holds.
Next, we show that condition (37) holds. We first study

the right-hand side of (49). We have

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑋(𝑙, 𝑘, 𝑗) =

𝑞

∑
𝑙=1

𝑎𝑙𝑊̃ (𝑡𝑙) , (64)

where

𝑊̃ (𝑡) = ∫
𝑡

0

[

𝑑

∑
𝑘=1

𝑏
(𝑘)
𝐾𝑘,𝑗 (𝑡, 𝑠)] 𝑑𝑊

𝑗
(𝑠) = ∫

𝑡

0

𝐾 (𝑡, 𝑠) 𝑑𝑊
𝑗
(𝑠) ,

(65)

with

𝐾 (𝑡, 𝑠) =

𝑑

∑
𝑘=1

𝑏
(𝑘)
𝐾𝑘,𝑗 (𝑡, 𝑠) . (66)

Combining (64) and (65), we have

E[

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑋(𝑙, 𝑘, 𝑗)]

2

= E[

𝑞

∑
𝑙=1

𝑎𝑙𝑊̃ (𝑡𝑙)]

2

=

𝑞

∑
𝑙,𝑗=1

𝑎𝑗𝑎𝑙 ∫
1

0

𝐾(𝑡𝑗, 𝑠)𝐾 (𝑡𝑙, 𝑠) 𝑑𝑠.

(67)

Hence, in order to show condition (37), we only need to show

𝑛

∑
𝑖=1

(

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑍
𝑛

𝑘,𝑖
)

2

𝑃

󳨀→

𝑞

∑
𝑙,𝑗=1

𝑎𝑗𝑎𝑙 ∫
1

0

𝐾(𝑡𝑗, 𝑠)𝐾 (𝑡𝑙, 𝑠) 𝑑𝑠.

(68)

Now, we focus on the left-hand side of (68). Similar to
(64), we have

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑍
𝑛

𝑘,𝑖
=

𝑞

∑
𝑙=1

𝑎𝑙𝑍
𝑛

𝑙,𝑖
, (69)

where

𝑍
𝑛

𝑙,𝑖
= 𝑛∫

𝑖/𝑛

(𝑖−1)/𝑛

𝐾
𝑛

𝑗
(𝑡𝑙, 𝑠) 𝜉

(𝑛)

𝑖,𝑗
𝑑𝑠, (70)

with𝐾𝑛
𝑗
(𝑡𝑙, 𝑠) = ∑

𝑑

𝑘=1
𝑏(𝑘)𝐾𝑛

𝑘,𝑗
(𝑡𝑙, 𝑠). Hence,

𝑛

∑
𝑖=1

(

𝑞

∑
𝑙=1

𝑑

∑
𝑘=1

𝑎𝑙𝑏
(𝑘)
𝑍
𝑛

𝑘,𝑖
)

2

=

𝑛

∑
𝑖=1

𝑞

∑
𝑙
1
,𝑙
2
=1

𝑛
2
𝑎𝑙
1

𝑎𝑙
2

∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑗 (𝑡𝑙
1

, 𝑠) 𝑑𝑠

× ∫
𝑖/𝑛

(𝑖−1)/𝑛

𝐾𝑗 (𝑡𝑙
2

, 𝑠) 𝑑𝑠(𝜉
(𝑛)

𝑖,𝑗
)
2

.

(71)

It follows from Corollary 10 that the right-hand side of (71)
converges to

𝑞

∑
𝑙
1
,𝑙
2
=1

𝑎𝑙
1

𝑎𝑙
2

∫
1

0

𝐾𝑗 (𝑡𝑙
1

, 𝑠)𝐾𝑗 (𝑡𝑙
2

, 𝑠) 𝑑𝑠, a.s. (72)



Abstract and Applied Analysis 7

as 𝑛 → ∞. On the other hand, one can easily get that

E [𝑊̃ (𝑡𝑙) 𝑊̃ (𝑡𝑘)] = ∫
1

0

𝐾(𝑡𝑙, 𝑠) 𝐾 (𝑡𝑘, 𝑠) 𝑑𝑠. (73)

By (67), (72), and (73), we get condition (37).

Step 2. We need to prove the tightness of the sequence
{𝑋𝑛(𝑡)}.

By some calculations,

E (
󵄩󵄩󵄩󵄩𝑋𝑛 (𝑡) − 𝑋𝑛 (𝑠)

󵄩󵄩󵄩󵄩
2
)

≤ 𝐾̃∫
1

0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(
⌊𝑛𝑡⌋

𝑛
− 𝑢)

𝐷−(𝐼/2)

+

− (
⌊𝑛𝑠⌋

𝑛
− 𝑢)

𝐷−(𝐼/2)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢.

(74)

In order to simplify the discussion, let

𝑡̃ =
⌊𝑛𝑡⌋

𝑛
, 𝑠 =

⌊𝑛𝑠⌋

𝑛
. (75)

Next, we show that

∫
1

0

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑡̃ − 𝑢)

𝐷−(𝐼/2)

+
− (𝑠 − 𝑢)

𝐷−(𝐼/2)

+

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢 ≤ 𝐾(𝑡̃ − 𝑠)
2𝐻
, (76)

where𝐻 = 𝜆𝐷 − 𝛿.
In fact,

∫
1

0

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑡̃ − 𝑢)

𝐷−(𝐼/2)

+
− (𝑠 − 𝑢)

𝐷−(𝐼/2)

+

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢

= ∫
𝑠

0

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑡̃ − 𝑢)

𝐷−(𝐼/2)
− (𝑠 − 𝑢)

𝐷−(𝐼/2)
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢

+ ∫
𝑡̃

𝑠

󵄩󵄩󵄩󵄩󵄩
(𝑡̃ − 𝑢)

𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢.

(77)

It follows from (2) and Lemma 9 that

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑡̃ − 𝑢)

𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐾̃(𝑡̃ − 𝑢)

𝜆
𝐷
−𝛿−(1/2)

, (78)

since 𝑢 ≤ 𝑡̃ ∈ [0, 1].
Therefore,

∫
𝑡̃

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑡̃ − 𝑢)

𝐷−(𝐼/2)

+

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢 ≤ 𝐾̃∫
𝑡̃

𝑠

(𝑡̃ − 𝑢)
2(𝜆
𝐷
−𝛿)−1

𝑑𝑢

=
𝐾̃(𝑡̃ − 𝑠)

2(𝜆
𝐷
−𝛿)

2 (𝜆𝐷 − 𝛿)
.

(79)

Next, we deal with the first term on the right-hand side of
(77). Note that

∫
𝑠

0

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑡̃ − 𝑢)

𝐷−(𝐼/2)
− (𝑠 − 𝑢)

𝐷−(𝐼/2)
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢

= ∫
𝑠

0

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑡̃ − 𝑠 + 𝑢)

𝐷−(𝐼/2)
− 𝑢

𝐷−(𝐼/2)
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢

= ∫
𝑠/(𝑡̃−𝑠)

0

󵄩󵄩󵄩󵄩󵄩󵄩
[(𝑡̃ − 𝑠) (1 + 𝑢)]

𝐷−(𝐼/2)

−[(𝑡̃ − 𝑠) 𝑢]
𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢 (𝑡̃ − 𝑠)

≤
󵄩󵄩󵄩󵄩󵄩
(𝑡̃ − 𝑠)

𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩

2

(𝑡̃ − 𝑠)

× ∫
𝑠/(𝑡̃−𝑠)

0

󵄩󵄩󵄩󵄩󵄩
(1 + 𝑢)

𝐷−(𝐼/2)
− 𝑢

𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢

≤
󵄩󵄩󵄩󵄩󵄩󵄩
(𝑡̃ − 𝑠)

𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩󵄩

2

(𝑡̃ − 𝑠)

× ∫
R
+

󵄩󵄩󵄩󵄩󵄩
(1 + 𝑢)

𝐷−(𝐼/2)
− 𝑢

𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢,

(80)

where we used the fact that (𝑡̃𝑠)𝐴 = 𝑡̃𝐴 ⋅ 𝑠𝐴.
It follows from Lemma 9 and (2) that

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑡̃ − 𝑠)

𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩󵄩

2

(𝑡̃ − 𝑠) ≤ 𝐾̃(𝑡̃ − 𝑠)
2(𝜆
𝐷
−𝛿)
. (81)

In order to prove our result, it suffices to show that

∫
R
+

󵄩󵄩󵄩󵄩󵄩
(1 + 𝑢)

𝐷−(𝐼/2)
− 𝑢

𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢 < ∞. (82)

Then, in order to prove (82), it suffices to show that

∫
𝑢≤1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢 < ∞, (83)

and, for large enough 𝑇 > 1, that

∫
𝑢≥𝑇

󵄩󵄩󵄩󵄩󵄩
(1 + 𝑢)

𝐷−(𝐼/2)
− 𝑢

𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑢 < ∞. (84)

It follows from Lemma 9 and (2) that
󵄩󵄩󵄩󵄩󵄩
𝑢
𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐾̃𝑢
2(𝜆
𝐷
−𝛿)−1 for 𝑢 ≤ 1. (85)

Hence, one can easily see that (83) holds.
Next, we show that (84) holds. We see that

(1 + 𝑢)
𝐷−(𝐼/2)

− 𝑢
𝐷−(𝐼/2)

= ∫
1+𝑢

𝑢

(𝐷 −
𝐼

2
) 𝑠

𝐷−(𝐼/2)
𝑠
−1
𝑑𝑠.

(86)

Then
󵄩󵄩󵄩󵄩󵄩
(1 + 𝑢)

𝐷−(𝐼/2)
− 𝑢

𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝐷 −

𝐼

2
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
1+𝑢

𝑢

󵄩󵄩󵄩󵄩󵄩
𝑠
𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩

𝑠
−1
𝑑𝑠.

(87)
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It follows from Lemma 4 and (2) that

∫
1+𝑢

𝑢

󵄩󵄩󵄩󵄩󵄩
𝑠
𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩

𝑠
−1
𝑑𝑠 ≤ ∫

1+𝑢

𝑢

𝐾̃𝑠
Λ
𝐷
+𝛿−(3/2)

𝑑𝑠, (88)

since 𝑢 ≥ 1.
By (87) and (88),

󵄩󵄩󵄩󵄩󵄩
(1 + 𝑢)

𝐷−(𝐼/2)
− (𝑢)

𝐷−(𝐼/2)󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐾̃𝑢
2(Λ
𝐷
+𝛿)−3

. (89)

By (89), we have that (84) holds, since Λ𝐷 + 𝛿 < 1.
Therefore, we have

E (
󵄩󵄩󵄩󵄩𝑋𝑛 (𝑡) − 𝑋𝑛 (𝑠)

󵄩󵄩󵄩󵄩
2
) ≤ 𝐾̃(𝑡̃ − 𝑠)

2𝐻
. (90)

Hence, for any 𝑠 ≤ 𝑡 ≤ 𝑢 ∈ [0, 1], we have

E [
󵄩󵄩󵄩󵄩𝑋𝑛 (𝑡) − 𝑋𝑛 (𝑠)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑋𝑛 (𝑡) − 𝑋𝑛 (𝑢)

󵄩󵄩󵄩󵄩]

≤ [E
󵄩󵄩󵄩󵄩𝑋𝑛 (𝑡) − 𝑋𝑛 (𝑠)

󵄩󵄩󵄩󵄩
2
]
1/2

[E
󵄩󵄩󵄩󵄩𝑋𝑛 (𝑡) − 𝑋𝑛 (𝑢)

󵄩󵄩󵄩󵄩
2
]
1/2

≤ 𝐾̃
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⌊𝑛𝑡⌋

𝑛
−
⌊𝑛𝑠⌋

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⌊𝑛𝑢⌋

𝑛
−
⌊𝑛𝑡⌋

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻

≤ 𝐾̃
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⌊𝑛𝑢⌋

𝑛
−
⌊𝑛𝑠⌋

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝐻

.

(91)

If 𝑢 − 𝑠 ≥ 1/𝑛, then one can easily see that

E [
󵄩󵄩󵄩󵄩𝑋𝑛 (𝑡) − 𝑋𝑛 (𝑠)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑋𝑛 (𝑡) − 𝑋𝑛 (𝑢)

󵄩󵄩󵄩󵄩] ≤ 𝐾̃(𝑢 − 𝑠)
2𝐻
. (92)

On the other hand, if 𝑢 − 𝑠 < 1/𝑛, then either 𝑠 and 𝑡 or 𝑡 and
𝑢 belong to the interval [𝑖/𝑛, (𝑖 + 1)/𝑛] for some 𝑖. Thus, the
left-hand side of (91) is zero.Therefore, (92) still holds for this
case. Hence, it follows from Ethier and Kurtz [19, Chapter 3]
that {𝑋𝑛(𝑡)} is tight, since 𝜆𝐷 − 𝛿 > 1/2.

ByTheorem 7.8 in Ethier and Kurtz [19, Chapter 3], we get
that Theorem 7 holds. This completes the proof.
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