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The paper is concerned with the complete controllability of fractional evolution equation with nonlocal condition by using a more
general concept for mild solution. By contraction fixed point theorem and Krasnoselskii’s fixed point theorem, we obtain some
sufficient conditions to ensure the complete controllability. Our obtained results are more general to known results.

1. Introduction

Fractional differential equations have recently been proved
to be valuable tools in the modeling of many phenomena
in various fields of science and engineering. It draws a
great application in nonlinear oscillations of earthquakes and
many physical phenomena such as seepage flow in porous
media and in fluid dynamic traffic model. There has been a
significant development in fractional differential equations in
recent years, see the monographs of Kilbas et al. [1], Miller
and Ross [2], Podlubny [3], Lakshmikantham et al. [4], and
the papers [5–14] and the references therein.

Some recent papers investigated the problem of the
existence of a mild solution for abstract differential equation
with fractional derivative [15–23]. However, the results in
[15, 16, 18, 19] are incorrect since the considered variation
of constant formulas is not appropriate [17]. Zhou and Jiao
[22, 23] introduced two characteristic solution operators
and gave a suitable concept on a mild solution by applying
Laplace transform and probability density functions. But the
condition that the analytic semigroup {𝑇(𝑡)}

𝑡≥0
was uniformly

bounded was too strong. Shu et al. [20] researched the
existence of mild solutions for impulsive fractional partial
differential equation. But, Fec̆kan et al. [24] had pointed out
that the definition of solution of impulsive fractional differ-
ential equation was not correct. By using Laplace transform,
Shu and Wang [25] gave a definition of mild solution for
fractional differential equation with order 1 < 𝛼 < 2

and investigated its existence. Agarwal et al. [26] studied

the existence and dimension of the set for mild solutions of
semilinear fractional differential equations inclusions.

In 1960, Kalman first introduced the concept of control-
lability which leads to some very important results regarding
the behavior of linear and nonlinear dynamical systems.
There are various works of complete controllability of sys-
tems represented by differential equations, integrodifferential
equations, differential inclusions, neutral functional differen-
tial equations, and impulsive differential inclusions in Banach
spaces (see [8, 27–29] and the references therein). Recently,
more and more researchers also pay attention to study the
controllability of fractional order evolution systems (see [21,
30, 31] and the references and therein). Unfortunately, the
concept of mild solutions used in [30, 31] was not suitable
for fractional evolution systems at all and the corresponding
definition of mild solutions is only a simple extension of
the mild solutions of integer order systems. Wang and Zhou
[21] investigated the complete controllability of fractional
evolution systems with two characteristic solution operators
introduced by them.

The nonlocal condition can be applied in physics with
better effect than the classical initial condition 𝑥(0) = 𝑥

0
.

Nonlocal condition was initiated by Byszewski [32] when he
proved the existence and uniqueness of mild and classical
solutions of nonlocal Cauchy problems. As remarked by
Byszewski and Lakshmikantham [33], the nonlocal condition
can be more useful than the standard initial condition to
describe some physical phenomena.
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Inspired by the above discussions, in this paper, we
consider a class of fractional evolution equations. By using
a more general definition of mild solution, we obtain some
sufficient conditions to ensure the complete controllability.

We consider the following fractional evolution equations:
𝐶
𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐵𝑢 (𝑡) , 𝑡 ∈ 𝐽 = [0, 𝑏] ,

𝑥 (0) + 𝑔 (𝑥) = 𝑥
0
,

(1)

where 𝐶
𝐷
𝛼

𝑡
is the Caputo fractional derivative of order 𝛼 ∈

(0, 1], the state 𝑥(⋅) takes value in a Banach space 𝑋, the
control function 𝑢(⋅) is given in 𝐿2(𝐽, 𝑈), with 𝑈 as a Banach
space, 𝐵 is a bounded linear operator from 𝑈 into 𝑋, 𝐴 is a
sectorial operator on𝑋, 𝑓 : 𝐽 × 𝑋 → 𝑋 and 𝑔 : 𝑋 → 𝑋 are
given functions satisfying some assumptions, and 𝑥

0
∈ 𝑋.

The rest of this paper is organized as follows. In Section 2,
some notations and preparations are given. A suitable con-
cept on a mild solution for our problem is introduced. In
Section 3, the complete controllability results are obtained by
using fixed point theorems. Some conclusions are given in
Section 4.

2. Preliminaries

In this section, wewill firstly introduce fractional integral and
derivative, some notations about sectorial operators, solution
operators, and analytic solution operators and then give the
definition of a mild solution of system (1).

Throughout this paper, R, C denote the sets of real and
complex numbers, respectively, andR

+
= [0,∞). By𝐶(𝐽,𝑋),

we denote the space of all continuous functions from 𝐽 to 𝑋.
L(𝑋) is the space of all bounded linear operators from 𝑋 to
𝑋. 𝐷(𝐴) denotes domain of 𝐴, while 𝜌(𝐴) means resolvent
set of 𝐴 and 𝑅(𝜆, 𝐴) = (𝜆𝐼 − 𝐴)

−1 stands for the resolvent
operator of 𝐴.

Definition 1 (see [3]). The fractional integral of order 𝑝 with
the lower limit 𝑎 for a function 𝑓 : [𝑎,∞) → R is defined as

𝑎
𝐼
𝑝

𝑡
𝑓 (𝑡) =

1

Γ (𝑝)
∫
𝑡

𝑎

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝑝

𝑑𝑠, 𝑡 > 𝑎, 𝑝 > 0, (2)

provided that the right side is point-wise defined on [𝑎,∞),
where Γ(⋅) is the gamma function.

Definition 2 (see [3]). The Riemann-Liouville derivative of
order 𝑝 > 0 for a function 𝑓 : [𝑎,∞) → R is defined as

𝐿

𝑎
𝐷
𝑝

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝑝)

𝑑
𝑛

𝑑𝑡𝑛
∫
𝑡

𝑎

𝑓 (𝑠)

(𝑡 − 𝑠)
𝑝+1−𝑛

𝑑𝑠,

𝑡 > 𝑎, 𝑛 − 1 < 𝑝 < 𝑛.

(3)

Definition 3 (see [3]). The Caputo derivative of order 𝑝 > 0
for a function 𝑓 : [𝑎,∞) → R is defined as

𝐶

𝑎
𝐷
𝑝

𝑡
𝑓 (𝑡) =

𝐿

𝑎
𝐷
𝑝

𝑡
[𝑓 (𝑡) −

𝑛−1

∑
𝑘=0

𝑡
𝑘

𝑘!
𝑓
(𝑘)
(0)] ,

𝑡 > 𝑎, 𝑛 − 1 < 𝑝 < 𝑛.

(4)

Let 𝐶𝐷𝑝

𝑡
𝑓(𝑡) =

𝐶

0
𝐷
𝑝

𝑡
𝑓(𝑡).

Remark 4. (i) If 𝑓 ∈ 𝐶𝑛[𝑎,∞), then

𝐶

𝑎
𝐷
𝑝

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝑝)
∫
𝑡

𝑎

𝑓
(𝑛)
(𝑠)

(𝑡 − 𝑠)
𝑝+1−𝑛

𝑑𝑠,

𝑡 > 𝑎, 𝑛 − 1 < 𝑝 < 𝑛.

(5)

(ii)The Caputo derivative of a constant is equal to zero.
(iii)If 𝑓 is an abstract function with values in𝑋, then the

integrals which appear in Definitions 1 and 2 are taken in
Bochner’s sense.

Definition 5. An operator 𝐴 is said to be sectorial if there are
constants 𝜔 ∈ R, 𝜃 ∈ (0, 𝜋/2), and 𝑀 > 0 such that the
resolvent of 𝐴 exists outside the sector

Σ
𝜃
(𝜔) = {𝜆 ∈ C : 𝜆 ̸= 𝜔,

󵄨󵄨󵄨󵄨arg (𝜆 − 𝜔)
󵄨󵄨󵄨󵄨 < 𝜃} (6)

with

‖𝑅 (𝜆, 𝐴)‖L(𝑋)
≤

𝑀

|𝜆 − 𝜔|
, 𝜆 ∉ Σ

𝜃
(𝜔) . (7)

Consider the following Cauchy problem for the Caputo
derivative evolution equation of order 𝛼(0 < 𝛼 ≤ 1):

𝐶

𝐷
𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) , 𝑡 ∈ 𝐽 = [0, 𝑏] ,

𝑢 (0) = 𝑢
0
.

(8)

Definition 6 (see [7]). A family {𝑆
𝛼
(𝑡)}

𝑡≥0
⊆ L(𝑋) is called a

solution operator for system (8), if the following conditions
are satisfied:

(a) {𝑆
𝛼
(𝑡)}

𝑡≥0
is strongly continuous, for 𝑡 ≥ 0 and 𝑆

𝛼
(0) =

𝐼.
(b) 𝑆

𝛼
(𝑡)𝐷(𝐴) ⊆ 𝐷(𝐴) and 𝐴𝑆

𝛼
(𝑡)𝑥 = 𝑆

𝛼
(𝑡)𝐴𝑥, for all

𝑥 ∈ 𝐷(𝐴) and 𝑡 ≥ 0.
(c) 𝑆

𝛼
(𝑡)𝑥 is a solution of the following integral equation:

𝑢 (𝑡) = 𝑢
0
+

1

Γ (𝛼)
∫
𝑡

0

𝐴𝑢 (𝑡)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠, (9)

for all 𝑥 ∈ 𝐷(𝐴) and 𝑡 ≥ 0.

Remark 7 (see [7]). If {𝑆
𝛼
(𝑡)}

𝑡≥0
is the solution operator of

system (8), then

𝐴𝑥 = Γ (𝛼 + 1) lim
𝑡→0

𝑆
𝛼
(𝑡) 𝑥 − 𝑥

𝑡𝛼
, (10)

where𝐷(𝐴) consists of those𝑥 ∈ 𝑋 for which this limit exists.
We call 𝐴 the infinitesimal generator of {𝑆

𝛼
(𝑡)}

𝑡≥0
or say that

𝐴 generates {𝑆
𝛼
(𝑡)}

𝑡≥0
.

Remark 8 (see [7]). The solution operator {𝑆
𝛼
(𝑡)}

𝑡≥0
of system

(8) is defined as follows:

𝑆
𝛼
(𝑡) =

1

2𝜋𝑖
∫
𝛾

𝑒
𝜆𝑡
𝜆
𝛼−1
𝑅 (𝜆

𝛼
, 𝐴) 𝑑𝜆, (11)

where 𝛾 is a suitable path such that 𝜆𝛼 ∉ Σ
𝜃
(𝜔), for 𝜆 ∈ 𝛾.
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A operator 𝐴 is said to belong to C𝛼
(𝑋,𝑀, 𝜔) or

C𝛼
(𝑀, 𝜔), if system (8) has solution operator {𝑆

𝛼
(𝑡)}

𝑡≥0

satisfying |𝑆
𝛼
(𝑡)| ≤ 𝑀𝑒

𝜔𝑡, 𝑡 ≥ 0. Denote C𝛼
(𝜔) =

⋃{C𝛼
(𝑀, 𝜔),𝑀 ≥ 1} and C𝛼

= ⋃{C𝛼
(𝜔), 𝜔 ≥ 0}.

Definition 9 (see [7]). A solution operator {𝑆
𝛼
(𝑡)}

𝑡≥0
of system

(8) is called analytic, if {𝑆
𝛼
(𝑡)}

𝑡≥0
admits an analytic extension

to a sectorial ∑
𝜃0
= {𝜆 ∈ C \ {0} : | arg 𝜆| < 𝜃

0
} for some

𝜃
0
∈ (0, 𝜋/2]. An analytic solution operator is said to be of

analyticity type (𝜃
0
, 𝜔

0
), if, for each 𝜃 < 𝜃

0
and 𝜔 > 𝜔

0
, there

is an𝑀 = 𝑀(𝜃, 𝜔) such that |𝑆
𝛼
(𝑡)| ≤ 𝑒

𝜔𝑅𝑒𝑡, 𝑡 ∈ ∑
𝜃
= {𝑡 ∈

C \ {0} : | arg 𝑡| < 𝜃}. Denote

A
𝛼
(𝜃

0
, 𝜔

0
) = {𝐴 ∈ C

𝛼
: 𝐴 generates analytic solution

𝑆
𝛼
(𝑡) of type (𝜃

0
, 𝜔

0
)} .

(12)

Lemma 10 (see [7]). Let 𝛼 ∈ (0, 2); a linear closed densely
defined operator𝐴 belongs toA𝛼

(𝜃
0
, 𝜔

0
), if 𝜆𝛼 ∈ 𝜌(𝐴), for each

𝜆 ∈ Σ
𝜃0+𝜋/2

and, for any 𝜔 > 𝜔
0
, 𝜃 < 𝜃

0
, there is a constant

𝐶 = 𝐶(𝜃, 𝜔) such that

󵄩󵄩󵄩󵄩󵄩
𝜆
𝛼−1
𝑅 (𝜆

𝛼
, 𝐴)

󵄩󵄩󵄩󵄩󵄩
≤

𝐶

|𝜆 − 𝜔|
for 𝜆 ∈ Σ

𝜃+𝜋/2
(𝜔) . (13)

Next, we consider the definition of the mild solution of system
(1).

According to Definitions 1 and 2, it is suitable to rewrite
the nonlocal Cauchy problem (1) in the equivalent integral
equation

𝑥 (𝑡) = 𝑥
0
− 𝑔 (𝑥) +

1

Γ (𝛼)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

(𝐴𝑥 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠)) + 𝐵𝑢 (𝑠)) 𝑑𝑠,

(14)

provided that the integral in (14) exists.
The following Lemma 11 is discussed in [20]; for the sake

of completeness, we outline its proof here.

Lemma 11. If (14) holds and 𝐴 is a sectorial operator, then we
have

𝑥 (𝑡) = 𝑆
𝛼
(𝑡) (𝑥

0
− 𝑔 (𝑥)) + ∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

(15)

where

𝑆
𝛼
(𝑡) =

1

2𝜋𝑖
∫
𝛾

𝑒
𝜆𝑡
𝜆
𝛼−1
𝑅 (𝜆

𝛼
, 𝐴) 𝑑𝜆,

𝑇
𝛼
(𝑡) =

1

2𝜋𝑖
∫
𝛾

𝑒
𝜆𝑡
𝑅 (𝜆

𝛼
, 𝐴) 𝑑𝜆,

(16)

and 𝛾 is a suitable path such that 𝜆𝛼 ∉ Σ
𝜃
(𝜔), for 𝜆 ∈ 𝛾.

Proof. By applying the Laplace transform to (14), we have

L (𝑥) (𝜆) =
𝑥
0
− 𝑔 (𝑥)

𝜆
+
𝐴L (𝑥) (𝜆) +L (𝑓 + 𝐵𝑢) (𝜆)

𝜆𝛼
.

(17)

Since (𝜆𝛼𝐼 − 𝐴)−1 exists, that is, 𝜆𝛼 ∈ 𝜌(𝐴), from the above
equation, we obtain

L (𝑥) (𝜆) = 𝜆
𝛼−1
(𝜆

𝛼
𝐼 − 𝐴)

−1

(𝑥
0
− 𝑔 (𝑥))

+ (𝜆
𝛼
𝐼 − 𝐴)

−1

L (𝑓 + 𝐵𝑢) (𝜆) .
(18)

Therefore, by the Laplace inverse transform, we have

𝑥 (𝑡) = 𝑆
𝛼
(𝑡) (𝑥

0
− 𝑔 (𝑥)) + ∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠.

(19)

Lemma 12. If 𝛼 ∈ (0, 1] and 𝐴 ∈ A𝛼
(𝜃

0
, 𝜔

0
), then the

operators 𝑆
𝛼
(𝑡) and 𝑇

𝛼
(𝑡) are continuous on 𝑡 ∈ R+.

Proof. For 0 ≤ 𝑡󸀠 < 𝑡󸀠󸀠, by Lemma 10, we have

󵄨󵄨󵄨󵄨󵄨
𝑆
𝛼
(𝑡
󸀠󸀠
) − 𝑆

𝛼
(𝑡
󸀠
)
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝛾

(𝑒
𝜆𝑡
󸀠󸀠

− 𝑒
𝜆𝑡
󸀠

) 𝜆
𝛼−1
𝑅 (𝜆

𝛼
, 𝐴) 𝑑𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶∫
𝛾

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
𝜆𝑡
󸀠󸀠

− 𝑒
𝜆𝑡
󸀠 󵄨󵄨󵄨󵄨󵄨󵄨

|𝑑𝜆|

|𝜆 − 𝜔|
;

(20)

choose the integration path 𝛾 as follows:

𝛾 = {𝜔 + 𝑟𝑒
−𝑖((𝜋/2)+𝛿)

: 󰜚 ≤ 𝑟 < ∞}

⋃{𝜔 + 󰜚𝑒
𝑖𝜑
:
󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨 ≤

𝜋

2
+ 𝛿}

⋃{𝜔 + 𝑟𝑒
𝑖((𝜋/2)+𝛿)

: 󰜚 ≤ 𝑟 < ∞} ,

(21)

such that 𝛾 is oriented counterclockwise, where 𝛿 ∈ (0, 𝛿
0
),

𝜔 > 𝜔
0
, and 󰜚 > 0.

From (20), we have
󵄨󵄨󵄨󵄨󵄨
𝑆
𝛼
(𝑡
󸀠󸀠
) − 𝑆

𝛼
(𝑡
󸀠
)
󵄨󵄨󵄨󵄨󵄨

≤ 2𝐶∫
∞

󰜚

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
𝜆𝑡
󸀠󸀠

− 𝑒
𝜆𝑡
󸀠 󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑟

𝑟
+ 𝐶∫

(𝜋/2)+𝛿

(−𝜋/2)−𝛿

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
𝜆𝑡
󸀠󸀠

− 𝑒
𝜆𝑡
󸀠 󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝜑

≤
2𝐶

󰜚
∫
∞

󰜚

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
(𝜔+𝑟 cos((𝜋/2)+𝛿)−𝑖𝑟 sin((𝜋/2)+𝛿))𝑡󸀠󸀠

− 𝑒
(𝜔+𝑟 cos((𝜋/2)+𝛿)−𝑖𝑟 sin((𝜋/2)+𝛿))𝑡󸀠 󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑟

+ 𝐶∫
(𝜋/2)+𝛿

(−𝜋/2)−𝛿

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
(𝜔+󰜚 cos𝜑+𝑖󰜚 sin𝜑)𝑡󸀠󸀠

−𝑒
(𝜔+󰜚 cos𝜑+𝑖󰜚 sin𝜑)𝑡󸀠 󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝜑.

(22)

By noticing that cos((𝜋/2) + 𝛿) < 0, by the dominated
convergence theorem, we have |𝑆

𝛼
(𝑡
󸀠󸀠
) − 𝑆

𝛼
(𝑡
󸀠
)| → 0 as

𝑡
󸀠󸀠
→ 𝑡

󸀠, which implies that 𝑆
𝛼
(𝑡) is continuous on 𝑡. For

the same reason, 𝑇
𝛼
(𝑡) is too continuous on 𝑡. The proof is

complete.
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Lemma 13 (see [20]). If 𝛼 ∈ (0, 1] and 𝐴 ∈ A𝛼
(𝜃

0
, 𝜔

0
), then,

for any 𝑡 > 0, we have
󵄨󵄨󵄨󵄨𝑇𝛼 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶𝑒
𝜔𝑡
(1 + 𝑡

𝛼−1
) , 𝜔 > 𝜔

0
. (23)

If 𝐴 ∈ A𝛼
(𝜃

0
, 𝜔

0
), then |𝑆

𝛼
(𝑡)| ≤ 𝑀𝑒

𝜔𝑡 and |𝑇
𝛼
(𝑡)| ≤

𝐶𝑒
𝜔𝑡
(1 + 𝑡

𝛼−1
), for all 𝑡 ∈ (0, +∞). Let

𝑀̃
𝑆
= sup

0≤𝑡≤𝑏

󵄨󵄨󵄨󵄨𝑆𝛼 (𝑡)
󵄨󵄨󵄨󵄨 , 𝑀̃

𝑇
= sup

0≤𝑡≤𝑏

𝐶𝑒
𝜔𝑡
(1 + 𝑡

1−𝛼
) ; (24)

we have
󵄨󵄨󵄨󵄨𝑆𝛼 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑀̃𝑆
,

󵄨󵄨󵄨󵄨𝑇𝛼 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑡

𝛼−1
𝑀̃

𝑇
∀𝑡 ∈ (0, +∞) . (25)

Lemma 14 (Krasnoselskii’s fixed point theorem). Let 𝐸 be a
Banach space, let𝐵 be a bounded closed and convex subset of𝐸,
and let𝐹

1
and𝐹

2
bemaps of𝐵 into𝐸 such that𝐹

1
𝑥+𝐹

2
𝑦 ∈ 𝐵 for

every pair 𝑥, 𝑦 ∈ 𝐵. If 𝐹
1
is a contraction and 𝐹

2
is completely

continuous, then the equation 𝐹
1
𝑥 + 𝐹

2
𝑥 = 𝑥 has a solution on

𝐵.

In [34], Reich gave a general fixed point theorem which
contained Krasnoselskii’s fixed point theorem, for more
details we can see the reference.

Definition 15. A function 𝑥 : 𝐽 → 𝑋 is called a mild solution
of system (1), if 𝑥 satisfies the following equation

𝑥 (𝑡) = 𝑆
𝛼
(𝑡) (𝑥

0
− 𝑔 (𝑥)) + ∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

(26)

where

𝑆
𝛼
(𝑡) =

1

2𝜋𝑖
∫
𝛾

𝑒
𝜆𝑡
𝜆
𝛼−1
𝑅 (𝜆

𝛼
, 𝐴) 𝑑𝜆,

𝑇
𝛼
(𝑡) =

1

2𝜋𝑖
∫
𝛾

𝑒
𝜆𝑡
𝑅 (𝜆

𝛼
, 𝐴) 𝑑𝜆

(27)

and 𝛾 is a suitable path such that 𝜆𝛼 ∉ Σ
𝜃
(𝜔), for 𝜆 ∈ 𝛾.

Remark 16. When 𝛼 = 1, 𝑆
𝛼
(𝑡) = 𝑇

𝛼
(𝑡) is a 𝐶

0
-semigroup

and system (1) degenerates into 1 order evolution equation.
However, the limits of 𝑆

𝛼
(𝑡) and 𝑇

𝛼
(𝑡) in [21–23] did not exist

as 𝛼 → 1
−.

Remark 17. When 𝐴 generates a 𝐶
0
-semigroup {𝑇(𝑡)}

𝑡≥0
in

system (1), we have

𝑆
𝛼
(𝑡) = ∫

∞

0

𝜙
𝛼
(𝜃) 𝑇 (𝑡

𝛼
𝜃) 𝑑𝜃,

𝑇
𝛼
(𝑡) = 𝛼𝑡

𝛼−1
∫
∞

0

𝜃𝜙
𝛼
(𝜃) 𝑇 (𝑡

𝛼
𝜃) 𝑑𝜃,

(28)

where 0 < 𝛼 < 1 and 𝜙(𝜃) is a probability density function
defined on (0,∞) in [21–23]. So, this definition is more
general to that in [21–23].

Remark 18. It is easy to verify that a classical solution of
system (1) is a mild solution of the same system.

Definition 19. The system (1) is said to be completely con-
trollable on 𝐽, if, for every 𝑥

0
, 𝑥

1
∈ 𝑋, there exists a control

𝑢 ∈ 𝐿
2
(𝐽, 𝑈), such that a mild solution 𝑥 of system (1) satisfies

𝑥(𝑏) = 𝑥
1
.

In this paper, we assume the following.

(H
1
) 𝑓 : 𝐽×𝑋 → 𝑋 is continuous and there exist constant
𝑞 ∈ (0, 𝛼) and function𝑚 ∈ 𝐿

1/𝑞
(𝐽,R+

) such that
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))

󵄨󵄨󵄨󵄨 ≤ 𝑚 (𝑡)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , (29)

for all 𝑡 ∈ 𝐽 and 𝑥, 𝑦 ∈ 𝑋.

(H
2
) 𝑔 : 𝑋 → 𝑋 is continuous and there exists a constant
𝐿
𝑔
> 0 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐿𝑔

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (30)

for all 𝑥, 𝑦 ∈ 𝑋.

It is easy to see that if (H
2
) holds, then the following

assumption holds:

(H󸀠

2
) 𝑔 : 𝑋 → 𝑋 is continuous and there exist positive
constants𝐾

𝑔
and 𝑑 such that
󵄩󵄩󵄩󵄩𝑔 (𝑥)

󵄩󵄩󵄩󵄩 ≤ 𝐾𝑔
‖𝑥‖ + 𝑑, (31)

for all 𝑥 ∈ 𝑋;

(H
3
) the operator family {𝑆

𝛼
(𝑡)}

𝑡≥0
is compact;

(H
4
) the linear operator 𝐵 : 𝐿

2
(𝐽, 𝑈) → 𝐿(𝐽, 𝑋) is

bounded;𝑊: 𝐿
2
(𝐽, 𝑈) → 𝑋 defined by

𝑊𝑢 = ∫
𝑏

0

𝑇
𝛼
(𝑏 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠 (32)

has an inverse operator 𝑊−1 which takes values in
𝐿
2
(𝐽, 𝑈)/Ker𝑊 and there exist two positive constants

𝑀
2
,𝑀

3
> 0 such that

‖𝐵‖ ≤ 𝑀
2
,

󵄩󵄩󵄩󵄩󵄩
𝑊

−1󵄩󵄩󵄩󵄩󵄩
≤ 𝑀

3
. (33)

3. Complete Controllability Results

Theorem 20. Suppose that (H
1
), (H

2
), and (H

4
) are satisfied;

then system (1) is completely controllable on 𝐽, provided that
𝐴 ∈ A𝛼

(𝜃
0
, 𝜔

0
) and

Θ = (𝑀̃
𝑆
𝐿
𝑔
+ 𝑀̃

𝑇
𝑏
𝛼−𝑞
(
1 − 𝑞

𝛼 − 𝑞
)

1−𝑞

‖𝑚‖
𝐿
1/𝑞)

× (1 +𝑀
2
𝑀

3
𝑀̃

𝑇

𝑏
𝛼

𝛼
) < 1.

(34)

Proof. Using hypothesis (H
4
) for an arbitrary function 𝑥 ∈

𝐶(𝐽, 𝑋), we defined the control function 𝑢
𝑥
(𝑡) by

𝑢
𝑥
(𝑡) = 𝑊

−1
(𝑥

1
− 𝑆

𝛼
(𝑏) (𝑥

0
− 𝑔 (𝑥))

−∫
𝑏

0

𝑇
𝛼
(𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠) .

(35)
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We show that using this control, the operator 𝐹 on𝐶(𝐽,𝑋) by

(𝐹𝑥) (𝑡) = 𝑆
𝛼
(𝑡) (𝑥

0
− 𝑔 (𝑥)) + ∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢

𝑥
(𝑠) 𝑑𝑠

(36)

has a fixed point 𝑥, which is a mild solution of system (1).
It is obvious that (𝐹𝑥)(𝑏) = 𝑥

1
, whichmeans that 𝑢

𝑥
steers

the mild 𝑥 from 𝑥
0
to 𝑥

1
in finite time 𝑏. This implies that

system (1) is completely controllable on 𝐽. Next, we will prove
that 𝐹 has a fixed point on 𝐶(𝐽,𝑋).

Taking 𝑡 ∈ [0, 𝑏] and, for all 𝑥, 𝑦 ∈ 𝐶(𝐽, 𝑋), we have, from
(H

1
), (H

4
), and (35),

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑥
(𝑡) − 𝑢

𝑦
(𝑡)
󵄨󵄨󵄨󵄨󵄨

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑊

−1
(𝑆

𝛼
(𝑏) (𝑔 (𝑥) − 𝑔 (𝑦))

+∫
𝑏

0

𝑇
𝛼
(𝑏 − 𝑠) 𝑓 ((𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))) 𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑀
3
𝑀̃

𝑇
∫
𝑏

0

(𝑏 − 𝑠)
𝛼−1
𝑚(𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

+𝑀
3
𝑀̃

𝑆
𝐿
𝑔

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

≤ (𝑀
3
𝑀̃

𝑇
𝑏
𝛼−𝑞
(
1 − 𝑞

𝛼 − 𝑞
)

1−𝑞

‖𝑚‖
𝐿
1/𝑞 +𝑀

3
𝑀̃

𝑆
𝐿
𝑔
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ;

(37)

by (25), we have
󵄨󵄨󵄨󵄨(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑆
𝛼
(𝑡) (𝑔 (𝑦) − 𝑔 (𝑥))

+ ∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) (𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))) 𝑑𝑠

+ ∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵 (𝑢

𝑥
(𝑠) − 𝑢

𝑦
(𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑆𝛼 (𝑡)

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑔 (𝑦) − 𝑔 (𝑥)

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) (𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵 (𝑢

𝑥
(𝑠) − 𝑢

𝑦
(𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀̃
𝑆
𝐿
𝑔

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩 + 𝑀̃𝑇

∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑚(𝑠)

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩 𝑑𝑠

+ 𝑀̃
𝑇
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄨󵄨󵄨󵄨󵄨

𝐵 (𝑢
𝑥
(𝑠) − 𝑢

𝑦
(𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤ 𝑀̃
𝑆
𝐿
𝑔

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩 + 𝑀̃𝑇

(∫
𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑞)

𝑑𝑠)

1−𝑞

×(∫
𝑡

0

(𝑚 (𝑠))
1/𝑞
𝑑𝑠)

𝑞

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩 +

𝑏
𝛼

𝛼
𝑀

2
𝑀

3
𝑀̃

𝑇

× (𝑀̃
𝑇

𝑏
2𝛼−𝑞

𝛼
(
1 − 𝑞

𝛼 − 𝑞
)

1−𝑞

‖𝑚‖
𝐿
1/𝑞 + 𝑀̃

𝑆
𝐿
𝑔
)
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩

≤ [𝑀̃
𝑆
𝐿
𝑔
+ 𝑀̃

𝑇
𝑏
𝛼−𝑞
(
1 − 𝑞

𝛼 − 𝑞
)

1−𝑞

‖𝑚‖
𝐿
1/𝑞

× (1 +𝑀
2
𝑀

3
𝑀̃

𝑇

𝑏
𝛼

𝛼
)]
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩 = Θ
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩 .

(38)

Hence, 𝐹 is a contraction mapping and has a unique fixed
point 𝑥∗ ∈ 𝐶(𝐽, 𝑋). Therefore, this 𝑥∗ is a mild solution of
system (1). The proof is complete.

Theorem 21. Suppose that (H
1
), (H󸀠

2
), (H

3
), and (H

4
) are sat-

isfied; then system (1) is completely controllable on 𝐽 provided
that 𝐴 ∈ A𝛼

(𝜃
0
, 𝜔

0
) and

𝑀
4
= (𝑀

2
𝑀

3
𝑀̃

𝑇

𝑏
𝛼

𝛼
+ 1)

× [𝑀̃
𝑆
𝐾
𝑔
+ 𝑀̃

𝑇
(
1 − 𝑞

𝛼 − 𝑞
)

1−𝑞

𝑏
𝛼−𝑞
‖𝑚‖

𝐿
1/𝑞] < 1.

(39)

Proof. Define

(𝐹
1
𝑥) (𝑡) = ∫

𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢

𝑥
(𝑠) 𝑑𝑠,

(𝐹
2
𝑥) (𝑡) = 𝑆

𝛼
(𝑡) (𝑥

0
− 𝑔 (𝑥)) ,

(40)

for 𝑡 ∈ [0, 𝑏] and any 𝑥 ∈ 𝐶(𝐽, 𝑋). Taking into account (35),
by (H

1
), (H󸀠

2
), and (H

4
), we have

󵄨󵄨󵄨󵄨𝑢𝑥 (𝑡)
󵄨󵄨󵄨󵄨 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑊

−1
(𝑥

1
− 𝑆

𝛼
(𝑏) (𝑥

0
− 𝑔 (𝑥))

−∫
𝑏

0

𝑇
𝛼
(𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑊

−1󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝑆𝛼 (𝑏) (𝑥0 − 𝑔 (𝑥))

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑏

0

𝑇
𝛼
(𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

≤ 𝑀
3
(
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 + 𝑀̃𝑆

󵄩󵄩󵄩󵄩𝑥0 − 𝑔 (𝑥)
󵄩󵄩󵄩󵄩

+ 𝑀̃
𝑇
∫
𝑏

0

(𝑏 − 𝑠)
𝛼−1

(𝑚 (𝑠) ‖𝑥‖ +
󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)

󵄨󵄨󵄨󵄨) 𝑑𝑠)

≤ 𝑀
3
[
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 + 𝑀̃𝑆
(
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 + 𝐾𝑔
‖𝑥‖ + 𝑑)

+ 𝑀̃
𝑇
((

1 − 𝑞

𝛼 − 𝑞
)

1−𝑞

𝑏
𝛼−𝑞
‖𝑚‖

𝐿
1/𝑞

× ‖𝑥‖ +
𝑏
𝛼

𝛼
sup
𝑠∈𝐽

󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨)] .

(41)
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In order to make the following process clear, we divide it into
several steps.

𝑆𝑡𝑒𝑝 I. For 𝑡 ∈ [0, 𝑏] and any 𝑥, 𝑦 ∈ 𝐶(𝐽, 𝑋), we have
󵄨󵄨󵄨󵄨(𝐹1𝑥) (𝑡)

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢

𝑥
(𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) (𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝑓 (𝑠, 0) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵𝑢

𝑥
(𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀̃
𝑇
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑚(𝑠) ‖𝑥‖ 𝑑𝑠

+ 𝑀̃
𝑇
sup
𝑠∈𝐽

󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨 ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑑𝑠

+ 𝑀̃
𝑇
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑀

2

󵄩󵄩󵄩󵄩𝑢𝑥 (𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝑀̃
𝑇
(∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑞)

𝑑𝑠)

1−𝑞

‖𝑚‖
𝐿
1/𝑞 ‖𝑥‖

+
𝑏
𝛼

𝛼
𝑀̃

𝑇
sup
𝑠∈[0,𝑏]

󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨 +

𝑏
𝛼

𝛼

× 𝑀̃
𝑇
𝑀

2
𝑀

3
[
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 + 𝑀̃𝑆
(
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 + 𝐾𝑔
‖𝑥‖ + 𝑑)

+ 𝑀̃
𝑇
((

1 − 𝑞

𝛼 − 𝑞
)

1−𝑞

𝑏
𝛼−𝑞
‖𝑚‖

𝐿
1/𝑞 ‖𝑥‖

+
𝑏
𝛼

𝛼
sup
𝑠∈𝐽

󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨)]

≤ [(1 +
𝑏
𝛼

𝛼
𝑀̃

𝑇
𝑀

2
𝑀

3
) 𝑀̃

𝑇
(
1 − 𝑞

𝛼 − 𝑞
)

1−𝑞

𝑏
𝛼−𝑞

‖𝑚‖
𝐿
1/𝑞

+𝑀
2
𝑀

3
𝑀̃

𝑇

𝑏
𝛼

𝛼
𝑀̃

𝑆
𝐾
𝑔
] ‖𝑥‖

+𝑀
2
𝑀

3
𝑀̃

𝑇

𝑏
𝛼

𝛼
[
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 + 𝑀̃𝑆
(
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 + 𝑑)]

+ (𝑀
2
𝑀

3
𝑀̃

𝑇

𝑏
𝛼

𝛼
+ 1)

𝑏
𝛼

𝛼
𝑀̃

𝑇
sup
𝑠∈𝐽

󵄨󵄨󵄨󵄨𝑓 (𝑠, 0)
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨(𝐹2𝑦) (𝑡)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑆𝛼 (𝑡) (𝑥0 − 𝑔 (𝑦))
󵄨󵄨󵄨󵄨

≤ 𝑀̃
𝑆
(
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 + 𝐾𝑔

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 + 𝑑) .

(42)

By the condition𝑀
4
< 1, we can find 𝑘

0
> 0 such that, for

𝑥, 𝑦 ∈ 𝐵
𝑘0
= {𝑥 ∈ 𝐶(𝐽, 𝑋) : ‖ 𝑥 ‖≤ 𝑘

0
},

󵄩󵄩󵄩󵄩𝐹1𝑥 + 𝐹2𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑘0 i.e. 𝐹

1
𝑥 + 𝐹

2
𝑦 ∈ 𝐵

𝑘0
. (43)

𝑆𝑡𝑒𝑝 II. 𝐹
1
is a contraction mapping on 𝐵

𝑘0
.

For any 𝑥, 𝑦 ∈ 𝐵
𝑘0
and 𝑡 ∈ [0, 𝑏], we have

󵄨󵄨󵄨󵄨(𝐹1𝑥) (𝑡) − (𝐹1𝑦) (𝑡)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) (𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑇
𝛼
(𝑡 − 𝑠) 𝐵 (𝑢

𝑥
(𝑠) − 𝑢

𝑦
(𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀̃
𝑇
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑚(𝑠)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 𝑑𝑠

+ 𝑀̃
𝑇
𝑀

2
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄨󵄨󵄨󵄨󵄨

𝑢
𝑥
(𝑠) − 𝑢

𝑦
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤ 𝑀̃
𝑇
(∫

𝑡

0

(𝑡 − 𝑠)
(𝛼−1)/(1−𝑞)

𝑑𝑠)

1−𝑞

‖𝑚‖
𝐿
1/𝑞

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

+𝑀
2
𝑀̃

𝑇

𝑏
𝛼

𝛼
(𝑀

3
𝑀̃

𝑇
𝑏
𝛼−𝑞
(
1 − 𝑞

𝛼 − 𝑞
)

1−𝑞

‖𝑚‖
𝐿
1/𝑞

+𝑀
3
𝑀̃

𝑆
𝐾
𝑔
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

≤ (𝑀̃
𝑇
(
1 − 𝑞

𝛼 − 𝑞
)

1−𝑞

𝑏
𝛼−𝑞
‖𝑚‖

𝐿
1/𝑞 (1 +

𝑏
𝛼

𝛼
𝑀̃

𝑇
𝑀

2
𝑀

3
)

+
𝑏
𝛼

𝛼
𝑀̃

𝑇
𝑀

2
𝑀

3
𝑀̃

𝑆
𝐾
𝑔
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 =: Υ
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(44)

From the condition𝑀
4
< 1, we obtain Υ < 1, which implies

that 𝐹
1
is a contraction mapping.

𝑆𝑡𝑒𝑝 III. 𝐹
2
is a completely continuous operator.

First, wewill prove that𝐹
2
is continuous on𝐵

𝑘0
. Let {𝑥

𝑛
} ⊆

𝐵
𝑘0
with 𝑥

𝑛
→ 𝑥 ∈ 𝐵

𝑘0
. By (H󸀠

2
), we have

𝑔 (𝑥
𝑛
) 󳨀→ 𝑔 (𝑥) as 𝑛 󳨀→ ∞. (45)

So, we have
󵄨󵄨󵄨󵄨(𝐹2𝑥𝑛) (𝑡) − (𝐹2𝑥) (𝑡)

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑆𝛼 (𝑡) (𝑥0 − 𝑔 (𝑥𝑛)) − 𝑆𝛼 (𝑡) (𝑥0 − 𝑔 (𝑥))

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑆𝛼 (𝑡) (𝑔 (𝑥) − 𝑔 (𝑥𝑛))

󵄨󵄨󵄨󵄨

≤ 𝑀̃
𝑆

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑥𝑛)
󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞,

(46)

which implies that 𝐹
2
is continuous.

Next, we will show that {𝐹
2
𝑥, 𝑥 ∈ 𝐵

𝑘0
} is relatively

compact. It suffices to show that the family of function
{𝐹

2
𝑥, 𝑥 ∈ 𝐵

𝑘0
} is uniformly bounded and equicontinuous and,

for any 𝑡 ∈ [0, 𝑏], {(𝐹
2
𝑥)(𝑡), 𝑥 ∈ 𝐵

𝑘0
} is relatively compact.

For any 𝑥 ∈ 𝐵
𝑘0
, we have ‖𝐹

2
𝑥‖ ≤ 𝑘

0
which implies that

{𝐹
2
𝑥, 𝑥 ∈ 𝐵

𝑘0
} is uniformly bounded. In the following, we

will show that {𝐹
2
𝑥, 𝑥 ∈ 𝐵

𝑘0
} is a family of equicontinuous

functions.
For any 𝑥 ∈ 𝐵

𝑘0
and 0 ≤ 𝑡󸀠 < 𝑡󸀠󸀠 ≤ 𝑏, we have

󵄨󵄨󵄨󵄨󵄨
(𝐹

2
𝑥) (𝑡

󸀠󸀠
) − (𝐹

2
𝑥) (𝑡

󸀠
)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑆
𝛼
(𝑡
󸀠󸀠
) (𝑥

0
− 𝑔 (𝑥)) − 𝑆

𝛼
(𝑡
󸀠
) (𝑥

0
− 𝑔 (𝑥))

󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝑆
𝛼
(𝑡
󸀠󸀠
) − 𝑆

𝛼
(𝑡
󸀠
)
󵄨󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥0 − 𝑔 (𝑥)

󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨󵄨
𝑆
𝛼
(𝑡
󸀠󸀠
) − 𝑆

𝛼
(𝑡
󸀠
)
󵄨󵄨󵄨󵄨󵄨
(
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 + 𝐾𝑔
𝑘
0
+ 𝑑) .

(47)
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FromLemma 12, we have |(𝐹
2
𝑥)(𝑡

󸀠󸀠
)−(𝐹

2
𝑥)(𝑡

󸀠
)| → 0 indepe-

ndently of 𝑥 ∈ 𝐵
𝑘0
as 𝑡󸀠󸀠−𝑡󸀠 → 0, whichmeans that {𝐹

2
𝑥, 𝑥 ∈

𝐵
𝑘0
} is equicontinuous.
By the compactness of {𝑆

𝛼
(𝑡)}

𝑡≥0
, we know that {(𝐹

2
𝑥)(𝑡),

𝑥 ∈ 𝐵
𝑘0
} is relatively compact. Therefore, {𝐹

2
𝑥, 𝑥 ∈ 𝐵

𝑘0
} is

relatively compact by Arzela-Ascoli theorem. The continuity
of 𝐹

2
and relative compactness of {𝐹

2
𝑥, 𝑥 ∈ 𝐵

𝑘0
} imply that 𝐹

2

is a completely continuous operator. By using Krasnoselskii’s
fixed point theorem,we obtain that𝐹

1
+𝐹

2
has a fixed point on

𝐵
𝑘0
. Therefore, the nonlocal Cauchy problem (1) has at least

one mild solution. The proof is complete.

When there is no control term, system (1) degenerates to
the following system:

𝐶

𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽 = [0, 𝑏] ,

𝑥 (0) + 𝑔 (𝑥) = 𝑥
0
.

(48)

As a direct result ofTheorems 20 and 21, we have the following
corollaries.

Corollary 22. Suppose that (H
1
), (H

2
), and (H

4
) are satisfied;

then system (48) has a unique mild solution, if𝐴 ∈ A𝛼
(𝜃

0
, 𝜔

0
)

and

Θ = 𝑀̃
𝑆
𝐿
𝑔
+ 𝑀̃

𝑇
𝑏
𝛼−𝑞
(
1 − 𝑞

𝛼 − 𝑞
)

1−𝑞

‖𝑚‖
𝐿
1/𝑞 < 1. (49)

Corollary 23. Suppose that (H
1
), (H󸀠

2
), (H

3
), and (H

4
) are

satisfied; then system (48) has at least one mild solution, if
𝐴 ∈ A𝛼

(𝜃
0
, 𝜔

0
) and

𝑀
4
= 𝑀̃

𝑆
𝐾
𝑔
+ 𝑀̃

𝑇
(
1 − 𝑞

𝛼 − 𝑞
)

1−𝑞

𝑏
𝛼−𝑞
‖𝑚‖

𝐿
1/𝑞 < 1. (50)

4. Conclusions

In this paper, we introduce a more general definition for mild
solution of fractional evolution equation with nonlocal con-
dition based on solution operator. By contraction fixed point
theorem and Krasnoselskii’s fixed point theorem, we obtain
some sufficient conditions to ensure the complete control-
lability for system (1). Here, we do not require the operator
𝐴 to be the infinitesimal generator of an analytic semigroup
{𝑇(𝑡)}

𝑡≥0
of uniform boundedness. So, the results we obtained

are more general. For fractional evolution equation with
Riemann-Liouville derivative, since it is equipped with a
singular initial, it will be a difficult problem.
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