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In this note we express the norm of composition followed by differentiation 𝐷𝐶
𝜑
from the logarithmic Bloch and the little

logarithmic Bloch spaces to the weighted space 𝐻∞
𝜇

on the unit disk and give an upper and a lower bound for the essential norm
of this operator from the logarithmic Bloch space to𝐻

∞

𝜇
.

1. Introduction

Let D = {𝑧 : |𝑧| < 1} be the open unit disk in the complex
planeC,𝐻(D) be the space of all analytic functions onD, and
𝐻
∞ be the space of bounded analytic functions onDwith the

norm ‖𝑓‖
∞

= sup
𝑧∈D|𝑓(𝑧)|.

An analytic function 𝑓 ∈ 𝐻(D) is said to belong to the
logarithmic Bloch spaceLB if
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: 𝑧 ∈ D} < ∞

(1)

and to the little logarithmic Bloch spaceLB0 if

lim
|𝑧|→1
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It can be easily proved thatLB is a Banach space, under the
norm
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, (3)

and thatLB0 is a closed subspace ofLB. Some sources for
results and references about the logarithmic Bloch functions
are the papers of Yoneda [1], Stević [2], and the authors of
[3–8].

Let 𝜇 be a weight, that is, a positive continuous function
on D. The weighted space 𝐻∞

𝜇
consists of all 𝑓 ∈ 𝐻(D) such

that
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󵄨
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< ∞, (4)

where 𝜇 is a weight.
Let 𝜑 be a holomorphic self-map of D. The composition

operator 𝐶𝜑 is defined by

𝐶𝜑 (𝑓) (𝑧) = 𝑓 (𝜑 (𝑧)) , 𝑓 ∈ 𝐻 (D) . (5)

Let 𝐷 be the differentiation operator. The product 𝐷𝐶𝜑 is
defined by

𝐷𝐶𝜑 (𝑓) = (𝑓 ∘ 𝜑)
󸀠
= 𝑓
󸀠
(𝜑) 𝜑
󸀠
, 𝑓 ∈ 𝐻 (D) . (6)

The operator 𝐷𝐶𝜑 is probably studied for the first time by
Hibschweiler and Portnoy in [9], where the boundedness and
compactness of 𝐷𝐶𝜑 between Bergman and Hardy spaces
are investigated. In [10], Stević calculated the norm of the
operator𝐷𝐶𝜑 from the classical Bloch space to𝐻∞

𝜇
. Recently

there has been some interest in calculating operator norms
and essential norms of composition and related operators
(see, e.g., [11–18] and the references therein). Motivated by
the papers [10, 19], we continue here this line of research by
calculating ‖𝐷𝐶𝜑‖LB→𝐻∞

𝜇

.
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Suppose that 𝑋1 and 𝑋2 are Banach spaces and 𝐿 :

𝑋1 → 𝑋2 is a bounded linear operator. The essential norm
‖𝐿‖𝑒,𝑋

1

→𝑋
2

of 𝐿 is its distance to the compact operators.More
precisely,

‖𝐿‖𝑒,𝑋
1

→𝑋
2

= inf {‖𝐿 − 𝐾‖𝑋
1

→𝑋
2

:

𝐾 a compact operator of 𝑋1 into 𝑋2} ,

(7)

where ‖ ⋅ ‖𝑋
1

→𝑋
2

denotes the operator norm. If𝑋1 = 𝑋2, it is
simply denoted by ‖ ⋅ ‖𝑒. Since the set of all compact operators
is a closed subset of the set of bounded operators, it follows
that an operator 𝐿 is compact if and only if ‖𝐿‖𝑒,𝑋

1

→𝑋
2

= 0.
Essential norm formulas for composition operators are

known in various settings. When 𝐶𝜑 acts from the Hardy
space 𝐻2(D) to itself, Shapiro [20] gives a formula for ‖𝐶𝜑‖𝑒
in terms of the Nevanlinna counting function for 𝜑. In [21],
Donaway gives upper and lower estimates for ‖𝐶𝜑‖𝑒 when𝐶𝜑

maps the Bloch, Dirichlet, or a Besov type space to itself. The
essential norm of the 𝐷𝐶𝜑 operator from 𝛼-Bloch spaces to
𝐻
∞

𝜇
spacewas estimated recently by Stević in [10]. In this note

we give upper and lower estimates for ‖𝐷𝐶𝜑‖𝑒,LB→𝐻∞
𝜇

.

2. The Operator Norm of 𝐷𝐶
𝜑
:LB (or

LB
0
) → 𝐻

∞

𝜇

In this section we prove a nice formula. Namely, we calculate
the norm of the operator𝐷𝐶𝜑 : LB (orLB0) → 𝐻

∞

𝜇
.

Theorem 1. Assume 𝜇 is a weight onD. Then the following are
equivalent:

(a) 𝐷𝐶𝜑 : LB → 𝐻
∞

𝜇
is a bounded operator;

(b) 𝐷𝐶𝜑 : LB0 → 𝐻
∞

𝜇
is a bounded operator;

(c) sup
𝑧∈D(𝜇(𝑧)|𝜑

󸀠
(𝑧)|)/((1−|𝜑(𝑧)|) ln(2𝑒/(1−|𝜑(𝑧)|))) <

∞

Moreover, one has
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.

(8)

Proof. (𝑎) ⇒ (𝑏). By the factLB0 ⊂ LB and the definition
of operator norm, we easily obtain that𝐷𝐶𝜑 : LB0 → 𝐻

∞

𝜇

is a bounded operator and
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. (9)

(𝑏) ⇒ (𝑐). Suppose that 𝐷𝐶𝜑 is a bounded operator from
LB0 to 𝐻

∞

𝜇
. Taking the test function 𝑓(𝑧) = 𝑧 ∈ LB0, we

easily have
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ln 2𝑒,

(10)

for every 𝑤 ∈ D. It implies that (c) holds when 𝜑(𝑧) = 0.
Fixing 𝑤 ∈ D \ {0}, we consider the function

𝑓𝑤 (𝑧) =

1

𝑤

ln ln(

2𝑒

1 − 𝑤𝑧

) −

1

𝑤

ln ln 2𝑒. (11)

Since 𝑟(𝑥) = 𝑥 ln(2𝑒/𝑥) is increasing on (0, 2] and𝑓𝑤(0) =
0, we have

󵄩
󵄩
󵄩
󵄩
𝑓𝑤

󵄩
󵄩
󵄩
󵄩L

= sup
𝑧∈D

(1 − |𝑧|) ln(

2𝑒

1 − |𝑧|

)

×

1

|ln (2𝑒/ (1 − 𝑤𝑧))|

1

|1 − 𝑤𝑧|

≤ sup
𝑧∈D

(1 − |𝑧|) ln (2𝑒/ (1 − |𝑧|))

(1 − |𝑤𝑧|) ln (2𝑒/ (1 − |𝑤𝑧|))

×

(1 − |𝑤𝑧|) ln (2𝑒/ (1 − |𝑤𝑧|))

|1 − 𝑤𝑧| ln (2𝑒/ (1 − 𝑤𝑧))

≤ 1.

(12)

Moreover, since

(1 − |𝑧|) ln 2𝑒

1 − |𝑧|

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠

𝑤
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

(1 − |𝑧|) ln (2𝑒/ (1 − |𝑧|))

(1 − |𝑤𝑧|) ln (2𝑒/ (1 − |𝑤𝑧|))
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(1 − |𝑧|) ln (2𝑒/ (1 − |𝑧|))

(1 − |𝑤|) ln 2𝑒

󳨀→ 0,

(13)

as |𝑧| → 1
−, it follows that 𝑓𝑤 ∈ LB0 for every 𝑤 ∈ D \ {0}.

Thus, for each 𝑡 ∈ (0, 1) we obtain that
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for every 𝜑(𝑤) ̸= 0. Letting 𝑡 → 1
−, we obtain that
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for every𝜑(𝑤) ̸= 0. It implies that (c) also holdswhen𝜑(𝑧) ̸= 0.
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(𝑐) ⇒ (𝑎). For every 𝑓 ∈ LB, we easily obtain that
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∞

𝜇
is a bounded operator. Also, we
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3. Estimates of Essential Norm of
𝐷𝐶
𝜑
:LB (or LB

0
) → 𝐻

∞

𝜇

In this section we will estimate the essential norm of 𝐷𝐶𝜑 :

LB (orLB0) → 𝐻
∞

𝜇
. For this purpose we need some

lemmas.

Lemma 2. If 𝑓 ∈ LB, then |𝑓(𝑧)| ≤ (1/2 + ln ln(𝑒/(1 −

|𝑧|)))‖𝑓‖L.

This can be done in exactly the same way as in the proof
of [3, Lemma 2.1].

Lemma 3. Let 𝜑 be an analytic self-map of D and 𝜇 be a
weight on D. Assume that 𝐷𝐶𝜑 is a bounded operator from
LB (orLB0) to 𝐻

∞

𝜇
; then 𝐷𝐶𝜑 is compact if and only

if for any bounded sequence {𝑓𝑛} in LB (orLB0), which
converges to 0 uniformly on compact subsets of D, one has
‖𝐷𝐶𝜑(𝑓𝑛)‖𝐻∞

𝜇

→ 0 as 𝑛 → ∞.

Proof. Necessity. Suppose that𝐷𝐶𝜑 : LB (orLB0) → 𝐻
∞

𝜇

is compact. Let {𝑓𝑛} be a bounded sequence inLB (orLB0)
with 𝑓𝑛 → 0 uniformly on compact subsets of 𝐷. Assume
that there is a subsequence {𝑓𝑛

𝑘

} and an 𝜖0 > 0 such that
‖𝐷𝐶𝜑𝑓𝑛

𝑘

‖ ≥ 𝜖0 for all 𝑘 = 1, 2, 3, . . .. Since 𝐷𝐶𝜑 is compact,
we can find a further subsequence {𝑓𝑛

𝑘

𝑗

} and a function

𝑓 ∈ 𝐻
∞

𝜇
such that lim𝑗→∞‖𝐷𝐶𝜑𝑓𝑛

𝑘

𝑗

− 𝑓‖

𝐻∞
𝜇

= 0. Then we

obtain that, for 𝑧 ∈ 𝐷,
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𝜇

𝜇 (𝑧)

.

(19)

Hence𝐷𝐶𝜑𝑓𝑛
𝑘

𝑗

−𝑓 → 0 uniformly on compact subsets of𝐷.
Also, since 𝑓𝑛

𝑘

𝑗

→ 0 uniformly on compact subsets of 𝐷,
𝐷𝐶𝜑𝑓𝑛

𝑘

𝑗

→ 0 uniformly on compact subsets of𝐷. It follows
that 𝑓 = 0 and hence lim𝑗→∞‖𝐷𝐶𝜑𝑓𝑛

𝑘

𝑗

‖

𝐻∞
𝜇

= 0, contra-

dicting the fact that ‖𝐷𝐶𝜑𝑓𝑛
𝑘

‖ ≥ 𝜖0 for all 𝑘 = 1, 2, 3, . . ..
Therefore we must have that lim𝑛→∞‖𝐷𝐶𝜑(𝑓𝑛)‖𝐻∞

𝜇

= 0.

Sufficiency. Let {𝑓𝑛} be a bounded sequence in LB (or
LB0).Then Lemma 2 andMontel’sTheorem tell us that {𝑓𝑛}
forms a normal family, and hence there exists a subsequence
{𝑓𝑛
𝑘

} converging uniformly on compact sets to some function
𝑓. It is easy to see that 𝑓 must be in LB (LB0). Then
{𝑓𝑛
𝑘

−𝑓} is a bounded sequence inLB (orLB0) converging
to 0 uniformly on compact subsets ofD and by the hypothesis
guarantees that 𝐷𝐶𝜑𝑓𝑛

𝑘

→ 𝐷𝐶𝜑𝑓 in 𝐻
∞

𝜇
. Thus 𝐷𝐶𝜑 is

compact.

Lemma 4. Let 𝜇 be a weight on D and 𝜑 be an analytic self-
map of D with ‖𝜑‖

∞
< 1. Suppose that 𝐷𝐶𝜑 : LB (or

LB0) → 𝐻
∞

𝜇
is bounded. Then 𝐷𝐶𝜑 : LB (orLB0) →

𝐻
∞

𝜇
is compact.

Proof. Suppose that {𝑓𝑛} is a bounded sequence in
LB (orLB0) which converges to 0 uniformly on compact
subsets of D. By Cauchy’s inequality we easily obtain that
{𝑓
󸀠

𝑛
} also converges to 0 uniformly on compact subsets of

D. Since 𝐷𝐶𝜑 is bounded, one can take the test function
𝑓(𝑧) = 𝑧 to see that 𝜑󸀠 ∈ 𝐻

∞

𝜇
. Then we obtain that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝐶𝜑𝑓𝑛

󵄩
󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

sup
𝑤∈𝜑(D)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠

𝑛
(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨
󳨀→ 0, (20)

as 𝑛 → ∞, since 𝜑(D) is contained in the disk |𝑤| ≤ ‖𝜑‖
∞

<

1, which is a compact subset of D. Hence, by Lemma 3, the
operator𝐷𝐶𝜑 : LB (orLB0) → 𝐻

∞

𝜇
is compact.

Lemma 5. Let 𝑓 ∈ LB. Then ‖𝑓𝑡‖L ≤ ‖𝑓‖L, 0 < 𝑡 < 1,
where 𝑓𝑡(𝑧) = 𝑓(𝑡𝑧).

Since 𝑟(𝑥) = (1 − 𝑥) ln(2𝑒/(1 − 𝑥)) is decreasing on [0, 1),
one may easily prove the result.



4 Abstract and Applied Analysis

Theorem 6. Let 𝜇 be a weight on D and 𝜑 be an analytic self-
map of D. Suppose that 𝐷𝐶𝜑 : LB (orLB0) → 𝐻

∞

𝜇
is

bounded. Then

1

2

lim sup
|𝜑(𝑧)|→1

−

𝜇 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

(1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
))

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝐶𝜑

󵄩
󵄩
󵄩
󵄩
󵄩𝑒,LB

0

→𝐻∞
𝜇

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝐶𝜑

󵄩
󵄩
󵄩
󵄩
󵄩𝑒,LB→𝐻∞

𝜇

≤ 2 lim sup
|𝜑(𝑧)|→1

−

𝜇 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

(1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
))

.

(21)

Proof. If ‖𝜑‖
∞

< 1, by Lemma 4, it follows that 𝐷𝐶𝜑 :

LB (orLB0) → 𝐻
∞

𝜇
is compact which is equivalent to

‖𝐷𝐶𝜑‖𝑒,LB
0

→𝐻∞
𝜇

= ‖𝐷𝐶𝜑‖𝑒,LB→𝐻∞
𝜇

= 0. On the other
hand, it is clear that in this case the condition |𝜑(𝑧)| → 1

is vacuous, so that it is understood that

lim sup
|𝜑(𝑧)|→1

−

𝜇 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

(1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
))

= 0. (22)

Now suppose that ‖𝜑‖
∞

= 1. Assume that {𝑧𝑛} is a
sequence in D such that |𝜑(𝑧𝑛)| → 1 as 𝑛 → ∞. Let

𝑓𝑛 (𝑧) =

1

2𝜑(𝑧𝑛)𝑎𝑛

(ln ln 2𝑒

1 − 𝜑(𝑧𝑛)𝑧

)

2

−

1

2𝜑(𝑧𝑛)𝑎𝑛

(ln ln 2𝑒)
2
,

(23)

where 𝑎𝑛 = ln ln(2𝑒/(1 − |𝜑(𝑧𝑛)|
2
)). Then we have 𝑓𝑛(0) = 0,

𝑓
󸀠

𝑛
(𝜑 (𝑧𝑛)) =

1

(1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧𝑛)

󵄨
󵄨
󵄨
󵄨

2
) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
𝜑(𝑧𝑛)

󵄨
󵄨
󵄨
󵄨

2
))

. (24)

Clearly 𝑓𝑛(𝑧) → 0 uniformly on compact subsets of D as
𝑛 → ∞. It follows that

󵄩
󵄩
󵄩
󵄩
𝑓𝑛

󵄩
󵄩
󵄩
󵄩L

= sup
𝑧∈D

(1 − |𝑧|) ln 2𝑒

1 − |𝑧|

1

𝑎𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

ln ln 2𝑒

1 − 𝜑 (𝑧𝑛)𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

×

1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

ln (2𝑒/ (1 − 𝜑 (𝑧𝑛)𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 − 𝜑 (𝑧𝑛)𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ sup
𝑧∈D

2𝜋 + ln (2𝜋 + ln (2𝑒/ (1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧𝑛)

󵄨
󵄨
󵄨
󵄨
)))

ln ln (2𝑒/ (1 −
󵄨
󵄨
󵄨
󵄨
𝜑(𝑧𝑛)

󵄨
󵄨
󵄨
󵄨

2
))

×

(1 − |𝑧|) ln (2𝑒/ (1 − |𝑧|))

(1 −

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜑 (𝑧𝑛)𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜑 (𝑧𝑛)𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

))

×

(1 −

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜑 (𝑧𝑛)𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜑 (𝑧𝑛)𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 − 𝜑 (𝑧𝑛)𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

ln (2𝑒/

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 − 𝜑 (𝑧𝑛)𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

)

≤

2𝜋 + ln (2𝜋 + ln (2𝑒/ (1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧𝑛)

󵄨
󵄨
󵄨
󵄨
)))

ln ln (2𝑒/ (1 −
󵄨
󵄨
󵄨
󵄨
𝜑(𝑧𝑛)

󵄨
󵄨
󵄨
󵄨

2
))

.

(25)

Thus, lim sup
𝑛→∞

‖𝑓𝑛‖L ≤ 1. Let 𝑔𝑛 = 𝑓𝑛/‖𝑓𝑛‖L. Then
‖𝑔𝑛‖L = 1 and𝑔𝑛 → 0 uniformly on compact subsets ofD as
𝑛 → ∞. Since 𝑔𝑛 ∈ LB0, then it follows that 𝑔𝑛 converges
to 0 weakly in LB0. Thus, for any compact operator 𝐾 :

LB0 → 𝐻
∞

𝜇
, lim𝑛→∞‖𝐾𝑔𝑛‖𝐻∞

𝜇

= 0. Therefore

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝐶𝜑 − 𝐾

󵄩
󵄩
󵄩
󵄩
󵄩LB

0

→𝐻∞
𝜇

= sup
‖𝑓‖L≤1

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐷𝐶𝜑 − 𝐾)𝑓

󵄩
󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

≥ lim sup
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐷𝐶𝜑 − 𝐾)𝑔𝑛

󵄩
󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

≥ lim sup
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝐶𝜑𝑔𝑛

󵄩
󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

.

(26)

Hence

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝐶𝜑

󵄩
󵄩
󵄩
󵄩
󵄩𝑒,LB

0

→𝐻∞
𝜇

≥ lim sup
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝐶𝜑𝑔𝑛

󵄩
󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

= lim sup
𝑛→∞

sup
𝑧∈D

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇 (𝑧) 𝑔

󸀠

𝑛
(𝜑 (𝑧)) 𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

≥ lim sup
𝑛→∞

1

󵄩
󵄩
󵄩
󵄩
𝑓𝑛

󵄩
󵄩
󵄩
󵄩L

󵄨
󵄨
󵄨
󵄨
󵄨
𝜇 (𝑧𝑛) 𝑓

󸀠

𝑛
(𝜑 (𝑧𝑛)) 𝜑 (𝑧𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨

≥ lim sup
𝑛→∞

𝜇 (𝑧𝑛)
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧𝑛)

󵄨
󵄨
󵄨
󵄨

(1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧𝑛)

󵄨
󵄨
󵄨
󵄨

2
) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
𝜑(𝑧𝑛)

󵄨
󵄨
󵄨
󵄨

2
))

=

1

2

lim sup
𝑛→∞

𝜇 (𝑧𝑛)
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧𝑛)

󵄨
󵄨
󵄨
󵄨

(1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧𝑛)

󵄨
󵄨
󵄨
󵄨
) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧𝑛)

󵄨
󵄨
󵄨
󵄨
))

.

(27)

Thus the first inequality in (21) follows.The second inequality
in (21) is obvious. Now we prove the third one.

Let 𝑠 ∈ (0, 1) be fixed and𝜌𝑛 = 1−1/(𝑛+1), 𝑛 = 1, 2, . . .. By
Lemma 4 we obtain that the operator 𝐷𝐶𝜌

𝑛

𝜑 : LB → 𝐻
∞

𝜇

is compact for every 𝑛. It follows that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝐶𝜑

󵄩
󵄩
󵄩
󵄩
󵄩𝑒,LB→𝐻∞

𝜇

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝐶𝜑 − 𝐷𝐶𝜌

𝑛

𝜑

󵄩
󵄩
󵄩
󵄩
󵄩LB→𝐻∞

𝜇

= sup
‖𝑓‖L
≤1

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐷𝐶𝜑 − 𝐷𝐶𝜌

𝑛

𝜑)(𝑓)

󵄩
󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

= sup
‖𝑓‖L
≤1

sup
|𝜑(𝑧)|≤𝑠

𝜇 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝜑 (𝑧)) − 𝜌𝑛𝑓

󸀠
(𝜌𝑛𝜑 (𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨

+ sup
‖𝑓‖L
≤1

sup
|𝜑(𝑧)|>𝑠

𝜇 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝜑 (𝑧)) − 𝜌𝑛𝑓

󸀠
(𝜌𝑛𝜑 (𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨
≜ 𝐼1 + 𝐼2.

(28)
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By Cauchy’s inequality, we obtain that

𝐼1 ≤ sup
‖𝑓‖L
≤1

sup
| 𝜑(𝑧) |≤𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝜑 (𝑧)) − 𝑓

󸀠
(𝜌𝑛𝜑 (𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨

+ sup
‖𝑓‖L
≤1

sup
|𝜑(𝑧)|≤𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

(1 − 𝜌𝑛)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝜌𝑛𝜑 (𝑧))

󵄨
󵄨
󵄨
󵄨
󵄨

≤ (1 − 𝜌𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

sup
‖𝑓‖L
≤1

sup
|𝑤|≤𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠󸀠
(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

+ (1 − 𝜌𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

sup
‖𝑓‖L
≤1

sup
|𝑤|≤𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ (1 − 𝜌𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

sup
‖𝑓‖L
≤1

2

1 − 𝑠

max
|𝑧|≤(1+𝑠)/2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

+ (1 − 𝜌𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

sup
‖𝑓‖L
≤1

sup
|𝑤|≤𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ (1 − 𝜌𝑛)

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

sup
‖𝑓‖L
≤1

(1 +

2

1 − 𝑠

)

× max
|𝑧|≤(1+𝑠)/2

(1 − |𝑧|) ln (2𝑒/ (1 − |𝑧|))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

(1 − |𝑧|) ln (2𝑒/ (1 − |𝑧|))

≤

1

𝑛 + 1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

(1 +

2

1 − 𝑠

)

2

(1 − 𝑠) ln (4𝑒/ (1 − 𝑠))

.

(29)

On the other hand, by Lemma 5, we obtain that

𝐼2 ≤ sup
‖𝑓‖L
≤1

sup
|𝜑(𝑧)|>𝑠

𝜇 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩L

(1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
))

+ sup
‖𝑓‖L
≤1

sup
|𝜑(𝑧)|>𝑠

𝜇 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓𝜌
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩L

(1 − 𝜌𝑛

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
) ln (2𝑒/ (1 − 𝜌𝑛

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
))

≤ 2 sup
‖𝑓‖L
≤1

sup
|𝜑(𝑧)|>𝑠

𝜇 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩L

(1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
))

≤ 2 sup
|𝜑(𝑧)|>𝑠

𝜇 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

(1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
))

,

(30)

where 𝑓𝜌
𝑛

(𝑧) = 𝑓(𝜌𝑛𝑧). Hence, for for all 𝑠 ∈ (0, 1) and all 𝑛,
we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝐶𝜑

󵄩
󵄩
󵄩
󵄩
󵄩𝑒,LB→𝐻∞

𝜇

≤

1

𝑛 + 1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠󵄩󵄩
󵄩
󵄩
󵄩𝐻∞
𝜇

(1 +

2

1 − 𝑠

)

2

(1 − 𝑠) ln (4𝑒/ (1 − 𝑠))

+ 2 sup
|𝜑(𝑧)|>𝑠

𝜇 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

(1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
))

.

(31)

Letting 𝑛 → ∞ and then letting 𝑠 → 1
−, we obtain that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷𝐶𝜑

󵄩
󵄩
󵄩
󵄩
󵄩𝑒,LB→𝐻∞

𝜇

≤ 2 lim sup
|𝜑(𝑧)|→1

−

𝜇 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

(1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
))

.

(32)

The proof of the theorem is finished.

Corollary 7. Let 𝜑 be an analytic self-map ofD, 𝜇 be a weight
onD, and𝐷𝐶𝜑 be a bounded operator fromLB (orLB0) to
𝐻
∞

𝜇
. Then𝐷𝐶𝜑 is a compact operator fromLB (orLB0) to

𝐻
∞

𝜇
if and only if

lim sup
|𝜑(𝑧)|→1

−

𝜇 (𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨

(1 −
󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
) ln (2𝑒/ (1 −

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑧)

󵄨
󵄨
󵄨
󵄨
))

= 0. (33)
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