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Given k pairs of complex numbers and vectors (closed under conjugation), we consider the inverse quadratic eigenvalue problem
of constructing 𝑛 × 𝑛 real matrices M, D, G, and K, where 𝑀 > 0, K and D are symmetric, and G is skew-symmetric, so that the
quadratic pencil 𝑄(𝜆) = 𝜆

2
𝑀 + 𝜆(𝐷 + 𝐺) + 𝐾 has the given k pairs as eigenpairs. First, we construct a general solution to this

problem with 𝑘 ≤ 𝑛. Then, with the special properties 𝐷 = 0 and 𝐾 < 0, we construct a particular solution. Numerical results
illustrate these solutions.

1. Introduction

Vibrating structures such as buildings, bridges, highways, and
airplanes are distributed parameter systems [1]. Very often a
distributed parameter system is first discretized to a matrix
second-order using techniques of finite element or finite dif-
ference, and then an approximate solution is obtained for the
discretized model. Associated with the matrix second-order
model is the eigenvalue problem of the quadratic pencil,

𝑄 (𝜆) ≡ 𝜆
2
𝑀 + 𝜆 (𝐷 + 𝐺) + 𝐾, (1)

where𝑀,𝐷,𝐺, and𝐾 are, respectively, mass, damping, gyro-
scopic and stiffness matrices.

The system represented by (1) is called damped gyro-
scopic system. In general, the gyroscopic matrix 𝐺 is always
skew-symmetric, the damping matrix 𝐷 and the stiffness
matrix 𝐾 are symmetric, the mass matrix 𝑀 is symmetric
positive definite, and they are all 𝑛 × 𝑛 real matrices. If 𝐺 = 0,
the system is called damped nongyroscopic system, and if
𝐷 = 0, the system is called undamped gyroscopic system.

The damped gyroscopic system has been widely studied
in two aspects: the quadratic eigenvalue problem (QEP) and
the quadratic inverse eigenvalue problem (QIEP). The QEP
involves finding scalars 𝜆 ∈ C and nonzero vectors x ∈ C𝑛,
called the eigenvalues and eigenvectors of the system, to
satisfy the algebraic equation𝑄(𝜆)x = 0, when the coefficient

matrices are given. Many authors have been devoted to this
kind of problems and a series of good results have been
made (see, e.g., [2–8]).The QIEP determines or estimates the
parameters of the system from observed or expected eigen-
information of 𝑄(𝜆). Our main interest in this paper is the
corresponding inverse problem: given partially measured
information about eigenvalues and eigenvectors, we recon-
struct matrices 𝑀, 𝐷, 𝐺, and 𝐾, satisfied with several con-
ditions, so that 𝑄(𝜆) has the given 𝑘 eigenpairs. The problem
we considered is stated as follows.

Problem 1. Given an eigeninformation pair (Λ,𝑋) ∈ R𝑘×𝑘 ×

R𝑛×𝑘 (𝑘 ≤ 𝑛), where

Λ = diag {𝜆[2]
1
, . . . , 𝜆

[2]

ℓ
, 𝜆
2ℓ+1

, . . . , 𝜆
𝑘
} , (2)

with

𝜆
[2]

𝑗
= [

𝛼
𝑗

𝛽
𝑗

−𝛽
𝑗

𝛼
𝑗

] ∈ R
2×2

, 𝛽
𝑗

̸= 0, for 𝑗 = 1, . . . , ℓ,

𝑋 = [x
1𝑅
, x
1𝐼
, . . . , x

ℓ𝑅
, x
ℓ𝐼
; x
2ℓ+1

, . . . , x
𝑘
] ,

(3)

find 𝑛 × 𝑛 real matrices 𝑀, 𝐷, 𝐺, and 𝐾, with 𝑀 being
symmetric definite, 𝐷 and 𝐾 being symmetric, and 𝐺 being
skew-symmetric, so that

𝑀𝑋Λ
2
+ (𝐷 + 𝐺)𝑋Λ + 𝐾𝑋 = 0. (4)
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In [9], Gohberg et al. developed a powerful GLR theory to
solve the QIEP of the undamped gyroscopic system. In [10],
Chu and Xu developed an elegant procedure to obtain a real-
valued spectral decomposition of the damped nongyroscopic
system. And then, Jia and Wei [11] derived a real-valued
spectral decomposition of the undamped gyroscopic system.
However, [10, 11] both need all the eigen-information of
𝑄(𝜆) to obtain the parameters, and it is often impractical
or impossible to obtain complete spectral information. Thus,
it becomes very interesting to consider a QIEP with only a
subset of eigenpairs known.

In [12], Kuo et al. constructed the solutions of the QIEP
of the damped nongyroscopic system with 𝑘 ≤ 𝑛 given
eigenpairs. And for the same system, Cai et al. [13] solved
the QIEP with 2𝑛 ≥ 𝑘 > 𝑛 given eigenpairs. Meanwhile, for
the damped gyroscopic system, Yuan [14] solved the QIEP
with 𝑘 given eigenpairs. In [14], Yuan constructed symmetric
positive semidefinite matrix 𝐷 and skew-symmetric matrix
𝐺 for 𝑄(𝜆), with 𝑀 > 0 and 𝐾 ≥ 0 as given matrices. So, it
becomes challenging to construct (𝑀,𝐷, 𝐺,𝐾) for damped
gyroscopic system (1) with 𝑘 given eigenpairs, and this is the
goal of this paper.

This paper is organized as follows. In Section 2, we estab-
lish the solubility theory of the Problem 1. In Section 3, we
develop a simple method to compute a particular solution to
the Problem 1 with 𝐷 = 0. Moreover, for 𝐷 = 0 and 𝐾 < 0,
a simple algorithm is developed to compute a solution in
Section 4. Some numerical results are presented in Section 5
to illustrate ourmain results. In the last section, some conclu-
sions and acknowledgements are given.

Throughout this paper, we use capital letters to denote
matrices, and lowercase (bold) letters to denote scalars (vec-
tors). 𝐴𝑇 denotes the transpose of the matrix 𝐴, 𝐼

𝑛
denotes

the 𝑛 × 𝑛 identity matrix, and 𝐴
† denotes the Moore-Penrose

generalized inverse of 𝐴. We write 𝐴 > 0 (𝐴 ≥ 0) if 𝐴 is
real symmetric positive (semidefinite). The spectrum of 𝐴 is
denoted by 𝜎(𝐴).

For simplicity, we make the following assumptions.

(A1) The eigenvector matrix 𝑋 in Problem 1 has full col-
umn rank, that is, rank (𝑋) = 𝑘.

(A2) The eigenvalue matrixΛ in Problem 1 has only simple
eigenvalues, that is, 0 ∉ 𝜎(Λ).

Remark 2. For the case that 0 ∈ 𝜎(Λ), using the assumption of
simple eigenvalues, we can partition Λ = diag{Λ

1
, 0}, where

Λ
1
has no zero eigenvalue, and then do discussion with Λ

1
.

So, in this paper, we only consider the case thatΛ has no zero
eigenvalue.

2. General Solution of the Problem

In this section, we will give a general solution to the Problem
1 for given matrix pair (Λ,𝑋) ∈ R𝑘×𝑘 ×R𝑛×𝑘 (𝑘 ≤ 𝑛) as in (2)
and (3). At the beginning, we will introduce some lemmas.

Lemma 3 (see [15]). Let 𝐴 ∈ R𝑚×ℓ and 𝐵 ∈ Rℓ×ℓ; then

𝐴
𝑇
𝑋 − 𝑋

𝑇
𝐴 = 𝐵 (5)

has a solution 𝑋 ∈ R𝑚×ℓ if and only if

𝐵
𝑇
= −𝐵, (𝐼

ℓ
− 𝐴
†
𝐴)𝐵 (𝐼

ℓ
− 𝐴
†
𝐴) = 0, (6)

where 𝐴† is the Moore-Penrose generalized inverse of 𝐴.
When condition (6) is satisfied, the general solution of (5) is

𝑋 =

1

2

(𝐴
†
)

𝑇

𝐵𝐴
†
𝐴 + (𝐴

†
)

𝑇

𝐵 (𝐼
ℓ
− 𝐴
†
𝐴)

+ (𝐼
𝑚
− 𝐴𝐴
†
) 𝑌 + 𝐴𝐴

†
𝑍𝐴,

(7)

where𝑌 ∈ R𝑚×ℓ is arbitrary and𝑍 ∈ R𝑚×𝑚 is constrained only
by the symmetry requirement that

(𝐴𝐴
†
𝑍𝐴𝐴
†
)

𝑇

= 𝐴𝐴
†
𝑍𝐴𝐴
†
. (8)

Lemma 3 directly results in the following lemma.

Lemma 4. Let 𝐴 ∈ R𝑚×𝑚 be a nonsingular matrix and 𝐵 ∈

R𝑚×𝑚; then

𝐴
𝑇
𝑋 − 𝑋

𝑇
𝐴 = 𝐵 (9)

has a solution 𝑋 ∈ R𝑚×𝑚 if and only if

𝐵
𝑇
= −𝐵, (10)

in which case the general solution is 𝑋 = (1/2)𝐴
−𝑇

𝐵 + 𝑍𝐴,
where 𝑍 = 𝑍

𝑇
∈ R𝑚×𝑚 is an arbitrary matrix.

Given matrix pair (Λ,𝑋) ∈ R𝑘×𝑘 × R𝑛×𝑘 (𝑘 ≤ 𝑛) as in
Problem 1: let

𝑋 = 𝑄[

𝑅

0
] (11)

be the QR-factorization of 𝑋, where 𝑄 ∈ R𝑛×𝑛 is orthogonal
and 𝑅 ∈ R𝑘×𝑘 is upper triangular. We may require that 𝑅 has
positive diagonal entries, since𝑋 is of full column rank.

Let 𝐶 = 𝐷 + 𝐺, so that finding 𝑀, 𝐷, 𝐺, and 𝐾 which
satisfy (4) is equivalent to finding𝑀, 𝐶, and𝐾 which satisfy

𝑀𝑋Λ
2
+ 𝐶𝑋Λ + 𝐾𝑋 = 0, (12)

and the relations of 𝐶,𝐷, and 𝐺 are

𝐷 =

1

2

(𝐶 + 𝐶
𝑇
) , 𝐺 =

1

2

(𝐶 − 𝐶
𝑇
) . (13)

Let 𝑆 = 𝑅Λ𝑅
−1; we can see 𝑆

−1 exists by using 0 ∉ 𝜎(Λ).
Denoting

𝑀
𝑄
= 𝑄
𝑇
𝑀𝑄 = [

𝑀
11

𝑀
12

𝑀
21

𝑀
22

] , (14)

𝐶
𝑄
= 𝑄
𝑇
𝐶𝑄 = [

𝐶
11

𝐶
12

𝐶
21

𝐶
22

] , (15)

𝐾
𝑄
= 𝑄
𝑇
𝐾𝑄 = [

𝐾
11

𝐾
12

𝐾
21

𝐾
22

] , (16)

where 𝑀
11
, 𝐶
11
, 𝐾
11

∈ R𝑘×𝑘, 𝑀
12

= 𝑀
𝑇

21
, 𝐾
12

= 𝐾
𝑇

21
, 𝐶
12
,

𝐶
𝑇

21
∈ R𝑘×(𝑛−𝑘), 𝑀

22
, 𝐶
22
, 𝐾
22

∈ R(𝑛−𝑘)×(𝑛−𝑘), we will obtain
the following main theorem.
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Theorem 5. Let 𝑀
𝑄
, 𝐶
𝑄
, and 𝐾

𝑄
be defined as in (14)–(16);

then there are real matrices𝑀, 𝐶 = 𝐷 + 𝐺 and 𝐾 satisfy (4) if
and only if

(i) [𝑀11 𝑀12
𝑀
21
𝑀
22

] is arbitrarily symmetric positive definite,
(ii) 𝐶
12
, 𝐶
21
, 𝐶
22
are arbitrary,

(iii) 𝐾
22

= 𝐾
𝑇

22
is arbitrary symmetric,

(iv) 𝐶
11

= (1/2)(𝑆
2
)
𝑇
𝑀
11
𝑆
−1

− (1/2)𝑀
11
𝑆 + 𝑆
𝑇
𝑍, where

𝑍 ∈ R𝑘×𝑘 is arbitrary symmetric,
(v) 𝐾
11

= 𝐾
𝑇

11
= −((1/2)(𝑆

2
)
𝑇
𝑀
11

+ (1/2)𝑀
11
𝑆
2
+ 𝑆
𝑇
𝑍𝑆),

(vi) 𝐾
21

= 𝐾
𝑇

12
= −(𝑀

21
𝑆
2
+ 𝐶
21
𝑆).

Furthermore,𝐷 and 𝐺 can be expressed as in (13).

Proof. Necessity. From (14)–(16), we know𝑀 = 𝑄𝑀
𝑄
𝑄
𝑇,𝐶 =

𝑄𝐶
𝑄
𝑄
𝑇, and 𝐾 = 𝑄𝐾

𝑄
𝑄
𝑇; substituting them and (11) into

(12), we have

𝑀
11
𝑆
2
+ 𝐶
11
𝑆 + 𝐾
11

= 0, (17)

𝑀
21
𝑆
2
+ 𝐶
21
𝑆 + 𝐾
21

= 0. (18)

Thus, finding𝑀,𝐶, and𝐾which satisfy (12) is equivalent
to finding the submatrices 𝑀

11
, 𝑀
21
, 𝐶
11
, 𝐶
21
, 𝐾
11
, and 𝐾

21

which satisfy (17) and (18). Clearly, it follows from (18) that
𝐾
21
is determined by

𝐾
21

= 𝐾
𝑇

12
= − (𝑀

21
𝑆
2
+ 𝐶
21
𝑆) , (19)

where𝑀
21
and 𝐶

21
are arbitrary.

As𝑀 and𝐾 are required to be symmetric positive definite
and symmetric, respectively, so are 𝑀

11
and 𝐾

11
in (14) and

(16). From (17) it follows that

𝐾
11

= −𝑀
11
𝑆
2
− 𝐶
11
𝑆. (20)

Let 𝑀
11

be an arbitrary symmetric positive definite
matrix. We need to find 𝐶

11
such that 𝐾

11
is symmetric; that

is, it satisfies

(𝑀
11
𝑆
2
+ 𝐶
11
𝑆)

𝑇

= 𝑀
11
𝑆
2
+ 𝐶
11
𝑆. (21)

After rearrangement, (21) becomes

𝑆
𝑇
𝐶
𝑇

11
− 𝐶
11
𝑆 = 𝑀

11
𝑆
2
− (𝑆
2
)

𝑇

𝑀
11
. (22)

Because (𝑀
11
𝑆
2
− (𝑆
2
)
𝑇
𝑀
11
)
𝑇
= −(𝑀

11
𝑆
2
− (𝑆
2
)
𝑇
𝑀
11
) and 𝑆

is nonsingular, we can get from Lemma 4 that

𝐶
11

=

1

2

(𝑆
2
)

𝑇

𝑀
11
𝑆
−1

−

1

2

𝑀
11
𝑆 + 𝑆
𝑇
𝑍, (23)

where𝑍 ∈ R𝑘×𝑘 is arbitrary symmetric. Substituting (23) into
(20) yields (v). Furthermore, 𝐷 and 𝐺 can be expressed as in
(13).

Sufficiency. From the description of (i)–(vi), we can obtain
that (12) holds; thus (4) holds with

𝐷 =

1

2

(𝐶 + 𝐶
𝑇
) , 𝐺 =

1

2

(𝐶 − 𝐶
𝑇
) .

(24)

Remark 6. The general solution to the Problem 1 with 𝐺 = 0

and (𝑘 ≤ 𝑛) prescribed eigenpairs has been given in [12], here,
we generalize its solution to the case of 𝐺 ̸= 0.

Remark 7. It is complicated for the more general case
rank(𝑋) < 𝑘, and we will discuss it in our next work. How-
ever, here we provide a simple solution. We can select the
linear independent columns and the relevant eigenvalues to
construct a new𝑋

󸀠 and Λ
󸀠, then do discussion with them.

Remark 8. When 𝑘 = 𝑛, by Theorem 5, the general solution
of the Problem 1 is given by

𝑀 = 𝑄𝑀
𝑄
𝑄
𝑇
, 𝐶 = 𝑄𝐶

𝑄
𝑄
𝑇
, 𝐾 = 𝑄𝐾

𝐺
𝑄
𝑇
,

(25)

where

𝐶
𝑄
=

1

2

(𝑆
2
)

𝑇

𝑀
𝑄
𝑆
−1

−

1

2

𝑀
𝑄
𝑆 + 𝑆
𝑇
𝑍,

𝐾
𝑄
= −(

1

2

(𝑆
2
)

𝑇

𝑀
𝑄
+

1

2

𝑀
𝑄
𝑆
2
+ 𝑆
𝑇
𝑍𝑆) ,

(26)

with𝑀
𝑄
> 0 and𝑀

𝑄
= 𝑀
𝑇

𝑄
which can be arbitrarily chosen

and 𝑍 ∈ 𝑅̂
𝑛×𝑛 is arbitrarily symmetric.

Using Theorem 5, we can construct a solution to the
Problem 1 as follows.

Algorithm 9. An algorithm for solving Problem 1 is proposed
as follows.

(1) Input Λ and 𝑋, compute the QR decomposition of 𝑋
according to (11), and compute 𝑆 = 𝑅Λ𝑅

−1.
(2) Choose a symmetric positive definite matrix𝑀

11
and

a symmetric matrix 𝑍, arbitrarily. Compute 𝐶
11

and
𝐾
11
by (iv) and (v) inTheorem 5, respectively.

(3) Choose arbitrary 𝑀
21

and 𝐶
21
, and compute 𝐾

21
by

(vi) in Theorem 5,𝑀
12

= 𝑀
𝑇

21
and𝐾

12
= 𝐾
𝑇

21
.

(4) Choose a symmetric positive definite matrix 𝑀̂ ∈

R(𝑛−𝑘)×(𝑛−𝑘); compute𝑀
22

= 𝑀̂ + 𝑀
21
𝑀
−1

11
𝑀
𝑇

21
.

(5) Choose arbitrarymatrices𝐶
12
and𝐶

22
and a symmet-

ric matrix𝐾
22
, and form

𝑀 = 𝑄𝑀
𝑄
𝑄
𝑇
, 𝐶 = 𝑄𝐶

𝑄
𝑄
𝑇
, 𝐾 = 𝑄𝐾

𝑄
𝑄
𝑇
,

(27)

where 𝑄 is given by (11). Compute𝐷 and 𝐺 by (13).

3. Particular Solutions with 𝐷=0

As we all know, the applications of the undamped gyroscopic
system (i.e., 𝐷 = 0) exist in many fields; for details, see [5].
In this section, we will discuss the particular solutions of
Problem 1 with 𝐷 = 0 and (𝑘 ≤ 𝑛) prescribed eigenpairs.
And in this case, 𝑄(𝜆) in (1) becomes

𝑄 (𝜆) ≡ 𝜆
2
𝑀 + 𝜆𝐺 + 𝐾. (28)
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It is well known that the eigenvalues of (28) have a Ham-
iltonian structure; that is, they occur in quadruples (𝜆, 𝜆, −𝜆,
−𝜆), possibly collapsing to real or imaginary pairs or single-
zero eigenvalues. In [11], Jia andWei discussed the eigenvalues
of𝑄(𝜆) in (28) and separated them into four categories. From
the assumption (A2), we can know 𝑘 is even. Here we rewrite
the given eigeninformation pair (Λ,𝑋) of Problem 1 as

Λ = diag {Λ
1
, Λ
2
, . . . , Λ

ℓ
3

} , (29)

with

Λ
𝑗
= diag{[

𝛼
𝑗

𝛽
𝑗

−𝛽
𝑗

𝛼
𝑗

] , [

−𝛼
𝑗

𝛽
𝑗

−𝛽
𝑗

−𝛼
𝑗

]} ∈ R
4×4

,

𝛼
𝑗
> 0, 𝛽

𝑗
> 0, 𝑗 = 1, . . . , ℓ

1
,

Λ
𝑗
= [

0 𝛽
𝑗

−𝛽
𝑗

0
] ∈ R

2×2
, 𝛽
𝑗
> 0, 𝑗 = ℓ

1
+ 1, . . . , ℓ

2
,

Λ
𝑗
= [

𝛼
𝑗

0

0 −𝛼
𝑗

] ∈ R
2×2

, 𝛼
𝑗
> 0, 𝑗 = ℓ

2
+ 1, . . . , ℓ

3
,

(30)

𝑋 = [x
1𝑅
+ , x
1𝐼
+ , x
1𝑅
− , x
1𝐼
− , . . . , x

ℓ
1
𝑅
+ , x
ℓ
1
𝐼
+ , x
ℓ
1
𝑅
− , x
ℓ
1
𝐼
− ;

x
(ℓ
1
+1)𝑅

, x
(ℓ
1
+1)𝐼

, . . . , x
ℓ
2
𝑅
, x
ℓ
2
𝐼
;

x
(ℓ
2
+1)𝑅
+ , x
(ℓ
2
+1)𝑅
− , . . . , x

ℓ
3
𝑅
+ , x
ℓ
3
𝑅
−] ,

(31)

where

[x
𝑗𝑅
+ ± 𝑖x
𝑗𝐼
+ , 𝛼
𝑗
± 𝑖𝛽
𝑗
] ,

[x
𝑗𝑅
− ± 𝑖x
𝑗𝐼
− , −𝛼
𝑗
± 𝑖𝛽
𝑗
] ,

𝑗 = 1, . . . , ℓ
1
;

[x
𝑗𝑅

± 𝑖x
𝑗𝐼
, ±𝑖𝛽
𝑗
] , 𝑗 = ℓ

1
+ 1, . . . , ℓ

2
;

[x
𝑗𝑅
± , ±𝛼
𝑗
] , 𝑗 = ℓ

2
+ 1, . . . , ℓ

3
,

(32)

are eigenpairs, and 4ℓ
1
+2(ℓ
2
−ℓ
1
)+2(ℓ

3
−ℓ
2
) = 2ℓ

1
+2ℓ
3
= 𝑘.

In this section, the Problem 1 becomes the following
problem.

Given an eigeninformation pair (Λ,𝑋)(𝑘 ≤ 𝑛) with (29)–
(31), find 𝑛 × 𝑛 real matrices 𝑀, 𝐺, and 𝐾, with 𝑀 being
symmetric definite, 𝐾 being symmetric, and 𝐺 being skew-
symmetric, so that,

𝑀𝑋Λ
2
+ 𝐺𝑋Λ + 𝐾𝑋 = 0. (33)

As well as in Section 2, let

𝐺
𝑄
= 𝑄
𝑇
𝐺𝑄 = [

𝐺
11

𝐺
12

𝐺
21

𝐺
22

] , (34)

where 𝐺
𝑄
is partitioned conforming with that of 𝑀 in (14),

and we can easily calculate that 𝐺 also satisfies the action of
𝐶 in Section 2, except that 𝐺 has an additional property, that
is, 𝐺𝑇 = −𝐺. In the following theorem, we will discuss the
solubility of Problem 1 with𝐷 = 0 and 𝑘 ≤ 𝑛.

Theorem 10. Let 𝑀
𝑄
, 𝐾
𝑄
, and 𝐺

𝑄
be defined as in (14), (16)

and (34); then there are realmatrices𝑀,𝐺, and𝐾which satisfy
(33) if and only if

(i) [𝑀11 𝑀12
𝑀
21
𝑀
22

] is arbitrarily symmetric positive definite,

(ii) 𝐺
12

= −𝐺
𝑇

21
and 𝐺

22
= −𝐺
𝑇

22
are arbitrary,

(iii) 𝐾
22

= 𝐾
𝑇

22
is arbitrary symmetric,

(iv) 𝐺
11

= −𝐺
11

= −𝑅
−𝑇

Γ𝑅
−1

− 𝑀
11
𝑆 + 𝑆
𝑇
𝑀
11
,

(v) 𝐾
11

= 𝐾
𝑇

11
= 𝑅
−𝑇

ΓΛ𝑅
−1

− 𝑆
𝑇
𝑀
11
𝑆,

(vi) 𝐾
21

= 𝐾
𝑇

12
= −(𝑀

21
𝑆
2
+ 𝐺
21
𝑆),

in which

Γ = diag
{
{
{

{
{
{

{

[

[

[

[

0 0 𝜉
1

𝜂
1

0 0 −𝜂
1

𝜉
1

−𝜉
1

𝜂
1

0 0

−𝜂
1

−𝜉
1

0 0

]

]

]

]

, . . . ,

[

[

[

[

0 0 𝜉
ℓ
1

𝜂
ℓ
1

0 0 −𝜂
ℓ
1

𝜉
ℓ
1

−𝜉
ℓ
1

𝜂
ℓ
1

0 0

−𝜂
ℓ
1

−𝜉
ℓ
1

0 0

]

]

]

]

,

[

0 𝜂
ℓ
1
+1

−𝜂
ℓ
1
+1

0
] , . . . , [

0 𝜂
ℓ
3

−𝜂
ℓ
3

0
]

}
}
}

}
}
}

}

,

(35)

with 𝜉
𝑗
and 𝜂
𝑗
being arbitrary real numbers.

Proof. Necessity. Same as the proof of Theorem 5, we can get

𝐾
21

= 𝐾
𝑇

12
= − (𝑀

21
𝑆
2
+ 𝐺
21
𝑆) , (36)

where𝑀
21
and 𝐺

21
are arbitrary. We also have

𝐾
11

= −𝑀
11
𝑆
2
− 𝐺
11
𝑆, (37)

and 𝐺
11
satisfies

(𝑀
11
𝑆
2
+ 𝐺
11
𝑆)

𝑇

= 𝑀
11
𝑆
2
+ 𝐺
11
𝑆. (38)

After rearrangement, (38) becomes

𝐺
11
𝑆 + 𝑆
𝑇
𝐺
11

= −𝑀
11
𝑆
2
+ (𝑆
2
)

𝑇

𝑀
11
. (39)

It is easily seen that (39) has a particular solution

𝐺
(0)

11
= −𝑀

11
𝑆 + 𝑆
𝑇
𝑀
11
. (40)

Next, we consider the homogeneous equation

𝐺
11
𝑆 + 𝑆
𝑇
𝐺
11

= 0. (41)

Substituting 𝑆 = 𝑅Λ𝑆
−1 into (41), we get

(𝑅
𝑇
𝐺
11
𝑅)Λ + Λ

𝑇
(𝑅
𝑇
𝐺
11
𝑅) = 0. (42)
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Write Γ ≡ 𝑅
𝑇
𝐺
11
𝑅 = (Γ

𝑚𝑗
), where Γ is partitioned conforming

with that of Λ in (29). Then we observe that

Γ
𝑚𝑗
Λ
𝑗
+ Λ
𝑇

𝑚
Γ
𝑚𝑗

= 0, 𝑚, 𝑗 = 1, . . . , ℓ
3
. (43)

When𝑚 ̸= 𝑗, (43) can be rewritten as

[(Λ
𝑇

𝑗
) ⊗ 𝐼 + 𝐼 ⊗ (Λ

𝑇

𝑚
)] vec (Γ

𝑚𝑗
) = 0, (44)

in which ⊗ stands for the Kronecker product and vec stands
for the column vectorization of a matrix. Because 𝑚 ̸= 𝑗, and
assumption (A2), we know that (Λ

𝑇

𝑗
) ⊗ 𝐼 + 𝐼 ⊗ (Λ

𝑇

𝑚
) is

nonsingular; therefore vec(Γ
𝑚𝑗
) = 0, so Γ

𝑚𝑗
= 0.

Now we discuss the structures of matrices Γ
𝑗𝑗
, 𝑗 =

1, . . . , ℓ
3
, which are skew-symmetric. For simplicity, we

denote Γ
𝑗𝑗
by Γ
𝑗
. Then we need to solve

Γ
𝑗
Λ
𝑗
+ Λ
𝑇

𝑗
Γ
𝑗
= 0, 𝑗 = 1, . . . , ℓ

3
. (45)

Since Λ
𝑗
has the form in (30), we can easily compute that the

general solution of (45) has the form

Γ
𝑗
=

[

[

[

[

0 0 𝜉
𝑗

𝜂
𝑗

0 0 −𝜂
𝑗

𝜉
𝑗

−𝜉
𝑗

𝜂
𝑗

0 0

−𝜂
𝑗

−𝜉
𝑗

0 0

]

]

]

]

, 𝑗 = 1, . . . , ℓ
1
,

Γ
𝑗
= [

0 𝜂
𝑗

−𝜂
𝑗

0
] , 𝑗 = ℓ

1
+ 1, . . . , ℓ

3
.

(46)

Thus, the general solution of the homogeneous equation (41)
has the form

𝐺
11

= 𝑅
−𝑇

Γ𝑅
−1
, (47)

with Γ defined in (35). This, together with (40), gives rise to
the general solution of (39)

𝐺
11

= −𝑅
−𝑇

Γ𝑅
−1

− 𝑀
11
𝑆 + 𝑆
𝑇
𝑀
11
. (48)

Substituting (48) into (37) yields (v).

Sufficiency. From the description of (i)–(vi), we can obtain
that (33) holds.

Remark 11. When 𝑘 = 𝑛, by Theorem 10, the solution of the
Problem 1 with𝐷 = 0 is given by

𝑀 = 𝑄𝑀
𝑄
𝑄
𝑇
, 𝐺 = 𝑄𝐺

𝑄
𝑄
𝑇
, 𝐾 = 𝑄𝐾

𝐺
𝑄
𝑇
,

(49)

where

𝐺
𝑄
= −𝑅
−𝑇

Γ𝑅
−1

− 𝑀
𝑄
𝑆 + 𝑆
𝑇
𝑀
𝑄
,

𝐾
𝑄
= 𝑅
−𝑇

ΓΛ𝑅
−1

− 𝑆
𝑇
𝑀
𝑄
𝑆,

(50)

with𝑀
𝑄
> 0 and𝑀

𝑄
= 𝑀
𝑇

𝑄
which can be arbitrarily chosen.

4. Particular Solution with 𝐷= 0 and 𝐾< 0

In practice, the matrix 𝐾 in the Problem 1 with 𝐷 = 0 is
sometimes required to be symmetric negative definite [5]. In
this section, we will apply Theorem 10 to construct such a
solution. We first prove the following lemma.

Lemma 12. For any given matrix defined in (35), we can
construct a symmetric positive definite matrix𝑀

11
so that𝐾

11

defined in Theorem 10 is symmetric negative definite.

Proof. Since 𝑆 = 𝑅Λ𝑅
−1, it is easy to see that 𝐾

11
in

Theorem 10 is symmetric negative definite if and only if the
matrix

ΓΛ − Λ
𝑇
𝑅
𝑇
𝑀
11
𝑅Λ (51)

is symmetric negative definite.
By the assumption (A2), we can first construct a symmet-

ric positive definite matrix 𝑀̃ so that −𝑀̃ + ΓΛ < 0. Then we
use 𝑀̃ to construct the desired𝑀

11
.

From (35) and (30), we denote

ΓΛ = diag {Γ
1
Λ
1
, . . . , Γ

ℓ
3

Λ
ℓ
3

} (52)

with

Γ
𝑗
Λ
𝑗
=

[

[

[

[

0 0 𝜃
𝑗

𝜔
𝑗

0 0 −𝜔
𝑗

𝜃
𝑗

𝜃
𝑗

−𝜔
𝑗

0 0

𝜔
𝑗

𝜃
𝑗

0 0

]

]

]

]

,

𝜃
𝑗
= −𝛼
𝑗
𝜉
𝑗
− 𝛽
𝑗
𝜂
𝑗

𝜔
𝑗
= −𝛼
𝑗
𝜂
𝑗
+ 𝛽
𝑗
𝜉
𝑗
,

𝑗 = 1, . . . , ℓ
1
,

Γ
𝑗
Λ
𝑗
= [

𝜃
𝑗

0

0 𝜃
𝑗

] , 𝜃
𝑗
= −𝛽
𝑗
𝜂
𝑗
, 𝑗 = ℓ

1
+ 1, . . . , ℓ

2
,

Γ
𝑗
Λ
𝑗
= [

0 𝜔
𝑗

𝜔
𝑗

0
] , 𝜔

𝑗
= −𝛼
𝑗
𝜂
𝑗
, 𝑗 = ℓ

2
+ 1, . . . , ℓ

3
.

(53)

Here 𝜉
𝑗
and 𝜂
𝑗
are arbitrary real numbers. Take

𝑀̃ = diag {𝑀̃
1
, 𝑀̃
2
, . . . , 𝑀̃

ℓ
3

} , (54)

with

𝑀̃
𝑗
=

[

[

[

[

𝑥
𝑗

𝑧
𝑗

𝜃
𝑗

𝜔
𝑗

𝑧
𝑗

𝑦
𝑗

−𝜔
𝑗

𝜃
𝑗

𝜃
𝑗

−𝜔
𝑗

𝑎
𝑗

𝑐
𝑗

𝜔
𝑗

𝜃
𝑗

𝑐
𝑗

𝑏
𝑗

]

]

]

]

, 𝑗 = 1, . . . , ℓ
1
,

𝑀̃
𝑗
= [

𝑥
𝑗

0

0 𝑦
𝑗

] , 𝑗 = ℓ
1
+ 1, . . . , ℓ

2
,

𝑀̃
𝑗
= [

𝑥
𝑗

𝜔
𝑗

𝜔
𝑗

𝑦
𝑗

] , 𝑗 = ℓ
2
+ 1, . . . , ℓ

3
.

(55)
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Using (53), if we choose 𝑥
𝑗
, 𝑦
𝑗
, 𝑧
𝑗
, 𝑎
𝑗
, 𝑏
𝑗
, and 𝑐

𝑗
such that

𝑥
𝑗
, 𝑦
𝑗
, 𝑎
𝑗
, 𝑏
𝑗
> 0, 𝑗 = 1, . . . , ℓ

3
,

𝑥
𝑗
>

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝜃
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝜔
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑗
>

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝜃
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝜔
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
𝑗
>

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝜃
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝜔
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑏
𝑗
>

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝜃
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝜔
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑗 = 1, . . . , ℓ
1
,

𝑥
𝑗
> 𝜃
𝑗

𝑦
𝑗
> 𝜃
𝑗
,

𝑗 = ℓ
1
+ 1, . . . , ℓ

2
,

𝑥
𝑗
>

󵄨
󵄨
󵄨
󵄨
󵄨
𝜔
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑗
>

󵄨
󵄨
󵄨
󵄨
󵄨
𝜔
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑗 = ℓ
2
+ 1, . . . , ℓ

3
,

(56)

then 𝑀̃ > 0 and ΓΛ − 𝑀̃ < 0. Obviously, such real numbers
𝑥
𝑗
, 𝑦
𝑗
, 𝑧
𝑗
, 𝑎
𝑗
, 𝑏
𝑗
, and 𝑐

𝑗
can be easily chosen. Once 𝑀̃ is

determined, the required𝑀
11
can be chosen by

𝑀
11

= 𝑅
−𝑇

Λ
−𝑇

𝑀̃Λ
−1
𝑅
−1
. (57)

Furthermore,

𝐾
11

= 𝑅
−𝑇

(ΓΛ − 𝑀̃) 𝑅
−1
. (58)

Using Lemma 12, we can construct a particular solution
to the Problem 1 with𝐷 = 0, 𝐾 < 0 as follows.

Algorithm 13. An algorithm for solving the Problem 1 with
𝐷 = 0, 𝐾 < 0 is proposed as follows.

(1) Input Λ and 𝑋, compute the QR decomposition of 𝑋
according to (11), and compute 𝑆 = 𝑅Λ𝑅

−1.
(2) Choose Γ as in (35) arbitrarily and compute ΓΛ by (52)

and (53).
(3) Construct a symmetric positive definite matrix 𝑀

11

by (54)–(57), compute 𝐺
11

by (iv), and compute 𝐾
11

by (v) inTheorem 10 or by (58).
(4) Choose arbitrary 𝑀

21
and 𝐺

21
, and compute 𝐾

21
by

(vi) in Theorem 10,𝑀
12

= 𝑀
𝑇

21
and 𝐺

12
= −𝐺
𝑇

21
𝐾
12

=

𝐾
𝑇

21
.

(5) Choose a symmetric positive definite matrix 𝑀̂ ∈

R(𝑛−𝑘)×(𝑛−𝑘) and a symmetric negative definite matrix
𝐾̂ ∈ R(𝑛−𝑘)×(𝑛−𝑘); compute 𝑀

22
= 𝑀̂ + 𝑀

21
𝑀
−1

11
𝑀
𝑇

21
,

𝐾
22

= 𝐾̂ + 𝐾
21
𝐾
−1

11
𝐾
𝑇

21
.

(6) Choose an arbitrary skew-symmetric matrix𝐺
22
, and

form

𝑀 = 𝑄𝑀
𝑄
𝑄
𝑇
, 𝐺 = 𝑄𝐺

𝑄
𝑄
𝑇
, 𝐾 = 𝑄𝐾

𝑄
𝑄
𝑇
,

(59)

where 𝑄 is given by (11).

Remark 14. When 𝑘 = 𝑛, we only need to choose 𝑀̃ by (54)–
(56), and compute𝑀

𝑄
by (57), that is,𝑀

11
is the whole𝑀

𝑄
;

then use the same method described in Remark 8, we can
obtain the particular solution of the Problem 1 with 𝐷 = 0

and𝐾 < 0.

5. Numerical Examples

In this section, we present two numerical examples to illus-
trate the solutions constructed in Sections 2 and 4, respec-
tively. For presentation, we report all numbers in 5 significant
digits only, though all calculations are carried out in full
precision.

Example 1. In this example, we use Algorithm 9 to construct
the general solution of the Problem 1.The partially prescribed
eigeninformation (Λ,𝑋) ∈ R4×4 × R6×4 as in (2)-(3) is given
by the following eigenvalues and eigenvectors, which are from
[12]:

𝜆
1
= 𝜆
2
= 3.5121 + 8.2485𝑖, 𝜆

3
= 1.7541,

𝜆
4
= 1.2956,

x
1
= x
2
=

[

[

[

[

[

[

[

[

9.2963 + 1.0480𝑖

2.3965 + 3.5650𝑖

3.8789 + 6.5809𝑖

2.8644 + 4.9742𝑖

1.5007 + 1.1356𝑖

1.9623 + 6.5805𝑖

]

]

]

]

]

]

]

]

,

x
3
=

[

[

[

[

[

[

[

[

8.3476

8.0946

5.5542

9.2809

4.0705

2.8111

]

]

]

]

]

]

]

]

, x4 =

[

[

[

[

[

[

[

[

6.6044

9.3147

2.5443

2.1294

8.1057

2.7021

]

]

]

]

]

]

]

]

.

(60)

It is easy to check that the matrix pair (Λ,𝑋) satisfy the
assumptions (A1) and (A2). According to Algorithm 9, by
randomly choosing

𝑀
𝑄
= diag {1, 2, 5, 4, 3, 6} , 𝑍 = diag {1, −1, 1, −1} ,

𝐶
21

= [

8.3812 6.8128 8.3180 7.0947

0.1964 3.7948 5.0281 4.2889
] ,

𝐶
12

=

[

[

[

[

3.0462 3.0276

1.8965 5.4167

1.9343 1.5087

6.8222 6.9790

]

]

]

]

,

𝐶
22

= [

3.7837 8.5366

8.6001 5.9356
] , 𝐾

22
= diag {5, 3} ,

(61)
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we can figure out

𝑀 =

[

[

[

[

[

[

[

[

1.4247 −0.4938 −0.5602 −0.2909 −0.2889 0.3442

−0.4938 3.7424 −0.2183 0.0056 0.4770 −0.9513

−0.5602 −0.2183 4.2872 −1.2080 −0.4976 −1.4334

−0.2909 0.0056 −1.2080 3.9308 −0.0853 −0.4537

−0.2889 0.4770 −0.4976 −0.0853 3.5470 −0.0537

0.3442 −0.9513 −1.4334 −0.4537 −0.0537 4.0679

]

]

]

]

]

]

]

]

,

𝐷 =

[

[

[

[

[

[

[

[

−16.1765 −18.7748 18.4420 −15.6724 −16.2922 30.1788

−18.7748 26.5196 −11.6072 30.7981 9.2453 −23.3017

18.4420 −11.6072 15.3413 −23.9250 −18.8430 12.6821

−15.6724 30.7981 −23.9250 24.9224 16.3251 −29.7442

−16.2922 9.2453 −18.8430 16.3251 16.5213 −8.0033

30.1788 −23.3017 12.6821 −29.7442 −8.0033 14.5419

]

]

]

]

]

]

]

]

,

𝐺 =

[

[

[

[

[

[

[

[

0 −30.6848 11.0912 −25.4607 −16.6322 16.4642

30.6848 0 2.0333 −4.7658 2.4935 −4.0359

−11.0912 −2.0333 0 −0.2491 1.5886 0.9319

25.4607 4.7658 0.2491 0 5.0743 −8.6382

16.6322 −2.4935 −1.5886 −5.0743 0 −4.0057

−16.4642 4.0359 −0.9319 8.6382 4.0057 0

]

]

]

]

]

]

]

]

,

𝐾 =

[

[

[

[

[

[

[

[

152.5248 60.1590 89.1902 −73.6227 −110.6742 70.6382

60.1590 −64.7406 −67.6143 −37.9090 15.3304 −77.6697

89.1902 −67.6143 40.8772 −18.4866 25.8457 9.9577

−73.6227 −37.9090 −18.4866 −1.2165 30.9425 15.3983

−110.6742 15.3304 25.8457 30.9425 11.0952 50.7649

70.6382 −77.6697 9.9577 15.3983 50.7649 −31.7764

]

]

]

]

]

]

]

]

.

(62)

It is easy to check that𝑀 is symmetric positive definite,𝐷
and 𝐾 are symmetric, and 𝐺 is skew-symmetric. We define
the residual as

res (𝜆
𝑗
, x
𝑗
) =

󵄩
󵄩
󵄩
󵄩
󵄩
(𝜆
2

𝑗
𝑀 + 𝜆

𝑗
(𝐷 + 𝐺) + 𝐾) x

𝑗

󵄩
󵄩
󵄩
󵄩
󵄩2
, (63)

and the numerical results are shown in Table 1. This shows
that Algorithm 9 to construct the general solution of the
Problem 1 is effective.

Example 2. In this example, we use Algorithm 13 to construct
the general solution of the Problem 1 with 𝐷 = 0 and
𝐾 < 0. The partially prescribed eigeninformation (Λ,𝑋) ∈

R8×8 × R8×8 as in (29)–(31) is given by randomly generated
eigenvalues and eigenvectors

𝜆
1
= 𝜆
2
= 0.2719 + 3.1269𝑖,

𝜆
3
= 𝜆
4
= −0.2719 + 3.1269𝑖,

𝜆
5
= 𝜆
6
= 0 + 0.1286𝑖, 𝜆

7
= −𝜆
8
= 3.8397,

x
1
= x
2
=

[

[

[

[

[

[

[

[

[

[

[

6.8312 + 5.8692𝑖

0.9284 + 0.5758𝑖

0.3534 + 3.6757𝑖

6.1240 + 6.3145𝑖

6.0854 + 7.1763𝑖

0.1576 + 6.9267𝑖

0.1635 + 0.8408𝑖

1.9007 + 4.5436𝑖

]

]

]

]

]

]

]

]

]

]

]

,

x
3
= x
4
=

[

[

[

[

[

[

[

[

[

[

[

4.4183 + 1.2105𝑖

3.5325 + 4.5075𝑖

1.5361 + 7.1588𝑖

6.7564 + 8.9284𝑖

6.9921 + 2.7310𝑖

7.2751 + 2.5477𝑖

4.7838 + 8.6560𝑖

5.5484 + 2.3235𝑖

]

]

]

]

]

]

]

]

]

]

]

,

x
5
= x
6
=

[

[

[

[

[

[

[

[

[

[

[

8.0487 + 8.4387𝑖

9.0840 + 1.7390𝑖

2.3189 + 1.7079𝑖

2.3931 + 9.9430𝑖

0.4975 + 4.3979𝑖

0.7838 + 3.4005𝑖

6.4082 + 3.1422𝑖

1.9089 + 3.6508𝑖

]

]

]

]

]

]

]

]

]

]

]

,
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x
7
=

[

[

[

[

[

[

[

[

[

[

[

3.9324

5.9153

1.1975

0.3813

4.5860

8.6987

9.3424

2.6445

]

]

]

]

]

]

]

]

]

]

]

, x
8
=

[

[

[

[

[

[

[

[

[

[

[

1.6030

8.7286

2.3788

6.4583

9.6689

6.6493

8.7038

0.0993

]

]

]

]

]

]

]

]

]

]

]

.

(64)

It is easy to check that the matrix pair (Λ,𝑋) satisfy the
assumptions (A1) and (A2). According to Algorithm 13, by
randomly choosing

Γ = diag
{
{
{

{
{
{

{

[

[

[

[

0 0 1.3701 8.1876

0 0 −8.1876 1.3701

−1.3701 8.1876 0 0

−8.1876 −1.3701 0 0

]

]

]

]

,

[

0 4.3017

−4.3017 0
] , [

0 8.9032

−8.9032 0
]

}
}
}

}
}
}

}

,

(65)

and choosing

𝑀̃ = diag
{
{
{

{
{
{

{

[

[

[

[

29.0320 0 −25.9737 2.0583

0 29.0320 −2.0583 −25.9737

−25.9737 −2.0583 29.0320 0

2.0583 −25.9737 0 29.0320

]

]

]

]

,

[

0.4467 0

0 0.4467
] , [

35.1854 −34.1854

−34.1854 35.1854
]

}
}
}

}
}
}

}

,

(66)

we can figure out

𝑀 =

[

[

[

[

[

[

[

[

[

[

[

0.2381 −0.0518 −0.0448 0.1749 −0.2085 0.2421 −0.0454 −0.4753

−0.0518 0.7116 0.1091 −0.0423 −0.2386 0.0531 −0.4977 0.3824

−0.0448 0.1091 0.5424 −0.6348 0.5762 −0.5419 −0.0180 0.4899

0.1749 −0.0423 −0.6348 0.8628 −0.8617 0.8260 −0.1281 −0.7994

−0.2085 −0.2386 0.5762 −0.8617 0.9881 −0.8915 0.3458 0.7424

0.2421 0.0531 −0.5419 0.8260 −0.8915 1.0017 −0.3058 −0.9543

−0.0454 −0.4977 −0.0180 −0.1281 0.3458 −0.3058 0.4810 −0.0001

−0.4753 0.3824 0.4899 −0.7994 0.7424 −0.9543 −0.0001 1.4299

]

]

]

]

]

]

]

]

]

]

]

,

𝐺 =

[

[

[

[

[

[

[

[

[

[

[

0.0000 −0.4167 0.0642 −0.1869 0.3993 −0.7528 0.7498 0.1786

0.4167 0.0000 0.8272 −0.5230 0.3188 0.2073 −0.5834 −0.4186

−0.0642 −0.8272 −0.0000 −0.4048 0.8542 −1.1750 1.0802 0.6606

0.1869 0.5230 0.4048 −0.0000 −0.3391 0.5388 −0.7985 −0.2182

−0.3993 −0.3188 −0.8542 0.3391 −0.0000 −0.4504 0.7544 0.4519

0.7528 −0.2073 1.1750 −0.5388 0.4504 −0.0000 −0.3404 −0.9403

−0.7498 0.5834 −1.0802 0.7985 −0.7544 0.3404 −0.0000 0.6307

−0.1786 0.4186 −0.6606 0.2182 −0.4519 0.9403 −0.6307 −0.0000

]

]

]

]

]

]

]

]

]

]

]

,

𝐾 =

[

[

[

[

[

[

[

[

[

[

[

−0.9602 1.0594 −0.7478 0.6664 −0.3476 −0.0708 −0.6132 1.2458

1.0594 −2.2568 0.5473 −1.3328 1.1498 −1.3154 2.2446 −0.0867

−0.7478 0.5473 −1.7993 0.4842 −0.1183 −0.4577 0.2942 1.3384

0.6664 −1.3328 0.4842 −1.0279 0.9632 −0.9383 1.2189 0.2852

−0.3476 1.1498 −0.1183 0.9632 −1.5571 1.7068 −1.3474 −0.8193

−0.0708 −1.3154 −0.4577 −0.9383 1.7068 −2.7058 1.9965 2.2604

−0.6132 2.2446 0.2942 1.2189 −1.3474 1.9965 −2.8310 −0.9034

1.2458 −0.0867 1.3384 0.2852 −0.8193 2.2604 −0.9034 −4.5291

]

]

]

]

]

]

]

]

]

]

]

.

(67)

It is easy to check that𝑀 is symmetric positive definite, 𝐾
is symmetric negative definite, and 𝐺 is skew-symmetric. We
define the residual as

res (𝜆
𝑗
, x
𝑗
) =

󵄩
󵄩
󵄩
󵄩
󵄩
(𝜆
2

𝑗
𝑀 + 𝜆

𝑗
𝐺 + 𝐾) x

𝑗

󵄩
󵄩
󵄩
󵄩
󵄩2
, (68)

and the numerical results are shown in Table 2. This shows
that Algorithm 13 to construct the particular solution of the
Problem 1 with𝐷 = 0 and𝐾 < 0 is effective.

6. Conclusions

In this paper, we first use techniques involvingmatrix decom-
positions to derive an expression of the general solution to the
question, for a set of given (𝑘 ≤ 𝑛) pairs of complex numbers
and vectors (closed under conjugation), under assumptions
(A1) and (A2). Then, with the special properties 𝐷 = 0 and
𝐾 < 0, we construct a particular solution. Numerical results
illustrate these solutions.
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Table 1: Example 1.

(𝜆
𝑗
, 𝑥
𝑗
) (𝜆

1
, 𝑥
1
) (𝜆

2
, 𝑥
2
) (𝜆

3
, 𝑥
3
) (𝜆

4
, 𝑥
4
)

res(𝜆
𝑗
, 𝑥
𝑗
) 1.7708𝑒 − 012 1.7708𝑒 − 012 5.8528𝑒 − 013 7.2918𝑒 − 013

Table 2: Example 2.

(𝜆
𝑗
, 𝑥
𝑗
) (𝜆

1
, 𝑥
1
) (𝜆

2
, 𝑥
2
) (𝜆

3
, 𝑥
3
) (𝜆

4
, 𝑥
4
) (𝜆

5
, 𝑥
5
) (𝜆

6
, 𝑥
6
) (𝜆

7
, 𝑥
7
) (𝜆

8
, 𝑥
8
)

res(𝜆
𝑗
, 𝑥
𝑗
) 4.3271𝑒 − 014 4.3271𝑒 − 014 4.9065𝑒 − 014 4.9065𝑒 − 014 1.0209𝑒 − 014 1.0209𝑒 − 014 7.3644𝑒 − 014 6.9718𝑒 − 014

For another case of 𝑘 > 𝑛, it is rather complex, and the
proof method in Theorem 5 seems not to be used directly
to find a solution of Problem 1. Fortunately, for the damped
nongyroscopic system, Cai et al. [13] solved the QIEP with
2𝑛 ≥ 𝑘 > 𝑛 given eigenpairs. However, case 𝑘 > 𝑛 has
never been discussed in the literature for damped gyroscopic
system. It might be an interesting research and needs further
investigation.
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