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We introduce how to obtain the bilinear form and the exact periodic wave solutions of a class of (2 + 1)-dimensional nonlinear
integrable differential equations directly and quickly with the help of the generalized 𝐷𝑝-operators, binary Bell polynomials, and
a general Riemann theta function in terms of the Hirota method. As applications, we solve the periodic wave solution of BLMP
equation and it can be reduced to soliton solution via asymptotic analysis when the value of 𝑝 is 5.

1. Introduction

It is significantly important to research nonlinear evolution
equations in exploring physical phenomena in depth [1, 2].
Since the soliton theory has been proposed, the research
on seeking the exact solutions of the soliton equations has
attracted great attention and made great progress. A series
of methods have been proposed, such as Painléve test [3],
Bäcklund transformation method [4, 5], Darboux transfor-
mation [6], inverse scattering transformation method [7],
Lie group method [8, 9], and Hamiltonian method [10, 11].
Particularly, Hirota direct method [12, 13] provides a direct
approach to solve a kind of specific bilinear differential
equations among the exciting methods. As we all know,
once the bilinear forms of nonlinear differential equations
are obtained, we can construct the multisoliton solutions,
the bilinear Bäcklund transformation, and Lax pairs easily.
It is clear that the key of Hirota direct method is to find the
bilinear forms of the given differential equations by theHirota
differential 𝐷-operators. Recently, Ma put forward general-
ized bilinear differential operators named 𝐷𝑝-operators in

[14] which are used to create bilinear differential equations.
Furthermore, different symbols are also used to furnish
relations with Bell polynomials in [15], and even for trilinear
equations in [16].

In this paper, we would like to explore the relations
betweenmultivariate binary Bell polynomials [17–19] and the
𝐷𝑝-operators and to find the bilinear form of Boiti-Leon-
Manna-Pempinelli (BLMP) equation [20, 21]. Then, we can
obtain the exact periodic wave solution [22–25] of the BLMP
equation with the help of a general Riemann theta function
in terms of Hirota method.

The paper is structured as follows. In Section 2, we
will give a brief introduction about the difference between
the Hirota differential 𝐷-operators and the generalized 𝐷𝑃-
operators. In Section 3, we will explore the relations between
multivariate binary Bell polynomials and the 𝐷𝑝-operators.
In Section 4, we will use the relation in Section 2 to seek
the differential form of the BLMP equation and then take
advantage of the Riemann theta function [26, 27] and Hirota
method to obtain its exact periodic wave solution which can
be reduced to the soliton solution via asymptotic analysis.
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2. Hirota Bilinear 𝐷-Operators and the
Generalized 𝐷𝑝-Operators

It is known to us that Hirota bilinear 𝐷-operators play a
significant role in Hirota direct method.The𝐷-operators are
defined in [14] as the following:

𝐷
𝑚

𝑥
𝐷
𝑛

𝑡
𝑎 (𝑥, 𝑡) 𝑏 (𝑥, 𝑡) =

𝜕
𝑚

𝜕𝑦
𝑚

𝜕
𝑛

𝜕𝑦
𝑛

× 𝑎(𝑥 + 𝑦, 𝑡 + 𝑠)𝑏(𝑥 − 𝑦, 𝑡 − 𝑠)
󵄨󵄨󵄨󵄨𝑠=0,𝑦=0

,

(1)

where𝑚, 𝑛 = 0, 1, 2, . . .. Generally, we have

𝐷
𝑛

𝑥
𝐷
𝑚

𝑦
𝐷
𝑠

𝑡
𝑎 (𝑥, 𝑦, 𝑡) 𝑏 (𝑥

󸀠
, 𝑦
󸀠
, 𝑡
󸀠
)

= (
𝜕

𝜕𝑥
−

𝜕

𝜕𝑥
󸀠
)

𝑛

(
𝜕

𝜕𝑦
−

𝜕

𝜕𝑦
󸀠
)

𝑚

× (
𝜕

𝜕𝑡
−
𝜕

𝜕𝑡
󸀠
)

𝑠

𝑎 (𝑥, 𝑦, 𝑡) 𝑏 (𝑥
󸀠
, 𝑦
󸀠
, 𝑡
󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥󸀠=𝑥,𝑦󸀠=𝑦,𝑡󸀠=𝑡

,

(2)

where𝑚, 𝑛, 𝑠 = 0, 1, 2, . . ..
For instance, for the Boussinesq equation

𝑢𝑡𝑡 − 𝑢𝑥𝑥 − 3(𝑢
2
)
𝑥𝑥
− 𝑢𝑥𝑥𝑥𝑥 = 0, (3)

under 𝑢 = 2(ln𝐹)𝑥𝑥, we have

− 𝐹
2

𝑡
+ 𝐹𝑡𝑡𝐹 + 𝐹

2

𝑥
+
3

𝐹
2
𝐹
4

𝑥
− 𝐹𝑥𝑥𝐹

−
6

𝐹
𝐹
2

𝑥
𝐹𝑥𝑥 + 4𝐹𝑥𝐹𝑥𝑥𝑥 − 𝐹𝑥𝑥𝑥𝑥𝐹 = 0;

(4)

we can get its bilinear form with𝐷-operators

(𝐷
2

𝑡
− 𝐷
2

𝑥
− 𝐷
4

𝑥
) 𝐹 ⋅ 𝐹 = 0. (5)

However, based on the Hirota𝐷-operators, Professor Ma
put forward a kind of generalized bilinear 𝐷𝑝-operators in
[14]:

𝐷
𝑛

𝑝,𝑥
𝐷
𝑚

𝑝,𝑦
𝐷
𝑠

𝑝,𝑡
𝑓 (𝑥, 𝑦, 𝑡) 𝑔 (𝑥

󸀠
, 𝑦
󸀠
, 𝑡
󸀠
)

= (
𝜕

𝜕𝑥
+ 𝛼

𝜕

𝜕𝑥
󸀠
)

𝑛

(
𝜕

𝜕𝑦
+ 𝛼

𝜕

𝜕𝑦
󸀠
)

𝑚

× (
𝜕

𝜕𝑡
+ 𝛼

𝜕

𝜕𝑡
󸀠
)

𝑠

𝑓 (𝑥, 𝑦, 𝑡) 𝑔 (𝑥
󸀠
, 𝑦
󸀠
, 𝑡
󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥󸀠=𝑥,𝑦󸀠=𝑦,𝑡󸀠=𝑡

,

(6)

where, for an integer 𝑘, the 𝑘th power of 𝛼 is defined by

𝛼
𝑘
= (−1)

𝑟
(𝑘) , if 𝑘 ≡ 𝑟 (𝑘) mod 𝑝 (7)

with 0 ⩽ 𝑟(𝑘) < 𝑝.
For example, if 𝑝 = 2𝑘 (𝑘 ∈ 𝑁), the 𝐷-operators are

Hirota operators.
If 𝑝 = 5, we have

𝛼 = −1, 𝛼
2
= 1, 𝛼

3
= −1, 𝛼

4
= 𝛼
5
= 1,

𝛼
6
= −1, 𝛼

7
= 1, 𝛼

8
= −1, 𝛼

9
= 𝛼
10
= 1,

...

(8)

By (6) and (8), it is clear to see that

𝐷5,𝑥𝐷5,𝑡𝑓 ⋅ 𝑔 = 𝑓𝑥𝑡𝑔 − 𝑓𝑥𝑔𝑡 − 𝑓𝑡𝑔𝑥 + 𝑓𝑔𝑥𝑡,

𝐷
2

5,𝑥
𝑓 ⋅ 𝑔 = 𝑓𝑥𝑥𝑔 − 2𝑓𝑥𝑔𝑥 + 𝑓𝑔𝑥𝑥,

𝐷
4

5,𝑥
𝑓 ⋅ 𝑔 = 𝑓4𝑥 − 4𝑓3𝑥𝑔𝑥 + 6𝑓𝑥𝑥𝑔𝑥𝑥 − 4𝑓𝑥𝑔3𝑥 + 𝑓𝑔4𝑥.

(9)

Now, under 𝑢 = 2(ln𝐹)𝑥𝑥, the generalized bilinear
Boussinesq equation can be expressed as

(𝐷
2

5,𝑡
− 𝐷
2

5,𝑥
− 𝐷
4

5,𝑥
) 𝐹 ⋅ 𝐹 = 0. (10)

Then, we would like to discuss how to use the𝐷-operator
to seek the bilinear differential form of other nonlinear
integrable differential equations with the help of binary Bell
polynomial.

3. Binary Bell Polynomial

As we all know, Bell proposed three kinds of exponent-
form polynomials. Later, Lambert, Gilson, and their partners
generalized the third type of Bell polynomials in [28, 29]
which is used mainly in this paper.

The multidimensional binary Bell polynomials which we
will use are defined as follows:

𝑌𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(𝑦) = 𝑌𝑛
1
,...,𝑛
𝑙

(𝑦𝑟
1

, . . . 𝑦𝑟
𝑙

)

= 𝑒
−𝑦
𝜕
𝑛
1

𝑥
1

, . . . , 𝜕
𝑛
𝑙

𝑥
𝑙

𝑒
𝑦

(𝑛1, . . . , 𝑛𝑙 ≥ 0) ,

Y𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(𝜐, 𝜔) = 𝑌𝑛
1
,...,𝑛
𝑙

(𝑦)
󵄨󵄨󵄨󵄨󵄨(𝑦
𝑟1𝑥1,...,𝑟𝑙

𝑥
𝑙
=(1/2)(1+(−1)

𝑟1+⋅⋅⋅+𝑟𝑙 )𝜐
𝑟1𝑥1,...,𝑟1𝑥1

+(1/2)(1−(−1)
𝑟1+⋅⋅⋅+𝑟𝑙 )𝜔

𝑟1𝑥1,...,𝑟1𝑥1

)
,

(11)

in which 𝑦𝑟
1
𝑥
1
,...,𝑟
𝑙
𝑥
𝑙

= 𝜕
𝑟
1

𝑥
1

, . . . , 𝜕
𝑟
𝑙

𝑥
𝑙

𝑦(𝑥1, . . . , 𝑥𝑙). In that way, we have
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𝑦𝑥 (𝜐, 𝜔) = 𝜐𝑥,

𝑦2𝑥 (𝜐, 𝜔) = 𝜐
2

𝑥
+ 𝜔𝑥𝑥,

𝑦𝑥,𝑦 (𝜐, 𝜔) = 𝜔𝑥𝑦 + 𝜐𝑥𝜐𝑦.

(12)

For convenience, we assume that

𝐹 = 𝑒
𝜉(𝑥
1
,...,𝑥
𝑙
)
, 𝐺 = 𝑒

𝜂(𝑥
1
,...,𝑥
𝑙
)
,

𝜉 =
𝜔 + 𝜐

2
, 𝜂 =

𝜔 − 𝜐

2

(13)

and read that

(𝐹𝐺)
−1
𝐷
𝑛
1

𝑝,𝑥
1

, . . . , 𝐷
𝑛
𝑙

𝑝,𝑥
𝑙

𝐹 ⋅ 𝐺

= 𝐺
−1
(𝜂) 𝐹
−1
(𝜉)𝐷
𝑛
1

𝑝,𝑥
1

, . . . , 𝐷
𝑛
𝑙

𝑝,𝑥
𝑙

𝐹 (𝜉) ⋅ 𝐺 (𝜂)

=

𝑛
1

∑

𝑘
1
=0

⋅ ⋅ ⋅

𝑛
𝑙

∑

𝑘
𝑙
=0

𝑙

∏

𝑖=1

𝛼
𝑘
𝑖
(
𝑛
𝑖

𝑘
𝑖

) (𝑒
−𝜉
𝜕
𝑛
1
−𝑘
1

𝑥
1

, . . . , 𝜕
𝑛
𝑙
−𝑘
𝑙

𝑥
𝑙

𝑒
𝜉
)

× (𝑒
−𝜂
𝜕
𝑛
1
−𝑘
1

𝑥
1

, . . . , 𝜕
𝑛
𝑙
−𝑘
𝑙

𝑥
𝑙

𝑒
𝜂
)

=

𝑛
1

∑

𝑘
1
=0

⋅ ⋅ ⋅

𝑛
𝑙

∑

𝑘
𝑙
=0

𝑙

∏

𝑖=1

(
𝑛
𝑖

𝑘
𝑖

) 𝑌𝑛
1
−𝑘
1
,...,𝑛
𝑙
−𝑘
𝑙

(𝜉) , 𝑌𝑘
1
,...,𝑘
𝑙

(𝛼
∑
𝑟
𝑙

𝑟1
𝑟
𝑖
𝜂)

= 𝑌𝑛
1
,...,𝑛
𝑙

(𝑦𝑟
1
,...,𝑟
𝑙

= 𝜉𝑟
1
,...,𝑟
𝑙

+ 𝛼
∑
𝑟
𝑙

𝑟1
𝑟
𝑖
𝜂𝑟
1
,...,𝑟
𝑙

)

= 𝑌𝑛
1
,...,𝑛
𝑙

(𝑦𝑟
1
,...,𝑟
𝑙

=
1

2
(1 + 𝛼

∑
𝑟
𝑙

𝑟1
𝑟
𝑖
) 𝜐𝑟
1
,...,𝑟
𝑙

+
1

2
(1 + 𝛼

∑
𝑟
𝑙

𝑟1
𝑟
𝑖
)𝜔𝑟
1
,...,𝑟
𝑙

)

= Y𝑝;𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(𝜐, 𝜔) .

(14)

We find that the link between Y-polynomials and the
𝐷𝑝-operator can be given as the following through the above
deduction:

Y𝑝;𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(𝜐 =
ln𝐹
𝐺
, 𝜔 = ln𝐹𝐺)

= 𝑌𝑛
1
,...,𝑛
𝑙

(𝑦𝑟
1
,...,𝑟
𝑙

=
1

2
(1 + 𝛼

∑
𝑟
𝑙

𝑟1
𝑟
𝑖
) 𝜐𝑟1, . . . , 𝑟𝑙

+
1

2
(1 + 𝛼

∑
𝑟
𝑙

𝑟1
𝑟
𝑖
)𝜔𝑟1, . . . , 𝑟𝑙) .

(15)

Particularly, when 𝐹 = 𝐺, we defineP-polynomials by

P𝑝;𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(𝑞) = Y𝑝;𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(𝜐 = 0, 𝜔 = 2 ln𝐹 = 𝑞) .
(16)

When 𝑝 = 5, we can obtain that

𝑃5;𝑦,𝑡 = 𝑞𝑥𝑡,

𝑃5;2𝑥 = 𝑞𝑥𝑥,

𝑃5;4𝑥 = 3𝑞
2

2𝑥
+ 𝑞4𝑥,

𝑃5;3𝑥,𝑦 = 𝑞3𝑥𝑦 + 3𝑞𝑥𝑥𝑞𝑥𝑦,

𝑃5;2𝑥,𝑡 = 0.

(17)

Let us now utilize theP-polynomials given above to seek
the bilinear form of BLMP equation with the𝐷𝑝-operators.

4. Boiti-Leon-Manna-Pempinelli Equation

In this section, firstly, we will give the bilinear form of
BLMP equation with the help ofP-polynomials and the𝐷𝑝-
operators. And then, we construct the exact periodic wave
solution of BLMP equation with the aid of the Riemann theta
function, Hirota direct method, and the special property of
the𝐷𝑝-operators when acting on exponential functions.

4.1. Bilinear Form. BLMP equation can be written as

𝑢𝑦,𝑡 + 𝑢3𝑥,𝑦 − 3𝑢2𝑥𝑢𝑦 − 3𝑢𝑥𝑢𝑥,𝑦 = 0. (18)

Setting𝑢 = −𝑞𝑥, inserting it into (18), and integratingwith
respect to 𝑥 yields

𝑞𝑦,𝑡 + 𝑞3𝑥,𝑦 + 3𝑞𝑥𝑥𝑞𝑥,𝑦 − 𝜆 = 0, (19)

where 𝜆 is an integral constant.
Based on (17), (19) can be expressed as

𝑃5;𝑦,𝑡 (𝑞) + 𝑃5;3𝑥,𝑦 (𝑞) − 𝜆 = 0. (20)

From the above, we can get the bilinear form of (18):

(𝐷5,𝑦𝐷5,𝑡 + 𝐷
3

5,𝑥
𝐷5,𝑦) 𝐹 ⋅ 𝐹 − 𝜆 ⋅ 𝐹

2
= 0 (21)

with 𝑞 = 2 ln𝐹.

4.2. Periodic Wave Solutions. When acting on exponential
functions, we find that𝐷𝑝-operators have a good property

𝐻(𝐷𝑝,𝑥
1

, . . . , 𝐷𝑝,𝑥
𝑙

) 𝑒
𝜉
1
⋅ 𝑒
𝜉
2

= 𝐻 (𝑘1 + 𝛼𝑘2, 𝑙1 + 𝛼𝑙2, 𝑤1 + 𝛼𝑤2) 𝑒
𝜉
1
+𝜉
2
,

(22)

if we assume that

𝜉𝑖 = 𝑘𝑖𝑥 + 𝑙𝑖𝑦 + 𝑤𝑖𝑡 + 𝜉
(0)

𝑖
𝑖 = 1, 2, . . . . (23)

As a result of the property above, we consider Riemann’s
theta function solution of (18):

𝐹 =

∞

∑

𝑛=−∞

𝑒
2𝜋𝑖𝑛𝜂+𝜋𝑖𝑛

2
𝜏
, (24)



4 Abstract and Applied Analysis

where 𝑛 ∈ 𝑍, 𝜏 ∈ 𝐶, Im 𝜏 > 0, 𝜂 = 𝑘𝑥 + 𝑙𝑦 + 𝑤𝑡, with 𝑘, 𝑙, and
𝑤 being constants to be determined.

Then, we have

𝐻(𝐷𝑝,𝑥, 𝐷𝑝,𝑦, 𝐷𝑝,𝑡) 𝐹 ⋅ 𝐹

=

∞

∑

𝑛=−∞

∞

∑

𝑚=−∞

𝐻(𝐷𝑝,𝑥, 𝐷𝑝,𝑦, 𝐷𝑝,𝑡) 𝑒
2𝜋𝑖𝑛𝜂+𝜋𝑖𝑛

2
𝜏
𝑒
2𝜋𝑖𝑚𝜂+𝜋𝑖𝑚

2
𝜏

=

∞

∑

𝑛=−∞

∞

∑

𝑚=−∞

𝐻(2𝜋𝑖 (𝑛 + 𝛼𝑚) 𝑘, 2𝜋𝑖 (𝑛 + 𝛼𝑚) 𝑙,

2𝜋𝑖 (𝑛 + 𝛼𝑚)𝑤) 𝑒
2𝜋𝑖(𝑛+𝑚)𝜂+𝜋𝑖(𝑛

2
+𝑚
2
)𝜏

=

∞

∑

𝑞=−∞

{

∞

∑

𝑚=−∞

𝐻((2𝜋𝑖 (1 − 𝛼) 𝑛 − 𝛼
2
𝑞) 𝑘,

(2𝜋𝑖 (1 − 𝛼) 𝑛 − 𝛼
2
𝑞) 𝑙,

(2𝜋𝑖 (1 − 𝛼) 𝑛 − 𝛼
2
𝑞)𝑤)

× 𝑒
𝜋𝑖(𝑛
2
+(𝑛+𝛼𝑞)

2
)𝜏
} 𝑒
2𝜋𝑖(−𝛼𝑞)𝜂

=

∞

∑

𝑞=−∞

𝐻(𝑞) 𝑒
2𝜋𝑖(−𝛼𝑞)𝜂

,

(25)

where 𝑞 = −(1/𝛼)(𝑚 + 𝑛).
To the bilinear form of BLMP equation,𝐻(𝑞) satisfies the

period characters when 𝑝 = 5. The powers of 𝛼 obey rule (7),
noting that

𝐻(𝑞) =

∞

∑

𝑛=−∞

𝐻((2𝜋𝑖 (1 − 𝛼) 𝑛 − 𝛼
2
𝑞) 𝑘,

(2𝜋𝑖 (1 − 𝛼) 𝑛 − 𝛼
2
𝑞) 𝑙,

(2𝜋𝑖 (1 − 𝛼) 𝑛 − 𝛼
2
𝑞)𝑤) 𝑒

𝜋𝑖(𝑛
2
+(𝑛+𝛼𝑞)

2
)𝜏

=

∞

∑

𝑛=−∞

𝐻(2𝜋𝑖 (2𝑛 − 𝑞) 𝑘, 2𝜋𝑖 (2𝑛 − 𝑞) 𝑙,

2𝜋𝑖 (2𝑛 − 𝑞)𝑤) 𝑒
𝜋𝑖(𝑛
2
+(𝑞−𝑛)

2
)𝜏

=

∞

∑

ℎ=−∞

𝐻(2𝜋𝑖 (2ℎ − (𝑞 − 2)) 𝑘,

2𝜋𝑖 (2ℎ − (𝑞 − 2)) 𝑙, 2𝜋𝑖 (2ℎ − (𝑞 − 2))𝑤)

⋅ 𝑒
𝜋𝑖(ℎ
2
+(𝑞−ℎ−2)

2
)𝜏
⋅ 𝑒
2𝜋𝑖(𝑞−1)𝜏

= 𝐻 (𝑞 − 2) 𝑒
2𝜋𝑖(𝑞−1)𝜏

,

(26)

where ℎ = 𝑛 + 𝛼.

From (26) we can infer that

𝐻(𝑞) = {
𝐻 (0) 𝑒

𝜋𝑖𝑛𝑞𝜏
, 𝑞 = 2𝑛;

𝐻 (1) 𝑒
𝜋𝑖(2𝑛+2𝑛

2
)(𝑞+1)𝜏

, 𝑞 = 2𝑛 + 1.
(27)

For (21), we may let

𝐻(0) =

∞

∑

𝑛=−∞

{[2𝜋𝑖 (1 − 𝛼) 𝑛]
2
𝑙 ⋅ 𝑤 + [2𝜋𝑖 (1 − 𝛼) 𝑛𝑘]

3

⋅ 2𝜋𝑖 (1 − 𝛼) 𝑛𝑙 − 𝜆} 𝑒
2𝜋𝑖𝑛
2
𝜏

=

∞

∑

𝑛=−∞

(−16𝑛
2
𝜋
2
𝑙𝑤 + 25𝑛

4
𝜋
4
𝑘
3
𝑙 − 𝜆) 𝑒

2𝜋𝑖𝑛
3
𝜏

= 0,

𝐻 (1) =

∞

∑

𝑛=−∞

{2𝜋 (𝑖 (1 − 𝛼) 𝑛 − 𝛼
2
) 𝑙

⋅ 2𝜋 (𝑖 (1 − 𝛼) 𝑛 − 𝛼
2
)𝑤

+ [2𝜋 (𝑖 (1 − 𝛼) 𝑛 − 𝛼
2
) 𝑘]
3

⋅ 2𝜋 (𝑖 (1 − 𝛼) 𝑛 − 𝛼
2
) 𝑙 − 𝜆}

× 𝑒
2𝜋𝑖(𝑛
2
−2𝑛+1)𝜏

=

∞

∑

𝑛=−∞

[−4(2𝑛 − 1)
2
𝜋
2
𝑙𝑤 + 16(2𝑛 − 1)

4
𝜋
4
𝑘
3
𝑙 − 𝜆]

× 𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

= 0.

(28)

Also, the powers of 𝛼 obey rule (7). For the sake of
computational convenience, we denote that

𝑔1 (𝑛) = 𝑒
2𝜋𝑖𝑛
2
𝜏
,

𝑎11 =

∞

∑

𝑛=−∞

− 16𝑛
2
𝜋
2
𝑙𝑔1 (𝑛) ,

𝑎12 =

∞

∑

𝑛=−∞

(256𝑛
4
𝜋
4
𝑘
3
𝑙) 𝑔1 (𝑛) ,

𝑎13 =

∞

∑

𝑛=−∞

𝑔1 (𝑛) ;

𝑔2 (𝑛) = 𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

,

𝑎21 =

∞

∑

𝑛=−∞

− 4(2𝑛 − 1)
2
𝜋
2
𝑙𝑔2 (𝑛) ,

𝑎22 =

∞

∑

𝑛=−∞

(16(2𝑛 − 1)
4
𝜋
4
𝑘
3
𝑙) 𝑔2 (𝑛) ,

𝑎23 =

∞

∑

𝑛=−∞

𝑔2 (𝑛) .

(29)
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By (28), (29), and (30), we can get that

𝑎11𝜔 + 𝑎12 − 𝜆𝑎13 = 0,

𝑎21𝜔 + 𝑎22 − 𝜆𝑎23 = 0.

(30)

In view of (30), it is easy to see that

𝜔 =
𝑎13𝑎22 − 𝑎23𝑎12

𝑎11𝑎23 − 𝑎13𝑎21

,

𝜆 =
𝑎12𝑎21 − 𝑎11𝑎22

𝑎11𝑎23 − 𝑎13𝑎21

.

(31)

Thus, we obtain the periodic wave solution of BLMP
equation:

𝑢 = −2(ln𝐹)𝑥, (32)

where 𝐹 is given by (24) and 𝜔, 𝜆 are satisfied with (31).
Then, assuming 𝑒𝜋𝑖𝜏 = 𝛾, based on (29), we may obtain

that

𝑎11 =

∞

∑

𝑛=−∞

− 16𝑛
2
𝜋
2
𝑙 ⋅ 𝑒
2𝜋𝑖𝑛
2
𝜏

= −32𝜋
2
𝑙 (𝛾
2
+ 4𝛾
8
+ 9𝛾
18
+ ⋅ ⋅ ⋅ ) ,

𝑎12 =

∞

∑

𝑛=−∞

256𝑛
4
𝜋
4
𝑘
3
𝑙 ⋅ 𝑒
2𝜋𝑖𝑛
2
𝜏

= 2 × 256𝜋
4
𝑘
3
𝑙 (𝛾
2
+ 4𝛾
8
+ 9𝛾
18
+ ⋅ ⋅ ⋅ ) ,

𝑎13 =

∞

∑

𝑛=−∞

𝑒
2𝜋𝑖𝑛
2
𝜏
= 1 + 2𝛾

2
+ 2𝛾
8
+ 2𝛾
18
+ ⋅ ⋅ ⋅ ,

𝑎21 =

∞

∑

𝑛=−∞

− 4(2𝑛 − 1)
2
𝜋
2
𝑙 ⋅ 𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

= −8𝜋
2
𝑙 (𝛾 + 9𝛾

5
+ 25𝛾

13
+ ⋅ ⋅ ⋅ ) ,

𝑎22 =

∞

∑

𝑛=−∞

16(2𝑛 − 1)
4
𝜋
4
𝑘
3
𝑙 ⋅ 𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

= 32𝜋
4
𝑘
3
𝑙 (𝛾 + 3

4
𝛾
5
+ 5
4
𝛾
13
+ ⋅ ⋅ ⋅ ) ,

𝑎23 =

∞

∑

𝑛=−∞

𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

= 1 + 2𝛾 + 2𝛾
5
+ 2𝛾
13
+ ⋅ ⋅ ⋅

(33)

which lead to

𝑎11𝑎23 − 𝑎21𝑎13 = 8𝜋
2
𝑙𝛾 + 𝑜 (𝛾) ,

𝑎13𝑎22 − 𝑎12𝑎23 = 32𝜋
4
𝑘
3
𝑙𝛾 + 𝑜 (𝛾) ,

𝑎11𝑎22 − 𝑎12𝑎21 = 𝑜 (𝛾) .

(34)

So, we have 𝜔 → 4𝜋
2
𝑘
3 and 𝜆 → 0, as 𝛾 → 0.

It is interesting that if we set

𝑘1 = 2𝜋𝑖𝑘, 𝑙1 = 2𝜋𝑖𝑙, 𝑤1 = 2𝜋𝑖𝑤,

𝜂1 = 𝑘1𝑥 + 𝑙1𝑦 + 𝑤1𝑡 + 𝜋𝑖𝜏,

(35)
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Figure 1: Solution of (18).

which can infer that

𝐹 =

∞

∑

𝑛=−∞

𝑒
2𝜋𝑖𝜂+𝜋𝑖𝑛

2
𝜏
,

= 1 + 𝑒
𝜋𝑖𝜂
(𝑒
2𝜋𝑖𝜂

+ 𝑒
−2𝜋𝑖𝜂

) + 𝑒
4𝜋𝑖𝜂

(𝑒
4𝜋𝑖𝜂

+ 𝑒
−4𝜋𝑖𝜂

) + ⋅ ⋅ ⋅ ,

= 1 + 𝑒
𝜂
1
+ 𝛾
2
(𝑒
𝜂
1
+ 𝑒
2𝜂
1
) + 𝛾
6
(𝑒
−2𝜂
1
+ 𝑒
3𝜂
1
) + ⋅ ⋅ ⋅ ,

󳨀→ 1 + 𝑒
𝜂
1

(𝜂1 󳨀→ 0) .

(36)

From all the above, it can be proved that the periodic wave
solution (32) just goes to the soliton solution

𝑤1 = 2𝜋𝑖𝑤 󳨀→ −𝑘
3

1
. (37)

Thus, if we assume that 𝑘 = 0.01, 𝑙 = 0.01, and 𝜏 = 𝑖 to
the solution

𝐹 = 1 + 𝑒
2𝜋𝑖(𝑘𝑥+𝑙𝑦+4𝜋

2
𝑘
3
𝑡+𝜏)

, (38)

solution of (18) can be shown in Figure 1.

5. Conclusions and Remarks

In this paper, we obtain the bilinear form of bilinear dif-
ferential equations by applying the 𝐷𝑝-operators and binary
Bell polynomials, which has proved to be a quick and direct
method. Furthermore, together with Riemann theta function
and Hirota method, we successfully get the exact periodic
wave solution and figure of BLMP equation when 𝑝 = 5.

There are many other interesting questions on bilinear
differential equations, for example, how to apply the gener-
alized operators into the discrete equations; it is known that
researches on the discrete and differential equations are also
significant. Besides, we will try to explore other operators
to construct more nonlinear evolution equations simply and
directly in the near future.
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