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Some fixed point results in semi-metric spaces as well as in symmetric spaces are proved. Applications of our results to probabilistic
spaces are also presented.

1. Introduction

There have been a number of generalizations of metric space.
Two of them are the notions of symmetric spaces and semi-
metric spaces introduced and studied by Wilson [1]. For
historical remarks about these spaces see [2]. Fixed point
theory of various classes of maps in a metric space and its
generalizations has been studied by a number of authors; see,
for example, [3–9] and the references cited therein. In 1976,
Cicchese proved the first fixed point theorem for contractions
in semi-metric spaces. Further fixed point results for this class
of spaces were obtained by Jachymski et al. [10], Hicks and
Rhoades [11], Aamri and ElMoutawakil [12], Aamri et al. [13],
Zhu et al. [14], Miheţ [15], Imdad et al. [16], Aliouche [17],
and Radenović and Kadelburg [18]. For more information
on fixed point theory in symmetric spaces and semi-metric
spaces, we refer the reader to [2].

In this paper we prove some fixed point results in
semi-metric spaces and symmetric spaces. We also present
applications of our results to probabilistic spaces. Our results
generalize earlier results obtained by Aranđelović and Kečkić
[2], Browder [19], Walter [20], and Maiti et al. [21].

2. Preliminary Notes

A symmetric space is a pair (𝑋, 𝑑) consisting of a nonempty
set 𝑋 and a function 𝑑 : 𝑋 × 𝑋 → [0,∞) such that for all
𝑥, 𝑦 in𝑋 the following conditions hold:

(W1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(W2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).

Let (𝑋, 𝑑) be symmetric space. The open ball with center
𝑥 ∈ 𝑋 and radius 𝑟 > 0 is defined by

𝐵 (𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑑 (𝑥, 𝑦) < 𝑟} . (1)

Also if 𝐴 is a subset of𝑋, then

diam (𝐴) = sup {𝑑 (𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝐴} (2)

denotes the diameter of 𝐴.
Many properties and notions in symmetric spaces are

similar to those in metric spaces (but not all, because of the
absence of the triangle inequality). For example, a sequence
{𝑥
𝑛
} ⊆ 𝑋 is said to be 𝑑-Cauchy sequence if given 𝜀 > 0 there

is𝑁 ∈ N such that 𝑑(𝑥
𝑚
, 𝑥
𝑛
) < 𝜀, for all𝑚, 𝑛 ⩾ 𝑁.

In every symmetric space (𝑋, 𝑑) one may introduce the
topology 𝜏

𝑑
by defining the family of closed sets as follows: a

set 𝐴 ⊆ 𝑋 is closed if and only if for each 𝑥 ∈ 𝑋, 𝑑(𝑥, 𝐴) = 0
implies 𝑥 ∈ 𝐴, where

𝑑 (𝑥, 𝐴) = inf {𝑑 (𝑥, 𝑎) : 𝑎 ∈ 𝐴} . (3)

The following conditions can be used as partial replace-
ments for the triangle inequality’s absence in the symmetric
space (𝑋, 𝑑) :

(W3) lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥) = 0 and lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑦) = 0 imply

𝑥 = 𝑦;
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(W4) lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥) = 0 and lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0 imply

lim
𝑛→∞

𝑑(𝑦
𝑛
, 𝑥) = 0;

(W) lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0 and lim

𝑛→∞
𝑑(𝑦
𝑛
, 𝑧
𝑛
) = 0

imply lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑧
𝑛
) = 0;

(JMS) lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0 and lim

𝑛→∞
𝑑(𝑦
𝑛
, 𝑧
𝑛
) = 0

imply lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑧
𝑛
) ̸=∞;

(CC) lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥) = 0 implies lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑦) =

𝑑(𝑥, 𝑦);

(SC) lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥) = 0 implies lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑦) ≤

𝑑(𝑥, 𝑦);
(MT) there exists 𝑠 ⩾ 1 such that for any 𝑥, 𝑦, 𝑧 ∈ 𝑋

𝑑 (𝑥, 𝑧) ⩽ 𝑠 (𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧)) . (4)

The properties (W3) and (W4) were induced by Wilson
[1], (W) by Miheţ [15], (JMS) by Jachymski et al. [10], (CC)
by Cho et al. [22] and earlier by Borges [23] (as 1-continuity
property), (MT) by Czerwik [24] (see also [25]), and (SC) by
Aranđelović and Kečkić [2].

Next statement gives the characterization of symmetric
space which satisfies the property (JMS).

Proposition 1 (Jachymski et al. [10]). Let (𝑋, 𝑑) be a symmet-
ric space. Then the following conditions are equivalent.

(i) (𝑋, 𝑑) satisfies property (JMS).
(ii) There exists 𝛿, 𝜂 > 0 such that for any 𝑥, 𝑦, 𝑧 ∈ 𝑋,

𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦) < 𝛿 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑑 (𝑥, 𝑦) < 𝜂. (5)

(iii) There exists 𝑟 > 0 such that

sup {diam (𝐵 (𝑥, 𝑟)) : 𝑥 ∈ 𝑋} < ∞. (6)

The convergence of a sequence {𝑥
𝑛
} in the topology 𝜏

𝑑

need not imply 𝑑(𝑥
𝑛
, 𝑥) → 0, although the converse is true

(see Proposition 2).
The following two propositions have been well known for

a long time, but for the convenience of the reader we will state
them without proofs, which can also be found in [2].

Proposition 2. If (𝑋, 𝑑) is a symmetric space, then the family
{𝐵(𝑥, 𝑟) : 𝑟 > 0} forms a local basis at 𝑥. Also, if 𝑑(𝑥

𝑛
, 𝑥) → 0,

then 𝑥
𝑛
→ 𝑥 (or lim

𝑛→∞
𝑥
𝑛
= 𝑥) in the topology 𝜏

𝑑
.

Definition 3. A topological space (𝑋, 𝜏) is semimetrizable if
there is a symmetric function 𝑑 : 𝑋 × 𝑋 → R such that
𝜏
𝑑
= 𝜏 and that the mapping

𝑋 ⊇ 𝐴 󳨃󳨀→ 𝑐 (𝐴) = {𝑥 ∈ 𝑋 : 𝑑 (𝑥, 𝐴) = 0} (7)

is the closure operator in 𝜏
𝑑
. In terms of 𝑑 it can be expressed

by saying that the operator 𝑐 is idempotent. In this case we
say that (𝑋, 𝑑) is semi-metric space; 𝑑 is said to be semi-metric
function on𝑋 (or admissible semi-metric for (𝑋, 𝜏)).

It is worth mentioning that this basis need not consist
of open sets. Moreover, in [26], a semimetrizable space
(𝑋, 𝜏) was constructed with the property that, for any 𝑑 that
generates 𝜏, there exist 𝑥 ∈ 𝑋 and 𝑟 > 0 such that 𝐵(𝑥, 𝑟) is
not open.

Proposition 4. Let (𝑋, 𝑑) be a symmetric space.Then (𝑋, 𝑑) is
a semi-metric space if and only if the following conditions hold.

(1) (𝑋, 𝜏
𝑑
) is first countable.

(2) For any sequence {𝑥
𝑛
} ⊆ 𝑋,𝑑(𝑥

𝑛
, 𝑥) → 0 is equivalent

to 𝑥
𝑛
→ 𝑥 (𝑜𝑟 lim

𝑛→∞
𝑥
𝑛
= 𝑥) in the topology 𝜏

𝑑
.

Example 5. Let𝑋 = N. Define 𝑑 : 𝑋 × 𝑋 → [0,∞) by

𝑑 (𝑥, 𝑦) =

{{

{{

{

2
1/2

min{𝑥,𝑦}
− 1 if 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 = 1

3 if 󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 ⩾ 2

0 if 𝑥 = 𝑦.
(8)

Then (𝑋, 𝑑) is a 𝑑-Cauchy complete semi-metric.

A symmetric space (𝑋, 𝑑) is said to be 𝑑-Cauchy complete
if every 𝑑-Cauchy sequence converges to some 𝑥 ∈ 𝑋 in the
topology 𝜏

𝑑
, and it is said to be 𝑑-weakly complete if every

decreasing sequence {𝐹
𝑛
} of nonempty closed subsets, such

that there exists a sequence {𝑥
𝑛
}, 𝑥
𝑛
∈ 𝐹
𝑛
with 𝐹

𝑛
⊆ 𝐵(𝑥

𝑛
, 2−𝑛)

has a nonempty intersection.
Next statement was proved in [27] (see also [28]).

Proposition 6 (Galvin and Shore [27]). Let (𝑋, 𝑑) be a semi-
metric space. Then the following are equivalent:

(1) (𝑋, 𝜏
𝑑
) is 𝑑-weakly complete;

(2) every 𝑑-Cauchy sequence in𝑋 has a convergent subse-
quence;

(3) every decreasing sequence {𝐹
𝑛
} of nonempty closed

subsets of𝑋 such that diam(𝐹
𝑛
) ⩽ 2−𝑛 for each 𝑛 has a

nonempty intersection.

Let 𝑋 be a nonempty set and 𝑓 : 𝑋 → 𝑋. Then 𝑧 ∈ 𝑋 is
called a fixed point of 𝑓 if 𝑧 = 𝑓(𝑧). Let 𝑥 ∈ 𝑋. The sequence
{𝑥
𝑛
} defined by 𝑥

𝑛
= 𝑓𝑛(𝑥) is called the sequence of Picard

iterates of 𝑓 at point 𝑥. This sequence {𝑥
𝑛
} is also called the

orbit of𝑓 at point 𝑥.Wewill denote it by𝑂(𝑥) and use𝑂(𝑥, 𝑦)
to denote set 𝑂(𝑥) ∪ 𝑂(𝑦).

LetΦ denote the set of all functions 𝜑 : [0,∞) → [0,∞)

satisfying the following properties:

(a) 𝜑 is monotone nondecreasing;

(b) lim𝜑
𝑛

(𝑡) = 0 for any 𝑡 > 0.

The function 𝜑 ∈ Φ is known as the comparison function
(see [29]). As a consequence of the above properties, we have
the following (see [29]).

Lemma 7. If 𝜑 ∈ Φ then 𝜑(𝑡) < 𝑡 for all 𝑡 > 0 and 𝜑(0) = 0.
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Definition 8. If (𝑋, 𝑑) is a metric space and 𝑓 : 𝑋 → 𝑋, then
𝑓 is called a

(1) contraction if there exists real number 𝛼 ∈ (0, 1) such
that

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ⩽ 𝛼𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋; (9)

(2) 𝜑-contraction if there exists a function 𝜑 : [0,∞) →

[0,∞) such that for any 𝑥, 𝑦 ∈ 𝑋

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ⩽ 𝜑 (𝑑 (𝑥, 𝑦)) ; (10)

(3) generalized 𝜑-contraction if there exists a function 𝜑 :
[0,∞) → [0,∞) such that for any 𝑥, 𝑦 ∈ 𝑋

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ⩽ 𝜑 (𝑑
𝑓
(𝑥, 𝑦)) , (11)

where

𝑑
𝑓
(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓 (𝑥)) , 𝑑 (𝑦, 𝑓 (𝑦))} . (12)

Lemma9 (Aranđelović andKečkić [2]). Let𝑋 be a nonempty
set, let 𝑓 : 𝑋 → 𝑋, and let 𝑛 be a fixed positive integer such
that the iterate 𝑓𝑛 has a unique fixed point 𝑧. Then

(1) 𝑧 is a unique fixed point of 𝑓;
(2) if 𝑋 is a topological space and any sequence of Picard

iterates defined by 𝑓𝑛 converges to 𝑧, then the sequence
of Picard iterates defined by 𝑓 always converges to 𝑧.

3. Some Topological Results

Proposition 10. Let (𝑋, 𝑑) be a symmetric space satisfying
(W). Then it satisfies (W4) and (JMS).

Proof. The implication (W)⇒(W4) is straightforward (see
[15]).

Now let {𝑥
𝑛
}, {𝑦
𝑛
} and {𝑧

𝑛
} be sequences in𝑋 such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) = 0,

lim
𝑛→∞

𝑑 (𝑦
𝑛
, 𝑧
𝑛
) = 0.

(13)

From (W) it follows that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑧
𝑛
) ̸=∞. (14)

So, (𝑋, 𝑑) satisfies (JMS).

A semi-metric space in which all balls 𝐵(𝑥, 𝑟), 𝑥 ∈ 𝑋 and
𝑟 > 0, are open will be called a semi-metric space with open
balls.

Proposition 11. Let (𝑋, 𝑑) be a compact semi-metric space
with open balls and𝐾 ⊆ 𝑋 a nonempty compact set. Then𝐾 is
bounded.

Proof. (𝑋, 𝜏
𝑑
) is first countable [2, Proposition 3] and 𝑇

1
-

space [2, page 5161]. Also, (𝑋, 𝑑) satisfies the property (SC)
because all 𝐵(𝑥, 𝑟) are open sets [2, Theorem 1]. 𝐾 is count-
ably compact because it is compact [30, Theorem 11.9]. It is
sequentially compact, as a first countable countably compact
set [30, Problem 10.7].

Suppose that 𝐾 is not bounded. Let 𝑥
0
∈ 𝐾. For each

positive integer 𝑛 there exists 𝑥
𝑛
∈ 𝐾 such that 𝑑(𝑥

𝑛
, 𝑥
0
) > 𝑛.

Then there exists 𝑥
∗
∈ 𝐾 and an increasing sequence of

positive integers 𝑛
𝑘
such that, in the topology 𝜏

𝑑
,

lim
𝑘→∞

𝑥
𝑛𝑘
= 𝑥
∗
, (15)

because 𝐾 is sequentially compact. So, we get that

lim
𝑘→∞

𝑑 (𝑥
𝑛𝑘
, 𝑥
0
) ⩽ 𝑑 (𝑥

∗
, 𝑥
0
) (16)

which is a contradiction because

lim
𝑘→∞

𝑑 (𝑥
𝑛𝑘
, 𝑥
0
) = ∞. (17)

4. Bounded Semi-Metric Spaces:
Fixed Point Results

In this section, we obtain generalizations of fixed point results
of Browder [19] and Walter [20] (see also [7]).

Theorem 12. Let (𝑋, 𝑑) be a bounded semi-metric and 𝑑-
Cauchy complete space satisfying (W4). Suppose 𝑓 : 𝑋 → 𝑋

satisfies that, for 𝑥 ∈ 𝑋, there exists ](𝑥) ∈ N such that, for any
] ⩾ ](𝑥) and 𝑦 ∈ 𝑋,

𝑑 (𝑓
]
(𝑥) , 𝑓

]
(𝑦)) ⩽ 𝜑 (diam (𝑂 (𝑥, 𝑦))) (18)

with𝜑 ∈ Φ.Then there exists 𝑧 ∈ 𝑋 such that lim
𝑝→∞

𝑓𝑝(𝑥) =

𝑧 in the topology 𝜏
𝑑
(or equivalently 𝑑(𝑓𝑝(𝑥), 𝑧) → 0 as 𝑝 →

∞), ∀𝑥 ∈ 𝑋.

Proof. Let 𝜇 = max{](𝑥), ](𝑦)} and ] ⩾ 𝜇.
Each element 𝛼 ∈ 𝑂(𝑓

𝜇(𝑥), 𝑓𝜇(𝑦)) has one of forms
𝑓]+𝜌(𝑥) or 𝑓]+𝜌(𝑦), with 𝜌 ⩾ 0. Now let 𝛼, 𝛽 ∈

𝑂(𝑓𝜇(𝑥), 𝑓𝜇(𝑦)) and consider the case with 𝛼 = 𝑓]+𝜌(𝑥) and
𝛽 = 𝑓]+𝜌(𝑦); then

𝑑 (𝛼, 𝛽) = 𝑑 (𝑓
]+𝜌

(𝑥) , 𝑓
]+𝜌

(𝑦))

⩽ 𝜑 (diam (𝑂 (𝑓
𝜌

(𝑥) , 𝑓
𝜌

(𝑦))))

⩽ 𝜑 (diam (𝑂 (𝑥, 𝑦))) .

(19)

Other cases will lead to the same inequality:

diam (𝑂 (𝑓
𝜇

(𝑥) , 𝑓
𝜇

(𝑦))) ⩽ 𝜑 (diam (𝑂 (𝑥, 𝑦))) . (20)

Now, define the sequences {𝐸
𝑛
}
∞

𝑛=0
⊂ 𝑋 and {𝑝(𝑛)}

∞

𝑛=0
by

𝑝(0) = 0, 𝑝(𝑛 + 1) = 𝑝(𝑛) + max{](𝑓𝑝(𝑛)(𝑥)), ](𝑓𝑝(𝑛)(𝑦))},
and 𝐸

𝑛
= 𝑂(𝑓𝑝(𝑛)(𝑥), 𝑓𝑝(𝑛)(𝑦)), 𝑛 = 0, 1, 2, . . ..
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We want to prove that

diam (𝐸
𝑛+1
) ⩽ 𝜑 (diam (𝐸

𝑛
)) , 𝑛 = 0, 1, 2, . . . . (21)

By (20), we get that (21) is valid for 𝑛 = 0.
Now, let 𝑛 be arbitrary and set 𝛾 = 𝑓𝑝(𝑛)(𝑥), 𝜉 = 𝑓𝑝(𝑛)(𝑦),

and 𝜂 = max{](𝑓𝑝(𝑛)(𝑥)), ](𝑓𝑝(𝑛)(𝑦))}; then

diam (𝑂 (𝑓
𝜂

(𝑥) , 𝑓
𝜂

(𝑦)))

⩽ 𝜑 (diam (𝑂 (𝛾, 𝜉)))

= 𝜑 (diam (𝑂 (𝑓
𝑝(𝑛)

(𝑥) , 𝑓
𝑝(𝑛)

(𝑦))))

= 𝜑 (diam (𝐸
𝑛
)) .

(22)

But 𝑓𝜂(𝛾) = 𝑓𝑝(𝑛)+𝜂(𝑥) = 𝑓𝑝(𝑛+1)(𝑥) and 𝑓𝜂(𝜉) =

𝑓𝑝(𝑛)+𝜂(𝑦) = 𝑓𝑝(𝑛+1)(𝑦). Thus diam(𝑂(𝑓𝜂(𝛾), 𝑓𝜂(𝜉))) =

diam(𝑂(𝑓𝑝(𝑛+1)(𝑥), 𝑓𝑝(𝑛+1)(𝑦))) = diam(𝐸
𝑛+1
).

Therefore (21) holds for all 𝑛 = 0, 1, 2, . . ..
Now, by (21) and the monotonicity of 𝜑, we get that

diam(𝐸
𝑛+1
) ⩽ 𝜑(𝑛+1)(diam(𝐸

0
)) = 𝜑(𝑛+1)(diam(𝑂(𝑥, 𝑦))) →

0 as 𝑛 → ∞ that is, lim
𝑛→∞

diam(𝐸
𝑛
) =

lim
𝑛→∞

diam(𝑂(𝑓𝑝(𝑛)(𝑥),𝑓𝑝(𝑛)(𝑦))) = 0 which is equivalent
to lim

𝑝→∞
diam(𝑂(𝑓𝑝(𝑥),𝑓𝑝(𝑦))) = 0. But

lim
𝑝→∞

diam (𝑂 (𝑓
𝑝

(𝑥)))

⩽ lim
𝑝→∞

diam (𝑂 (𝑓
𝑝

(𝑥) , 𝑓
𝑝

(𝑦))) = 0,
(23)

which implies

lim
𝑝→∞

diam (𝑂 (𝑓
𝑝

(𝑥))) = 0. (24)

Similarly

lim
𝑝→∞

diam (𝑂 (𝑓
𝑝

(𝑦))) = 0. (25)

Hence, {𝑓𝑝(𝑥)} and {𝑓𝑝(𝑦)} are 𝑑-Cauchy sequences, and
by the 𝑑-completeness of 𝑋, there exists 𝑧, 𝑤 ∈ 𝑋 such that
lim
𝑝→∞

𝑓𝑝(𝑥) = 𝑧 and lim
𝑝→∞

𝑓𝑝(𝑦) = 𝑤 in the topology
𝜏
𝑑
.
Since lim

𝑝→∞
𝑑(𝑓𝑝(𝑥), 𝑧) = 0 and lim

𝑝→∞
𝑑(𝑓𝑝(𝑥),

𝑓𝑝(𝑦)) = 0, (W4) implies that lim
𝑝→∞

𝑑(𝑓𝑝(𝑦), 𝑧) =

0. But lim
𝑝→∞

𝑓p(𝑦) = 𝑤 in the topology 𝜏
𝑑
and so

lim
𝑝→∞

𝑑(𝑓𝑝(𝑦), 𝑤) = 0. Since (W4) implies (W3), we have
𝑧 = 𝑤. Since 𝑦 is arbitrary in 𝑋, lim

𝑝→∞
𝑓𝑝(𝑥) = 𝑧 in the

topology 𝜏
𝑑
, ∀𝑥 ∈ 𝑋.

Corollary 13. If, in addition to the hypothesis of Theorem 12,
one assumes that 𝑓 is 𝜏

𝑑
-continuous (i.e, 𝑥

𝑛
→ 𝑥 in the

topology 𝜏
𝑑
implies 𝑓(𝑥

𝑛
) → 𝑓(𝑥) in the topology 𝜏

𝑑
) then

𝑓 has a fixed point.

Proof. Since lim
𝑝→∞

𝑓𝑝(𝑥) = 𝑧 in the topology 𝜏
𝑑
, by the 𝜏

𝑑
-

continuity of 𝑓, lim
𝑝→∞

𝑓𝑝+1(𝑥) = 𝑓(𝑧) in the topology 𝜏
𝑑
.

Therefore, since (W4) implies (W3), 𝑓(𝑧) = 𝑧. Hence, 𝑧 ∈ 𝑋
is a fixed point.

Theorem 14. Let (𝑋, 𝑑) be a bounded semi-metric and 𝑑-
Cauchy complete space satisfying (W4), (CC) and (JMS).
Suppose that 𝑓 is a self-map on𝑋, and for 𝑥, 𝑦 ∈ 𝑋.

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ⩽ 𝜑 (diam (𝑂 (𝑥, 𝑦))) . (26)

Then 𝑓 has a unique fixed point and lim
𝑝→∞

𝑓𝑝(𝑥) = 𝑧 in the
topology 𝜏

𝑑
(or equivalently 𝑑(𝑓𝑝(𝑥), 𝑧) → 0 as 𝑝 → ∞),

∀𝑥 ∈ 𝑋.

Proof. By Theorem 12, there exists 𝑧 ∈ 𝑋 such that
lim
𝑝→∞

𝑑(𝑓𝑝(𝑥), 𝑧) = 0 for all 𝑥 ∈ 𝑋.
Next, assume that 𝑧 ̸= 𝑓(𝑧); that is, diam(𝑂(𝑧)) = 𝛽 > 0.
Thus, it is possible to choose two sequences {𝑖(𝑝)}, {𝑗(𝑝)}

such that

lim
𝑝→∞

𝑑 (𝑓
𝑖(𝑝)

(𝑧) , 𝑓
𝑗(𝑝)

(𝑧)) = 𝛽. (27)

So one can pick 𝛿 > 0 with a corresponding 𝜂 > 0, such that
𝜂 ⩽ 𝛽/2.

Since there exists 𝑝
0
∈ N such that

𝑑 (𝑓
𝑛

(𝑧) , 𝑧) ⩽
𝛿

2
, 𝑑 (𝑓

𝑚

(𝑧) , (𝑧)) ⩽
𝛿

2
, ∀𝑛,𝑚 ⩾ 𝑝

0
,

(28)

therefore 𝑑(𝑓𝑛(𝑧), 𝑧) + 𝑑(𝑓𝑚(𝑧), 𝑧) ⩽ 𝛿, by Proposition 1(ii)

𝑑 (𝑓
𝑛

(𝑧) , 𝑓
𝑚

(𝑧)) ⩽ 𝜂 ⩽
𝛽

2
, ∀𝑛,𝑚 ⩾ 𝑝

0
. (29)

So, 𝑖(𝑝) ≡ 𝑖 for infinitely many 𝑝, with 0 ⩽ 𝑖 ⩽

𝑝
0
; thus there exists a sequence {𝑟(𝑝)} ⊆ {𝑗(𝑝)} such that

lim
𝑝→∞

𝑑(𝑓𝑖(𝑧), 𝑓𝑟(𝑝)(𝑧)) = 𝛽. So, either 𝑟(𝑝) ≡ 𝑗 for
infinitely many 𝑝 (i.e., 𝑑(𝑓𝑖(𝑧), 𝑓𝑗(𝑧)) = 𝛽) or there exists a
sequence {𝑠(𝑝)} ⊆ {𝑟(𝑝)} with 𝑠(𝑝) → ∞ as 𝑝 → ∞ which
implies 𝑑(𝑓𝑖(𝑧), 𝑧) = 𝛽.

In both cases, one can conclude that there exists 𝑖, 𝑗 ⩾ 0

such that 𝑑(𝑓𝑖(𝑧), 𝑓𝑗(𝑧)) = 𝛽.
If 𝑑(𝑧, 𝑓𝑗(𝑧)) = 𝛽, since lim

𝑝→∞
𝑑(𝑓𝑝(𝑥), 𝑧) = 0 and by

(CC) of 𝑑, we get

𝛽 = 𝑑 (𝑧, 𝑓
𝑗

(𝑧))

= lim
𝑝→∞

𝑑 (𝑓
𝑝

(𝑧) , 𝑓
𝑗

(𝑧))

⩽ lim
𝑝→∞

𝜑 (diam (𝑂 (𝑓
𝑝−1

(𝑧) , 𝑓
𝑗−1

(𝑧))))

⩽ lim
𝑝→∞

𝜑 (diam (𝑂 (𝑧))) = 𝜑 (𝛽) ,

(30)

which is a contradiction with 𝜑(𝛽) < 𝛽, for 𝛽 > 0.
On the other hand, if 𝑖, 𝑗 ⩾ 1, by (26),

𝛽 = 𝑑 (𝑓
𝑖

(𝑧) , 𝑓
𝑗

(𝑧))

⩽ 𝜑 (diam (𝑂 (𝑓
𝑖−1

(𝑧) , 𝑓
𝑗−1

(𝑧))))

⩽ 𝜑 (𝛽)

(31)

which is also a contradiction. Hence 𝛽 = 0; that is, 𝑓(𝑧) =
𝑧.
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Corollary 15. Let (𝑋, 𝑑) be a bounded semi-metric and 𝑑-
Cauchy complete space satisfying (W) and (CC). Suppose that
𝑓 is a self-map on𝑋, and for 𝑥, 𝑦 ∈ 𝑋

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ⩽ 𝜑 (diam (𝑂 (𝑥, 𝑦))) . (32)

Then 𝑓 has a unique fixed point and lim
𝑝→∞

𝑓𝑝(𝑥) = 𝑧 in the
topology 𝜏

𝑑
(or equivalently 𝑑(𝑓𝑝(𝑥), 𝑧) → 0 as 𝑝 → ∞), for

all 𝑥 ∈ 𝑋.

5. Symmetric Spaces: Fixed Point Results

In this section, we extend results attributed to Maiti et al. [21,
Theorem 4] and Aranđelović and Kečkić [2, Theorem 3].

Theorem 16. Let (𝑋, 𝑑) be a 𝑑-Cauchy complete symmetric
space satisfying (W3) and (JMS). Let 𝑓 : 𝑋 → 𝑋 be a 𝜏

𝑑
-

continuous map such that

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ⩽ 𝜑 (𝑑
𝑓
(𝑥, 𝑦)) , (33)

for all 𝑥, 𝑦 ∈ 𝑋, and 𝜑 ∈ Φ. Then 𝑓 has a unique fixed point
𝑧 ∈ 𝑋 and for each 𝑥 ∈ 𝑋, the sequence of Picard iterates
defined by 𝑓 at 𝑥 converges to 𝑧 in the topology 𝜏

𝑑
.

Proof. Define 𝑑∗ : 𝑋 × 𝑋 as follows: 𝑑∗(𝑥, 𝑦) = 0 for 𝑥 = 𝑦

and 𝑑∗(𝑥, 𝑦) = 𝑑
𝑓
(𝑥, 𝑦) otherwise. Then the space (𝑋, 𝑑∗) is

a symmetric space. Also, we have 𝑑(𝑥, 𝑦) ⩽ 𝑑∗(𝑥, 𝑦) for any
𝑥, 𝑦 ∈ 𝑋. So, if {𝑥

𝑛
} ⊆ 𝑋 is an arbitrary 𝑑∗-Cauchy sequence

in (𝑋, 𝑑∗), then {𝑥
𝑛
} is a 𝑑-Cauchy sequence in (𝑋, 𝑑).

Let 𝑥, 𝑦 ∈ 𝑋. From

𝑑 (𝑓
2

(𝑥) , 𝑓 (𝑥)) ⩽ 𝜑 (𝑑 (𝑥, 𝑓 (𝑥))) ,

𝑑 (𝑓
2

(𝑦) , 𝑓 (𝑦)) ⩽ 𝜑 (𝑑 (𝑦, 𝑓 (𝑦))) ,

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ⩽ 𝜑 (𝑑
𝑓
(𝑥, 𝑦)) ,

(34)

it follows that
𝑑
∗

(𝑓 (𝑥) , 𝑓 (𝑦)) ⩽ 𝜑 (𝑑
∗

(𝑥, 𝑦)) . (35)
So 𝑓 is a 𝜑-contraction on (𝑋, 𝑑∗).

Let 𝛿, 𝜂 be defined as in (ii) of Proposition 1. Then there
exists the least positive integer 𝑗 ⩾ 1 such that 𝜑𝑗(𝜂) ⩽ 𝛿/2.

Let 𝑔 = 𝑓𝑗. We have that 𝑔 is continuous (in 𝜏
𝑑
). Then

𝑑
∗

(𝑔 (𝑥) , 𝑔 (𝑦))

= 𝑑
∗

(𝑓 (𝑓
𝑗−1

(𝑥)) , 𝑓 (𝑓
𝑗−1

(𝑦)))

≤ 𝜑 (𝑑
∗

(𝑓
𝑗−1

(𝑥) , 𝑓
𝑗−1

(𝑦)))

⩽ 𝜑
𝑗

(𝑑
∗

(𝑥, 𝑦)) .

(36)

So 𝑔 is a 𝜑𝑗-contraction on (𝑋, 𝑑∗).
Let 𝑥 ∈ 𝑋 and 𝜓 = 𝜑𝑗. Then 𝜓 ∈ Φ and

𝑑
∗

(𝑔
𝑚+𝑛

(𝑥) , 𝑔
𝑛

(𝑥)) ⩽ 𝜓
𝑛

(𝑑
∗

(𝑥, 𝑔
𝑚

(𝑥)))

for any 𝑚, 𝑛 ∈ N.
(37)

So
𝑑
∗

(𝑔
𝑛+1

(𝑥) , 𝑔
𝑛

(𝑥)) ⩽ 𝜓
𝑛

(𝑑
∗

(𝑥, 𝑔 (𝑥))) (38)

which implies that

𝑑
∗

(𝑔
𝑛+1

(𝑥) , 𝑔
𝑛

(𝑥)) 󳨀→ 0. (39)

Then there exists 𝑘 ∈ N such that

𝑑
∗

(𝑔
𝑘

(𝑥) , 𝑔
𝑘+1

(𝑥)) ⩽ min{𝛿
2
, 𝜂} . (40)

We will prove that, for all 𝑛 ∈ N,

𝑑
∗

(𝑔
𝑘

(𝑥) , 𝑔
𝑘+𝑛

(𝑥)) ⩽ 𝜂. (41)

By definition of 𝑘, we get that (41) is valid for 𝑛 = 1. Now,
assume that (41) is satisfied for some 𝑛 ∈ N. From

𝑑
∗

(𝑔
𝑘

(𝑥) , 𝑔
𝑘+1

(𝑥)) ⩽
𝛿

2
,

𝑑
∗

(𝑔
𝑘+1

(𝑥) , 𝑔
𝑘+𝑛+1

(𝑥))

⩽ 𝜓 (𝑑
∗

(𝑔
𝑘

(𝑥) , 𝑔
𝑘+𝑛

(𝑥)))

⩽ 𝜓 (𝜂) ⩽
𝛿

2
,

(42)

it follows that

𝑑
∗

(𝑔
𝑘

(𝑥) , 𝑔
𝑘+1

(𝑥)) + 𝑑
∗

(𝑔
𝑘+1

(𝑥) , 𝑔
𝑘+𝑛+1

(𝑥)) ⩽ 𝛿, (43)

which by Proposition 1 implies that

𝑑
∗

(𝑔
𝑘

(𝑥) , 𝑔
𝑘+𝑛+1

(𝑥)) ⩽ 𝜂. (44)

So, by induction we get that (41) is satisfied for any 𝑛 ⩾ 1.
Thus

𝑑
∗

(𝑔
𝑘+𝑛

(𝑥) , 𝑔
𝑘+𝑛+𝑚

(𝑥)) ⩽ 𝜓
𝑛

(𝜂) , for any 𝑚, 𝑛 ∈ N.

(45)

Hence {𝑔𝑛(𝑥)} is a 𝑑∗-Cauchy sequence in (𝑋, 𝑑∗), which
implies that {𝑔𝑛(𝑥)} is a 𝑑-Cauchy sequence in (𝑋, 𝑑). It
follows that there exists 𝑧 ∈ 𝑋 such that lim

𝑛→∞
𝑔𝑛(𝑥) = 𝑧 (in

the topology 𝜏
𝑑
) because (𝑋, 𝑑) is 𝑑-Cauchy complete. Then

lim
𝑛→∞

𝑔𝑛+1(𝑥) = 𝑔(𝑧) (in the topology 𝜏
𝑑
) because 𝑔 is 𝜏

𝑑
-

continuous. Now we get that 𝑔(𝑧) = 𝑧 because (𝑋, 𝑑) satisfies
(W3).

If 𝑦 is another fixed point of 𝑓, then for all 𝑛 we have

𝑑
∗

(𝑦, 𝑧) = 𝑑
∗

(𝑔
𝑛

(𝑦) , 𝑔
𝑛

(𝑧)) ⩽ 𝜓
𝑛

(𝑑
∗

(𝑦, 𝑧)) 󳨀→ 0,

as 𝑛 󳨀→ ∞.
(46)

So 𝑧 is a unique fixed point of 𝑔. By Lemma 9 we get that 𝑧 is
a unique fixed point of 𝑓.

From
𝑑
∗

(𝑧, 𝑔
𝑛+1

(𝑥)) ⩽ 𝜑 (max {𝑑 (𝑧, 𝑔 (𝑧)) , 𝑑 (𝑧, 𝑔𝑛 (𝑥)) ,

𝑑 (𝑔
𝑛

(𝑥) , 𝑔
𝑛+1

(𝑥))})

(47)

it follows that for each 𝑥 ∈ 𝑋 the sequence of Picard iterates
defined by 𝑔 = 𝑓𝑗 at 𝑥 converges, in the topology 𝜏

𝑑
∗ , to 𝑧,

which implies their convergence in the topology 𝜏
𝑑
. So, by

Lemma 9, we obtain that for each 𝑥 ∈ 𝑋 the sequence of
Picard iterates defined by 𝑓 at 𝑥 converges, in the topology
𝜏
𝑑
, to 𝑧.
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Remark 17. The next example of [10] illustrates
that the continuity of 𝑓 in Theorem 16 can not be
omitted.

Example 18. Let 𝑋 = {0} ∪ {1/𝑛 : 𝑛 ∈ N} and let 𝑑 be defined
as follows:

𝑑(0, 1) = 𝑑(1, 0) = 1;
𝑑(1, 1/𝑛) = 𝑑(1/𝑛, 1) = 2/3 for 𝑛 ⩾ 2;
𝑑(1, 1) = 0; otherwise 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|.

Let 𝑓 : 𝑋 → 𝑋 given by

𝑓 (𝑥) =
{

{

{

𝑥

4
, for 𝑥 ̸= 0,

1, for 𝑥 = 0.
(48)

Then (𝑋, 𝑑) is a bounded 𝑑-Cauchy complete semi-metric
space and

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦)) ⩽ 𝜑 (𝑑
𝑓
(𝑥, 𝑦)) (49)

for all 𝑥, 𝑦 ∈ 𝑋, (see [10, Example 3]). (𝑋, 𝑑) satisfies (W3)
and (JMS).

But 𝑓 does not have a fixed point in𝑋. Note that 𝑓 is not
continuous.

6. Applications

We now present applications of our results to probabilistic
spaces. We begin with some essential definitions.

Definition 19. Let𝑋 be a set andF a mapping of𝑋 × 𝑋 into
a collection L of all distribution functions 𝐹 (a distribution
function 𝐹 is a nondecreasing and left continuous mapping
of reals into [0, 1] with inf{𝐹(𝑥)} = 0 and sup{𝐹(𝑥)} = 1).
Consider the following conditions:

(I) 𝐹
𝑥,𝑦
(0) = 0 for all 𝑥, 𝑦 ∈ 𝑋, where 𝐹

𝑥,𝑦
denotes the

value ofF at (𝑥, 𝑦) ∈ 𝑋 × 𝑋.
(II) 𝐹
𝑥,𝑦

= 𝐻 if and only if 𝑥 = 𝑦, where 𝐻 denotes the
distribution function defined by 𝐻(𝑥) = 0 if 𝑥 ⩽ 0

and𝐻(𝑥) = 1 if 𝑥 > 0.
(III) 𝐹

𝑥,𝑦
= 𝐹
𝑦,𝑥

.
(IV) If 𝐹

𝑥,𝑦
(𝜀) = 1 and 𝐹

𝑦,𝑧
(𝛿) = 1, then 𝐹

𝑥,𝑧
(𝜀 + 𝛿) = 1.

If F satisfies (I) and (II), then it is called a PPM-
structure on 𝑋 and the pair (𝑋,F) is called a PPM-space. F
satisfying (III) is said to be symmetric. A symmetric PPM-
space satisfying (IV) is a probabilistic metric space (or briefly
PM-space).

The topology 𝜏F in (𝑋,F) is generated by the family

U = {𝑈
𝑥
(𝜀, 𝜆) : 𝑥 ∈ 𝑋, 𝜀 > 0, 𝜆 > 0} , (50)

where the set

𝑈
𝑥
(𝜀, 𝜆) = {𝑦 ∈ 𝑋 : 𝐹

𝑥,𝑦
(𝜀) > 1 − 𝜆} (51)

is called (𝜀, 𝜆)-neighborhood of 𝑥 ∈ 𝑋. A sequence {𝑥
𝑛
} is said

to be a Cauchy sequence if, for every given 𝜀, 𝜆 > 0, there
exists a positive integer 𝑛

0
= 𝑛
0
(𝜀, 𝜆) such that 𝐹

𝑥𝑛,𝑥𝑚
(𝜀) >

1 − 𝜆 for all 𝑚, 𝑛 ⩾ 𝑛
0
. A 𝑇
1
topology 𝜏F on 𝑋 is defined as

follows: 𝑈 ∈ 𝜏F if, for any 𝑥 ∈ 𝑈, there exists 𝜀 > 0 such that
𝑈
𝑥
(𝜀, 𝜀) ⊂ 𝑈. If𝑈

𝑥
(𝜀, 𝜀) ∈ 𝜏F, then 𝜏F is said to be topological.

The space (𝑋,F) is calledF-complete if for every Cauchy
sequence {𝑥

𝑛
} there exists 𝑥 ∈ 𝑋 such that lim

𝑛→∞
𝐹
𝑥𝑛,𝑥

(𝜀) =

1 for all 𝜀 > 0.

Remark 20. (1) The condition (W) is equivalent to

lim
𝑛→∞

𝐹
𝑥𝑛,𝑦𝑛

(𝜀) = 1, lim
𝑛→∞

𝐹
𝑦𝑛,𝑧𝑛

(𝜀) = 1,

imply lim
𝑛→∞

𝐹
𝑥𝑛,𝑧𝑛

(𝜀) = 1.
(P)

(2) The condition (W4) is equivalent to

lim
𝑛→∞

𝐹
𝑥𝑛,𝑥

(𝜀) = 1, lim
𝑛→∞

𝐹
𝑥𝑛,𝑦𝑛

(𝜀) = 1,

imply lim
𝑛→∞

𝐹
𝑦𝑛,𝑥

(𝜀) = 1.
(P4)

The following lemma was proved in [11].

Lemma21 (Hicks and Rhoades [11]). Let (𝑋,F) be a symmet-
ric PPM-space. Set

𝑑 (𝑥, 𝑦)

=

{{

{{

{

0, 𝑖𝑓 𝑦 ∉ 𝑈
𝑥
(𝜀, 𝜀) , ∀𝜀 > 0

sup {𝜀 : 𝑦 ∉ 𝑈
𝑥
(𝜀, 𝜀) ,

𝜀 > 0} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(52)

Then 𝑑 is a bounded compatible symmetric for𝑋.

Lemma 22 (Hicks and Rhoades [11]). Let (𝑋,F) be a sym-
metric PPM-space. Define 𝑑 as in (52). Then

(1) 𝑑(𝑥, 𝑦) < 𝑡 if and only if 𝐹
𝑥,𝑦
(𝑡) > 1 − 𝑡;

(2) 𝑑 is compatible symmetric for 𝜏F;
(3) (𝑋,F) is complete if and only if (𝑋, 𝑑) is 𝑑-Cauchy

complete symmetric space;
(4) if 𝜏F is topological, 𝑑 is semi-metric.

𝑓 : (𝑋,F) → (𝑋,F) is F-continuous if 𝐹
𝑥𝑛,𝑥

(𝑡) → 1

for all 𝑡 > 0 implies 𝐹
𝑓(𝑥𝑛),𝑓(𝑥)

(𝑡) → 1. This is equivalent
to the continuity of 𝑓 : (𝑋, 𝑑) → (𝑋, 𝑑), where 𝑑 is as in
Lemma 21.

Let Φ󸀠 denote the set of all functions 𝜑 ∈ Φ satisfying

lim
𝜖→0

𝜑 (𝑡 + 𝜖) = 𝜑 (𝑡) (53)

for all 𝑡 > 0.

Theorem 23. Let (𝑋,F) be a complete symmetric PPM-space
that satisfies (P4), where 𝜏F is a topological. Suppose 𝑓 : 𝑋 →
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𝑋 is F-continuous and satisfies that for 𝑥 ∈ 𝑋 there exists
](𝑥) ∈ N such that for any ] ⩾ ](𝑥) and 𝑦 ∈ 𝑋

𝐹
𝑢,V (𝑡) > 1 − 𝑡 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐹

𝑓
]
(𝑥),𝑓

]
(𝑦)
(𝜑 (𝑡)) > 1 − 𝜑 (𝑡) ,

𝑢, V ∈ 𝑂 (𝑥, 𝑦)
(54)

for every 𝑡 > 0 with 𝜑 ∈ Φ󸀠. Then 𝑓 has a fixed point.

Proof. Define 𝑑 as in (52). According to Lemmas 21 and 22,
(𝑋, 𝑑) is a bounded 𝑑-Cauchy complete semi-metric space
satisfying (W4). Now assume that (54) is satisfied. Let 𝜀 > 0

be given and let 𝑡 = 𝑑(𝑢, V) + 𝜀. Then 𝑑(𝑢, V) < 𝑡 gives
𝐹
𝑢,V(𝑡) > 1 − 𝑡 and so 𝐹

𝑓
]
(𝑥),𝑓

]
(𝑦)
(𝜑(𝑡)) > 1 − 𝜑(𝑡) and so

𝑑(𝑓](𝑥), 𝑓](𝑦)) < 𝜑(𝑡) = 𝜑(𝑑(𝑢, V) + 𝜀). Since 𝜀 was arbitrary,
we have that

𝑑 (𝑓
]
(𝑥) , 𝑓

]
(𝑦)) ⩽ 𝜑 (𝑑 (𝑢, V))

⩽ 𝜑( sup
𝑢,V∈𝑂(𝑥,𝑦)

𝑑 (𝑢, V))

= 𝜑 (diam (𝑂 (𝑥, 𝑦))) .

(55)

By Corollary 13, 𝑓 has a fixed point.

Theorem 24. Let (𝑋,F) be a complete symmetric PPM-space
that satisfies (P). Let 𝑓 : 𝑋 → 𝑋 beF-continuous such that

𝐹
𝑥,𝑦

(𝑡) > 1 − 𝑡 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐹
𝑓(𝑥),𝑓(𝑦)

(𝜑 (𝑡)) > 1 − 𝜑 (𝑡) (56)

for all 𝑥, 𝑦 ∈ 𝑋, and 𝜑 ∈ Φ󸀠. Then 𝑓 has a unique fixed
point.

Proof. Define 𝑑 as in (52). According to Lemma 21, 𝑑 is a
bounded compatible symmetric for 𝜏F and (𝑋, 𝑑) is𝑑-Cauchy
complete symmetric space satisfying (W3) and (JMS). Sup-
pose (56) is satisfied and let 𝜀 > 0 be given. Let 𝑡 =

max{𝑑(𝑥, 𝑦) + 𝜀, 𝑑(𝑥, 𝑓(𝑥)), 𝑑(𝑦, 𝑓(𝑦))}. Then 𝑑(𝑥, 𝑦) + 𝜀 ⩽
𝑡 and so 𝑑(𝑥, 𝑦) ⩽ 𝑡 − 𝜀 < 𝑡, which implies 𝐹

𝑥,𝑦
(𝑡) >

1 − 𝑡. This further implies that 𝐹
𝑓(𝑥),𝑓(𝑦)

(𝜑(𝑡)) > 1 − 𝜑(𝑡)

and so

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦))

< 𝜑 (𝑡) = 𝜑 (max {𝑑 (𝑥, 𝑦) + 𝜀, 𝑑 (𝑥, 𝑓 (𝑥)) , 𝑑 (𝑦, 𝑓 (𝑦))})

= max {𝜑 (𝑑 (𝑥, 𝑦) + 𝜀) , 𝜑 (𝑑 (𝑥, 𝑓 (𝑥))) ,

𝜑 (𝑑 (𝑦, 𝑓 (𝑦)))} .

(57)

Since 𝜀 was arbitrary, we have that

𝑑 (𝑓 (𝑥) , 𝑓 (𝑦))

⩽ max {𝜑 (𝑑 (𝑥, 𝑦)) , 𝜑 (𝑑 (𝑥, 𝑓 (𝑥))) , 𝜑 (𝑑 (𝑦, 𝑓 (𝑦)))}

= 𝜑 (max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓 (𝑥)) , 𝑑 (𝑦, 𝑓 (𝑦))}) .
(58)

Now Theorem 16 guarantees that 𝑓 has a unique fixed point
𝑧 ∈ 𝑋.

7. Some Open Problems

Problem 25 (see [2]). Let (𝑋, 𝑑) be a symmetric space which
satisfies the property (MT). Is it a semi-metric space (not
necessarily with open balls)?

Problem 26. Does Theorem 16 hold if 𝑑
𝑓
(𝑥, 𝑦) is replaced

with
𝐷
𝑓
(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓 (𝑥)) , 𝑑 (𝑦, 𝑓 (𝑦)) ,

𝑑 (𝑥, 𝑓 (𝑦)) , 𝑑 (𝑓 (𝑥) , 𝑦)}?
(59)
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[15] D. Miheţ, “A note on a paper of Hicks and Rhoades,” Nonlinear
Analysis:Theory, Methods &Applications, vol. 65, no. 7, pp. 1411–
1413, 2006.

[16] M. Imdad, J. Ali, and L. Khan, “Coincidence and fixed points
in symmetric spaces under strict contractions,” Journal of
Mathematical Analysis and Applications, vol. 320, no. 1, pp. 352–
360, 2006, Erratum in Journal of Mathematical Analysis and
Applications, vol. 329, no. 1, p. 752, 2007.

[17] A. Aliouche, “A common fixed point theorem for weakly com-
patible mappings in symmetric spaces satisfying a contractive
condition of integral type,” Journal ofMathematical Analysis and
Applications, vol. 322, no. 2, pp. 796–802, 2006.
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