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A novel architecture for flood routing model has been proposed and its efficiency is validated on several problems by employing
support vector machines. The architecture is designed by including the inputs and observed and calculated outflows from the
previous time step output. Whole observed data have been used for determining the model parameters in the heuristic methods
given in the literature, which constitutes the major disadvantage of the existing approaches. Moreover, using the whole data for
training may lead to overtraining problem that causes overfitting of estimations and data. Therefore, in this study, 60–90% of
the data are randomly selected for training and then the remaining data are used for validation. In order to take the effects of
the measurement errors into consideration, the data are corrupted by some additive noise. The results show that the proposed
architecture improves the model performance under noisy and missing data conditions and that support vector machines can be
powerful alternative in flood routing modeling.

1. Introduction

Flood routing is important in the design of flood protection
measures in order to estimate how the proposed measures
will affect the behavior of flood waves in rivers so that
adequate protection and economic solutions can be found [1].
Flood routingmodelsmay be classified as either hydrologic or
hydraulic.The hydraulic models solve the Saint-Venant equa-
tions by using a numerical method such as finite difference
or finite element methods. A great deal of studies based on
hydraulic models was developed by various researchers for
flood routing [2–8]. These models require the measurement
of flow depth and discharges. If detailed topographical
surveys of channel cross-sections and roughness at close
intervals are not available, hydraulic models are not suitable
to serve the purpose of flood routing. In this case, hydrologic
modelsmay be used because they can copewith sparse spatial
data [9].

Hydrologic models are based on the storage continuity
equation and another equation which usually expresses the
storage volume as a linear or nonlinear function of inflow
and outflow discharges. The Muskingum method is the

most widely used hydrologic flood routing method owing
to its simplicity [10]. Many researchers made studies on the
parameter estimation of Muskingum flood routing models
[11–14]. Performances of the Muskingum models depend on
the selection of the appropriate storage equation and the
optimal parameter estimation of these models. Even if the
parameters of storage equation are determined as optimum,
every flood event may not be adequately represented. In
particular, this problem occurs in a flood event containing
more than one peak and/or having substantially lateral flow.

In order to overcome this problem, data-driven flood
routing models based on support vector machines (SVM)
need to be developed. SVM is based on statistical learning
theory and structural risk minimization principle and can
solve any regression problemswithout getting stuck into local
minima. They achieve the global solution by transforming
the regression problem into a quadratic programming (QP)
problem and then solving it by a QP solver. Finding global
solution and possessing higher generalization capability con-
stitute the major advantages of the SVM algorithms over
other regression techniques [15]. In the last decade, SVM-
based algorithms have been developed very rapidly and have
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Figure 1: (a) Training phase and (b) prediction phase.

been applied to many areas [16, 17]. In particular, the SVM
have been used for modeling and prediction purposes for
solving some problems in the hydrology area of research and
application [18–29].

The fact that the whole observed data has been used for
determining the model parameters in the abovementioned
heuristicmethods constitutes themajor disadvantage of these
approaches. This may lead to overtraining problem that
degrades generalization capability [34]. In order to prevent
overtraining, some part of the data is used for training and
the remaining part is spared for validation. Thus, in this
study, 60–90% of the data are randomly selected for training
(for determining model parameters) and then the remaining
unseen data are used for validation. Therefore, in this study,
novel model architecture has been proposed and its efficiency
is validated on several problems.This is organized as follows.

In the next section, first, the proposed training and
prediction procedures are introduced and then the training
algorithm is explained in detail for SVM in the following
subsection. In Section 3, the three numerical applications are
investigated to show the efficiency of the proposedmethod by
comparing SVM to other methods when all data are used for
training and also to each other when only some portion of the
data is used for training.The simulation results are discussed
in Section 4.

2. Model Development

In this study, we have employed SVM in flood routing
modeling for prediction of its future behavior. For this
purpose, as can be seen in Figure 1(a), an SVM model of the
flood routing is obtained in the training phase by using a
training set 𝑇 as given by

𝑇 = {𝑄
𝐼 (𝑡 + 𝑘Δ𝑡) , 𝑄𝐼 (𝑡 + (𝑘 − 1) Δ𝑡) , 𝑄𝑂 (𝑡 + (𝑘 − 1) Δ𝑡)

; 𝑄
𝑂 (𝑡 + 𝑘Δ𝑡)}

𝑘=𝑁

𝑘=1
,

(1)

where 𝑄
𝐼
(𝑡) and 𝑄

𝑂
(𝑡) are the measured input and output

flow rates at time 𝑡, respectively, Δ𝑡 is the time interval
between the successive measurements, and𝑁 is the number
of training data. For sake of the simplicity, the data set 𝑇 can
be represented more compactly as 𝑇 = {x

𝑘
; 𝑦(𝑘)}

𝑘=𝑁

𝑘=1
, where

x
𝑘
∈ 𝑋 ⊆ R3 is the 𝑘th input data point in the input space

and 𝑦(𝑘) ∈ 𝑌 ⊆ R is the corresponding output value; that is,

x
𝑘
[𝑄
𝐼 (𝑡 + 𝑘Δ𝑡) , 𝑄𝐼 (𝑡 + (𝑘 − 1) Δ𝑡) , 𝑄𝑂 (𝑡 + (𝑘 − 1) Δ𝑡)]

𝑇
;

𝑦 (𝑘) = 𝑄𝑂 (𝑡 + 𝑘Δ𝑡) .

(2)

In the modeling phase, to obtain a model that represents
the relationship between the input and output data points is
desired. The training data set 𝑇 is to be used to obtain an
approximate model of the flood. Once the SVM model of
the flood routing is obtained, then its future behavior can be
predicted by the mechanism depicted in Figure 1(b), where
the predicted output of the model is delayed by Δ𝑡 and then
fed back to the model itself as the third input thereby making
the model more realistic to predict the flood.

In this section, the 𝜀-SVR algorithm, SVM regression
algorithm used in this study, is described briefly. The primal
form of an SVM regression model is given by (3), which is
linear in a higher dimensional feature space F.

Consider

𝑦 (x
𝑖
) = ⟨w,Φ (x

𝑖
)⟩ + 𝑏, (3)

where w is a vector in the feature space F, Φ(⋅) is a mapping
from the input space to the feature space, 𝑏 is the bias term,
and ⟨⋅⟩ is the inner product operation in the feature space.
The SVM regression algorithm looks upon the regression
problem as an optimization problem in dual space, where the
model is given by

𝑦 (x
𝑖
) =

𝑁

∑

𝑗=1

𝛼
𝑗
𝐾(x
𝑖
, x
𝑗
) + 𝑏, (4)

where 𝛼
𝑗
’s are the coefficients of each training data point and

𝐾(x
𝑖
, x
𝑗
) is a kernel function. The kernel function handles

the inner product in the feature space; that is, 𝐾(x
𝑖
, x
𝑗
) =

⟨Φ(x
𝑖
),Φ(x

𝑗
)⟩, and hence the explicit form of Φ(x) does not

need to be known. In this study, we have used the radial basis
kernel function given by

𝐾(x
𝑖
, x
𝑗
) = 𝐾

𝑖𝑗
= exp(−


x
𝑖
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𝑗



2
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Table 1: Comparison of the observed and computed outflows for Wilson data.

Time (h) Input (cms) Output (cms) NLMM-L VPWFDM-L FIS SVM
[30] [31] [32]

0 22 22 22 22 22.0 22.00
6 23 21 21.71 20.66 20.9 20.93
12 35 21 22.02 21.5 21.0 20.98
18 71 26 26.08 25.79 26.0 25.92
24 103 34 33.51 33.71 34.0 34.04
30 111 44 42.83 44.65 44.0 43.97
36 109 55 55.44 54.37 57.1 55.04
42 100 66 66.67 65.72 66.2 65.96
48 86 75 75.77 75.78 75.0 75.06
54 71 82 82.12 82.55 82.0 81.93
60 59 85 84.78 84.65 85.4 84.95
66 47 84 83.42 84.07 84.0 84.08
72 39 80 79.44 79.36 80.0 79.93
78 32 73 72.48 72.67 73.0 72.92
84 28 64 64.08 63.75 64.0 64.02
90 24 54 54.58 54.53 54.0 54.04
96 22 44 45.22 44.87 44.0 43.96
102 21 36 36.34 36.24 35.9 36.04
108 20 30 29.21 29.5 29.9 29.96
114 19 25 24.21 24.56 25.3 25.04
120 19 22 20.96 21.31 21.7 21.96
126 18 19 19.41 19.39 19.1 19.04
SSE 9.823 5.178 4.830 0.056

where ‖⋅‖ is the Euclidean norm and 𝜎 is the width parameter.
In the model (4), a training point x

𝑗
corresponding to a

nonzero 𝛼
𝑗
value is referred to as the support vector. The 𝜀-

SVR algorithm employs Vapnik’s 𝜀-insensitive loss function
𝐿(𝜀, 𝑦, 𝑦) given by

𝐿 (𝜀, 𝑦, 𝑦) = {
0 𝑦 − 𝑦 ≤ 𝜀

𝑦 − 𝑦 𝑦 − 𝑦 > 𝜀
(6)

and formulates the primal form of the regression problem as
follows:

min𝑃
𝜀

w,𝑏,𝜉,𝜉∗
=
1

2
‖w‖2 + 𝐶

𝑁

∑

𝑖=1

(𝜉
𝑖
+ 𝜉
∗

𝑖
) , (7)

subject to the constraints

𝑦 (x
𝑖
) − ⟨w,Φ (x

𝑖
)⟩ − 𝑏 ≤ 𝜀 + 𝜉

𝑖
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𝑖
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∗

𝑖
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𝜉
𝑖
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∗
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(8)

where 𝜉
𝑖
’s and 𝜉∗

𝑖
’s are slack variables, 𝜀 is the upper value

of tolerable error for the output, and 𝐶 is a regularization
parameter that provides a compromise between the model
complexity and the degree of tolerance to the errors larger

than 𝜀. Dual form of the optimization problem becomes a
quadratic programming (QP) problem as follows:
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subject to the constraints

0 ≤ 𝛽
𝑖
, 𝛽
∗

𝑖
≤ 𝐶,

𝑁

∑

𝑖=1

(𝛽
𝑖
− 𝛽
∗

𝑖
) = 0, 𝑖 = 1, . . . , 𝑁. (10)

Solution of the QP problem gives the optimum values of
𝛽
𝑖
’s and 𝛽∗

𝑖
’s. The value of 𝑏 in the model is determined as

follows: the condition 𝑦(x
𝑖
) − 𝑦(x

𝑖
) = 𝜀 is satisfied for each

support vector x
𝑖
for which the condition 0 ≤ 𝛽

𝑖
− 𝛽
∗

𝑖
≤ 𝐶

holds. If 𝛼
𝑗
is defined to be the new coefficient of x

𝑗
for

𝑗 = 1, . . . , 𝑁 as 𝛼
𝑗
= 𝛽
𝑗
− 𝛽
∗

𝑗
, then we obtain an SVM

model as given by (4). Furthermore, if the support vectors
are considered only, then the model becomes

𝑦 (x
𝑖
) =

#SV
∑

𝑗=1

𝑗∈SV

𝛼
𝑗
𝐾(x
𝑖
, x
𝑗
) + 𝑏, (11)
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Table 2: Comparison of the observed and routed outflows for Viessman and Lewis data.

Time (h) Input (cms) Output (cms) NLMM-L VPWFDM-L SVM
[30] [31]

0 166.2 118.4 166.2 118.40 118.40
1 263.6 197.4 166.2 182.23 198.71
2 365.3 214.1 263.25 262.43 215.39
3 580.5 402.1 346.87 362.43 403.06
4 594.7 518.2 505.25 496.97 519.25
5 662.6 523.9 563.12 559.30 526.01
6 920.3 603.1 620.77 633.91 604.67
7 1568.8 829.7 773.8 803.13 831.03
8 1775.5 1124.2 1109.49 1150.33 1122.98
9 1489.5 1379 1381.64 1417.85 1377.61
10 1223.3 1509.3 1460.43 1433.22 1508.11
11 713.6 1379 1389.1 1345.15 1378.08
12 645.6 1050.6 1133.57 1115.25 1049.46
13 1166.7 1013.7 890.74 968.99 1012.38
14 1427.2 1013.7 982.97 994.50 1012.35
15 1282.8 1013.7 1167.97 1022.09 1014.47
16 1098.7 1209.1 1236.21 1216.84 1207.94
17 764.6 1248.8 1192.89 1231.67 1246.96
18 458.7 1002.4 1019.78 1023.80 1000.48
19 351.1 713.6 743.04 689.20 714.04
20 288.8 464.4 501.27 473.12 466.09
21 228.8 325.6 345.06 351.18 327.39
22 170.2 265.6 245.18 266.89 266.12
23 143 222.6 168.87 194.24 224.38

73399.33 26185 43.37

where #SV stands for the number of support vectors in the
model [19, 35] The SVM model is sparse in the sense that
the whole training data are represented by only support
vectors.The parameters of 𝜀-SVR are the maximum tolerable
error 𝜀 at the output, the regularization parameter C, the
number of training patterns 𝑁, and the width parameter 𝜎.
The major advantage of the 𝜀-SVR algorithm is that it allows
for the determination of the maximum total training error
beforehand by choosing a proper 𝜀 value.

3. Numerical Applications

In this study, we have tested modeling and prediction per-
formance of the proposed SVM structure on three different
flood problems. For each problem, we have gathered some
artificial and real-world data for modeling purposes. In this
comparative work, we have split our comparisons into two
cases. In Case I, in order to have a basis for fair comparisons
to other methods, all of the gathered data are used for only
training of SVM structure. In Case II, only some portions,
𝜇, of the data are used for training, while remaining data
are spared for validation and then the SVM approach is
compared to other models given in the literature. For both
cases in the training phase, all variables in each data set are

normalized to the interval [0, 1] and then an appropriate data
set for training is formed.Afterwards, SVMmodel is obtained
to give least possible training plus validation errors.

3.1. Application to Wilson Data [36]. Data sets reported
by Wilson are known to present a nonlinear relationship
between weighted discharge and storage and used extensively
in the literature as a benchmark problem. The number of
data in this example is 22. The comparison of the SVM to
other methods with respect to the prediction performances
for Example 1 is given in Table 1.

The Wilson flood data were modeled by Karahan et al.
(2014) using a nonlinear Muskingum model incorporating
lateral flow (NLMM-L) and SSE value was found as 9.823.
Chu (2009) presented the combined application of fuzzy
inference system (FIS) and Muskingummodel in flood rout-
ing. Chu (2009) found the SSE value as 4.830. More recently,
Karahan et al. (2014) have proposed a variable-parameter
nonlinear Muskingummodel incorporating lateral flow with
a weighted finite difference method [VPWFDM-L] and
applied this model to Wilson data. Karahan et al. (2014) have
reported the SSE value as 5.178. When the SVM model is
employed for the same flood data, the SSE value has been
found as 0.056, which is much better than that of other
methods.
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Table 3: Comparison of the observed and routed outflows for the River Wyre data.

Time (h) Input (cms) Output (cms) LMM-L NLMM-L SVM
[33] [30]

0 2.6 8.3 8.3 8.3 8.300
1 4.2 9 8.2 8.51 9.092
2 12.3 9.9 8.1 8.79 10.020
3 25.4 10.2 12.7 10.94 10.338
4 24.1 18.9 27.9 20.28 19.063
5 20.3 35.9 39.9 37.54 35.980
6 23.3 51.8 45.7 49.07 51.815
7 27.7 59.4 52.2 55.11 59.327
8 27.7 63.3 61.4 62.5 63.279
9 26.9 69.6 68.9 71.44 69.482
10 24.8 76.7 74.7 78.03 76.649
11 26.9 82 77.2 82.07 82.051
12 33.7 85.3 79.8 83.72 85.234
13 33.9 89 87.8 87.43 88.901
14 27.8 94.6 95.5 95.49 94.514
15 20.8 98.8 97.7 100.88 98.683
16 15.6 98 94.4 99.29 97.902
17 11.9 91.8 87.9 92.06 91.728
18 9.5 82.3 79.8 82.22 82.217
19 7.8 72 71.5 71.75 72.086
20 6.5 61.9 63.6 61.91 61.824
21 5.8 53 56.1 53.12 53.068
22 5 45.6 49.6 45.47 45.560
23 4.8 39.2 43.7 39.14 39.259
24 4.5 33.8 38.8 33.76 33.764
25 4.1 29.3 34.6 29.55 29.363
26 3.7 26.2 30.9 26.12 26.085
27 3.4 23.5 27.7 23.2 23.496
28 3.2 21.2 24.8 20.67 21.289
29 2.9 19.2 22.3 18.52 19.367
30 2.8 17.7 20.1 16.71 17.747
31 2.6 16.4 18.2 15.12 16.527
SSE 468.840 53.708 0.253

3.2. Application to Viessman and Lewis Data [37]. This exam-
ple is based on inflow and outflow hydrographs exhibiting
linear characteristics and presents a relatively difficult pre-
diction problem for flood routing, where there exist two
successively active floods.The number of data in this example
is 24.

Table 2 shows the comparison results numerically. It is
obviously seen that the SVM method outperforms others in
prediction of the flood dynamics, which can be attributed to
the proposed training and prediction structures and also the
generalization potentials of SVM approach.

As can be seen from Table 2, the SSE values are obtained
as 73399.33 for theNLMM-Lmodel, 26185 for theVPWFDM-
L model, and 43.37 for the SVM model, respectively. It is
observed from the results of Table 3 that the SSE value (0.253)
obtained by the SVMmodel for the River Wyre data is better
than those obtained when the LMM-L and NLMM-Lmodels
are used.

3.3. Application to River Wyre [33]. For the River Wyre data,
the flood volume between the inflow and the outflow sections
is 25 km, along which there are lateral flows that considerably
contribute to the flood [33]. Moreover, the input hydrograph
has multiple peaks.The number of data in this example is 32.

In the literature, the River Wyre flood data were first
modeled by O’Donnell (1985) using a linear Muskingum
model incorporating lateral flow (LMM-L) and the SSE value
was found as 468.840. Recently, Karahan et al. (2014) have
applied NLMM-L model to River Wyre flood data and have
reported the SSE value as 53.708. It is observed from the
results that the SSE value (0.253) obtained by the SVMmodel
for the River Wyre data is better than those obtained when
the LMM-L and NLMM-L models are used.

3.4. Verification of Model Robustness. In Sections 3.1–3.3,
the SVM models have been obtained by using whole data
and then compared to other methods in the literature. The
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Table 4: Average SSE values of the SVM approach for Wilson data, Viessman and Lewis data, and River Wyre data.

Data 𝜇 𝛿 = 0 𝛿 = 0.01 𝛿 = 0.05 𝛿 = 0.10

Wilson

0.9 1.389 1.627 2.013 2.691
0.8 3.486 4.120 4.160 7.738
0.7 7.284 8.473 8.835 10.818
0.6 12.540 14.872 17.878 21.755

Viessman and Lewis

0.9 12460.720 14446.716 18456.445 21172.915
0.8 34631.312 48888.423 50163.966 58837.181
0.7 83005.647 84387.246 112145.221 100247.301
0.6 124339.197 124324.518 118768.183 131235.761

River Wyre

0.9 5.760 9.895 11.922 7.788
0.8 218.236 55.846 70.096 289.540
0.7 291.692 161.367 133.620 363.987
0.6 331.883 271.468 239.053 440.319

results have shown that there is good agreement between
the predicted and measured outflows for the three examples
under investigation. However, it is possible that there may be
some erroneous and/or missing measurements in practical
applications. In order to test the performance of the proposed
SVM model under such conditions, input data have been
corrupted by additive uniformly distributed noise with zero
mean. The noisy data are obtained as [38, 39]

𝑄
∗

𝐼
(𝑡) = 𝑄𝐼 (𝑡) + 𝜆𝛿𝑄𝐼 (𝑡) , (12)

where QI(t) and Q∗I (t) stand for the noiseless and noisy
input flow rates at time t, respectively, 𝜆 represents the
measurements errors that are distributed uniformly between
−1 and 1, and 𝛿 is a noise level scalar between 0.0 and 0.1. In
this study, various noise level conditions, namely, 0.01, 0.05,
and 0.10, are considered and also it is assumed that some
portions (10 to 40 percent) of the data are missing in order
to investigate the effects of the missing data on the model
performance. In order to get more reliable results, the tests
have been performed at least 100 times for each case and then
their average SSE values have been given in Table 4.

As can be seen fromTable 4, only 𝜇 portion of data is used
for training, while its remaining part is spared for validation.
The test data are selected randomly out of the whole data set.
It is observed from numerical results that the SVM method
provides excellent prediction performance when there is no
measurement noise (𝛿 = 0) and the nearly whole data are
used (𝜇 = 0.9). On the other hand, as the level of the
measurement noise and the portion of the missing data are
increased, the model performance decreases expectedly. Still,
in the worst case (𝛿 = 0.1 and 𝜇 = 0.6) the proposed SVM
method provides acceptable performance.

4. Conclusions

In this study, a novel architecture for flood routing model has
been proposed and its efficiency is validated on three different
flood routing problems by employing SVM approach. Pro-
posed model is designed including the inputs and observed
and calculated outflows from the previous time step output,

thereby making the model more realistic.The SVM approach
has been implemented to capture the dynamics of the inves-
tigated floods from the observed data. In this study, higher
generalization capabilities have motivated us to employ the
SVM structure. After completing the learning phase, the
model has been performed to predict the routing outflows.
The proposed model has also been compared to the different
models in the literature.

The simulation results have revealed that when com-
bined with the powerful modeling tools, such as SVM,
the proposed architecture exhibits excellent modeling and
prediction performances for flood routing problems under
investigation. The results have also demonstrated that the
proposedmodel provides better prediction performance than
the ones existing in the literature when whole data are
used for training. Furthermore, SVM approach has been
employed when only some portions (60–90%) of the data
are used for training, and it has been observed that SVM
maintains its prediction performance up to an acceptable
level even if only 60% of the data are used for training under
noisy condition.Consequently, the proposedmodel possesses
higher applicability potential in forecasting outflows with
different inflow patterns and thus it can be employed for
solving flood routing problems.
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