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The dispersion behaviour of leaking hydrogen in a partially open space is simulated by a balancing domain decomposition method
in this work. An analogy of the Boussinesq approximation is employed to describe the connection between the flow field and
the concentration field. The linear systems of Navier-Stokes equations and the convection diffusion equation are symmetrized
by a pressure stabilized Lagrange-Galerkin method, and thus a balancing domain decomposition method is enabled to solve the
interface problem of the domain decomposition system. Numerical results are validated by comparing with the experimental
data and available numerical results. The dilution effect of ventilation is investigated, especially at the doors, where flow pattern
is complicated and oscillations appear in the past research reported by other researchers. The transient behaviour of hydrogen and
the process of accumulation in the partially open space are discussed, and more details are revealed by large scale computation.

1. Introduction

With the development of hydrogen-fuelled vehicles, it
becomes clearer and clearer that several obstacles must be
overcome if hydrogen is to be used as a mainstream source
of energy. As more usages of hydrogen are explored, the
possibility of accidental release in the hydrogen infrastruc-
ture increases, which comprises storage, bulk transportation
and distribution, production, and utilization. Hydrogen is
flammable and can behave dangerously under specific condi-
tions; however, hydrogen can be handled safely when simple
guidelines are observed and the user has an understanding of
its behaviour.Hydrogen is odourless, colourless, and tasteless,
and most human senses will not help to detect a leak;
therefore, to prevent accidental ignition and set the safety
margin for leakage, it is necessary to predict and understand
the characteristics of its leakage and dispersion. It is difficult
to visualize the hydrogen dispersion by experiment in case
of hydrogen leaks, because of its low kinematic viscosity and
high diffusibility and risk. As such, clarifying the hydrogen
dispersion with numerical simulation becomes important
[1, 2].

On hydrogen dispersion problems, the evaluation of leak
flow rate [3], the dispersion behaviour in residential areas
[4], and the design of ventilation systems [5, 6] have been
reported. Inoue et al. report the experimental data of a
ventilationmodel [7], andKanayama et al. report a numerical
simulation to it by finite element method [1, 8]; however, the
numerical results contain obvious oscillations which prevent
it to be a better simulation. Because of the computation
complexity of high Rayleigh number in the modelling hydro-
gen dispersion, conventional numerical simulation methods
suffer from low convergence speed, poor stability, and robust-
ness [9, 10]. These methods occupy too much memory and
computational time to be applied to large scale simulations.
By approximating the material derivative along the trajectory
of fluid particles, the Lagrange-Galerkin method is reported
to be unconditionally stable for a wide class of problems [11–
15]. Moreover, the linear systems of Navier-Stokes equations
and the convection diffusion equation are symmetrized and a
balanced domain decomposition method is enabled to solve
the interface problem of domain decomposition system [16].

The current study is to improve the simulation of
hydrogen dispersion by a balancing domain decomposition
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method, which has shown its effectiveness for incompressible
flow problems [17, 18]. A variation of balancing domain
decomposition is proposed and the efficiency is reported for
simulation of hydrogen dispersion in this work. Compared
with the traditional fashion of employing some product-type
methods as the iteration solver [8], computation problems
with up to 30 million degrees of freedom (DOF) can be
solved on small Linux clusters by using the balancing domain
decomposition [19]. In order to validate the solvability of
dispersion behavior of hydrogen, the current computation
results are compared with experimental results reported by
Inoue et al. [7].The transient dispersion behavior of hydrogen
and several guidelines for safety in a ventilation model are
discussed.

The remaining sections are arranged as follows. Section 2
gives a brief description about the formulas and the bal-
ancing domain decomposition method. Section 3 describes
the physical model, decomposed mesh, initial and boundary
settings, and material properties. Numerical results and
discussions are presented in Section 4, and finally Section 5
gives concluding remarks in this research.

2. Formulation

2.1. Governing Equations and Finite Element Scheme. Let 𝜕Ω
be the boundary of a three-dimensional polyhedral domain
Ω, let 𝐻1(Ω) be the Sobolev space, and let 𝐿2

0
(Ω) be the

subspace of 𝐿
2
(Ω) functions with zero mean value. For

incompressible, viscous, and laminar flow, the solving of the
model can be summarized as finding (𝑢, 𝑝) ∈ 𝐻

1
(Ω)
3
×𝐿
2
(Ω)

such that for any 𝑡 ∈ (0, 𝑇), the following set of equations
hold:

𝜕
𝑡
𝑢 + (𝑢 ⋅ ∇) 𝑢 −

1

𝜌
∇ ⋅ 𝜎 (𝑢, 𝑝) =

1

𝜌
𝛽 (𝐶
𝑟
− 𝐶) 𝑔,

∇ ⋅ 𝑢 = 0,

in Ω × (0, 𝑇) ,

(1)

where 𝑢 is the gas mixture velocity [m/s]; 𝑝 is the gas mixture
pressure [Pa]; 𝜌 is the gas mixture density [kg/m3]; 𝑔 is the
gravity [m/s2]; 𝛽 is the concentration expansion coefficient
determined in Section 3; 𝐶 is the hydrogen mass concentra-
tion [mass%]; 𝐶

𝑟
is the reference mass concentration; 𝜎(𝑢, 𝑝)

is the stress tensor [N/m2] defined by
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2
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) , 𝑖, 𝑗 = 1, 2, 3,

(2)

with the Kronecker delta 𝛿
𝑖𝑗
and the laminar viscosity 𝜇

[kg/ms] of gas mixture.
An initial gas mixture velocity 𝑢

0
is applied inΩ at 𝑡 = 0.

Dirichlet boundary conditions

𝑢 = �̂� on Γ
1
× (0, 𝑇) (3)

and natural boundary conditions

3

∑

𝑗=1

𝜎
𝑖𝑗
𝑛
𝑗
= 0 on 𝜕Ω \ Γ

1
× (0, 𝑇) (4)

are also applied, where Γ
1
⊂ 𝜕Ω; 𝑛

𝑗
are the outward normal

direction components to 𝜕Ω.
The hydrogen concentration 𝐶 ∈ 𝐻

1
(Ω) is computed by

solving

𝜕
𝑡
𝐶 + 𝑢 ⋅ ∇𝐶 − 𝛼Δ𝐶 = 𝑆 in Ω × [0, 𝑇] , (5)

where 𝛼 is the diffusion coefficient [m2/s] and 𝑆 is the
hydrogen source [K/s]. An initial hydrogen concentration𝐶

0

is applied in Ω at 𝑡 = 0. Dirichlet and Neumann boundary
conditions are set by

𝐶 = 𝐶 on Γ
2
× [0, 𝑇] , (6)

𝛼𝜕
𝑛
𝐶 = 0 on 𝜕Ω \ Γ

2
× [0, 𝑇] , (7)

respectively, where Γ
2

⊂ 𝜕Ω, 𝜕
𝑛
is the outward normal

derivate to 𝜕Ω.
By using a characteristic finite element scheme [20], the

material derivative in (1) and (5) at 𝑡𝑛 can be written as

𝜕
𝑡
𝑀+ (𝑢 ⋅ ∇)𝑀 ≈

𝑀
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, Δ𝑡))

Δ𝑡
, (8)

where 𝑋
1
(⋅, ⋅) is a position function;𝑀 is 𝑢 and 𝐶 in (1) and

(5), respectively.
Let I

ℎ
≡ {𝐾} denote a triangulation of Ω consisting

of tetrahedral elements and let the subscript ℎ denote the
representative length of the triangulation. The finite element
spaces are as follows:
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ℎ
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(0) .

(9)

Note that piecewise linear interpolations are employed
for velocity and pressure, which do not provide a suffi-
cient condition to connect the velocity and pressure space;
therefore, the inf-sup condition [21] should be satisfied. In
previous work [22], a penalty Galerkin least-squares (GLS)
stabilization method for pressure [23] was employed and it is
found difficult to be applied for the simulation of hydrogen
dispersion; especially when the flow is very turbulent, the
scheme becomes easy to diverge. A new stabilization tech-
nique for Boussinesq approximated saddle point problem is
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employed in this work and the finite element scheme for (1)
reads as follows:
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Let (⋅, ⋅) define the 𝐿
2
inner product; the continuous bilinear

forms 𝑎 and 𝑏 in (10) are introduced by

𝑎 (𝑢, V) ≡ 2
2𝜇

𝜌
(𝐷 (𝑢) , 𝐷 (V)) , (11)

𝑏 (𝑢, V) ≡ − (∇ ⋅ 𝑢, 𝑞) , (12)

respectively. The stabilization parameter in this work is set as

𝜏
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where ℎ
𝐾
denotes the maximum diameter of an element 𝐾

and ‖ ⋅ ‖
∞

is the maximum norm.
Similarly, the finite element scheme of (5) is to find

{𝐶
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, such that
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A week coupling of finite element scheme (10) and (14) is
applied in this work and the element searching algorithm
for Lagrange-Galerkinmethod only needs to be implemented
once in a nonsteady loop [20].

2.2. A Balancing Domain Decomposition Method. After the
elimination of inner degree of freedom, the linear system of
interface degree of freedom becomes

𝑆𝑢
𝐵
= 𝑔, (15)

where 𝑆 is the Schur complement, 𝑢
𝐵
is the interface degrees

of freedom, and 𝑔 is the relative RHS vector [16, 24].
The Neumann-Neumann preconditioner might be a

popular choice for domain decomposition preconditioning
[18, 25], as the original local Schur complement can be
conveniently used as the local operator. However, it shows its
drawback of lacking of mechanism to exchange information
between subdomains, because of the singularities caused by
the floating subdomains. The matrix eventually becomes ill-
conditioned with the increase of the number of subdomains,

indicating that it is not an efficient preconditioner for large
scale problems. To prevent the propagation of error, Mandel
[17] proposed to add a coarse problem to the original
Neumann-Neumann preconditioner, which is generated by
the attempt to guarantee the solvability of

𝑆Δ𝑢
𝐵
= 𝑟, (16)

where 𝑟 is the residual corresponding to an error correction
Δ𝑢
𝐵
.
Let 𝑉 be the space of interface degrees of freedom in

Ω. Let 𝑉
(𝑖) be the space of interface degrees of freedom

in Ω
(𝑖) after nonoverlapping domain decomposition into 𝑁

subdomains. The local space can be divided into

𝑉
(𝑖)

= 𝑉
(𝑖)

0
⊕ 𝑍
(𝑖)
, (17)

where 𝑍
(𝑖) is the local coarse space including all the local

potential singularities and 𝑉
(𝑖)

0
is the complement space of

𝑍
(𝑖). The global coarse space𝑊 is constructed by

𝑊 = {V ∈ 𝑉 | V =
𝑁

∑

𝑖=1

𝑁
(𝑖)
𝐷
(𝑖)
𝑍
(𝑖)
𝑥, 𝑥 ∈ 𝑉

(𝑖)
} . (18)

Note here that 𝐷(𝑖) is the weighted function to exchange
information between subdomains, which is a decomposition
of unity on the space 𝑉 and satisfies

𝑁

∑

𝑖=1

𝑁
(𝑖)
𝐷
(𝑖)
𝑁
(𝑖)𝑇

= 𝐼, (19)

where 𝑁
(𝑖) are the 0-1 matrices, mapping from Ω

(𝑖) to Ω.
Inspired by previous research on advection and convection
problems [26], the local coarse space in this work is con-
structed by

𝑍
(𝑖)

=

nodes
∑

𝑗=1

𝑁
(𝑖)

𝑗
𝐼, (20)

where nodes denotes the total interface nodes; 𝑁(𝑖)
𝑗

denotes
the restriction operators from current point to the interface
ofΩ(𝑖).

The global space of interface degrees of freedom𝑉 can be
decomposed in a similar manner as in (17):

𝑉 =

𝑁

∑

𝑖=1

(𝐼 − 𝑃)𝑁
(𝑖)
𝐷
(𝑖)
𝑉
(𝑖)

0
⊕𝑊, (21)

where 𝑃 is the coarse projection operator onto 𝑊. The
balancing domain decomposition preconditioned operator
proposed by Mandel [17] is then of the form

𝑀
−1

BDD = (𝑃 + (𝐼 − 𝑃)𝑄
𝐿
𝑆 (𝐼 − 𝑃)) 𝑆

−1
. (22)

Here, 𝑄
𝐿
denotes the local solver for the localized and

balanced (16). The Neumann-Neumann algorithm is one of
the options of the local solver; however, a diagonal scaling
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Figure 1: The ventilation model.

preconditioning performs better in computation, which has
been reported by many; see [19, 27, 28].The expression of the
local level preconditioner is as follows:

𝑄
𝐿
=

𝑁

∑

𝑖=1

𝑁
(𝑖)
(diag (𝑆

𝑖
))
−1

𝑁
(𝑖)𝑇

, (23)

where 𝑆
𝑖
is the local Schur complements.

3. Modeling

3.1. Geometry and Parameters. The dispersion behaviour of
Leaking Hydrogen in a partially open space raises concern
in industry. Hydrogen dilutes quickly into a nonflammable
concentration when released because of its rapid diffusivity;
therefore, it needs to be confined to become a fire hazard;
however, as the lightest element in the universe, it is very
difficult to be confined. These properties are taken into
account when designing hydrogen structures, and these
designs help hydrogen escape up and away from the user
in case of an unexpected release. In order to assess the
risk of an accident caused by a hydrogen leak, a ventilation
model with partially open space used by several researchers
[1, 5, 7] is considered in this work, as is shown in Figure 1.
Hydrogen enters from an inlet at a constant speed; ven-
tilation is through a roof vent and a door vent near the
opposite end. Four sensors are placed inside the partially
open model, and their locations are indicated by red dotted
lines.

During hydrogen dispersion, the discrepancy in con-
centration is one of the main drive forces of flow motion.
According to the Boussinesq approximation and (1), the
buoyancy force is

1

𝜌2
(𝜌 − 𝜌air) 𝑔 =

1

𝜌
𝛽 (𝐶
𝑟
− 𝐶) 𝑔, (24)

Table 1: The material properties.

Parameters Values
𝑃 1.01 × 10

5 [m2/s]
𝑇 293 [K]
𝑅H2 4,122 [J/(kg⋅K)]
𝑅air 287 [J/(kg⋅K)]
𝜌air 1.209 [kg/m3]
𝜇 8.75 × 10

−6 [kg/ms]
𝛼 6.1 × 10

−5 [m2/s]
𝑔 (0, −9.8, 0) [m/s2]
𝑆 0 [1/s]

where 𝜌air is the density of air [kg/m
3]; 𝜌 is the mixture gas

density [kg/m3] represented by

𝜌 ≡
𝑃

[𝐶𝑅H2 + (1 − 𝐶) 𝑅air] 𝑇
, (25)

where 𝑃 is the absolute pressure of mixture gas [Pa]; 𝑇 is
the absolute temperature [K]; and 𝑅H2 and 𝑅air are the gas
constants [J/(kg⋅K)] of hydrogen and air, respectively. The
dispersion behaviour is considered under 1 [atm] and 20 [∘C]
and material parameters are given by Table 1.

As can be seen from (24) and (25), the concentration
expansion coefficient 𝛽 keeps approximately independent of
𝐶 with the parameters given in Table 1. This finding makes
it very convenient to apply the current solver to simulate the
hydrogen dispersion behaviour.

3.2. Initial and Boundary Conditions. To be consistent with
the experiments reported by Inoue et al. [7] and the numerical
experiments reported by Kanayama et al. [8] andMatsuura et
al. [5], hydrogen leaks into the inlet at the speed of 0.02 [m/s]
in the vertical direction, with a mass concentration of 6.94%
(considering the difference between the density of air and
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Figure 2: Mesh and domain decomposition.

hydrogen). At the roof, the hydrogen is discharged outside
freely. At the door, the air is supposed to go in due to
the pressure discrepancy between inside and outside of the
door. All other boundaries are considered as end-walls and
gradient zero conditions are applied at the roof and door
vents.

Let Γinlet, Γroof, Γdoor denote the boundary of inlet, roof, and
door, respectively; boundary conditions are set as follows:

(𝑢
1
, 𝑢
2
, 𝑢
3
) = (0, 0.02, 0) ,

𝐶 = 6.94%,

on Γinlet,

(𝑢
1
, 𝑢
2
, 𝑢
3
) = (⋅, 0, 0) ,

𝐶 = 0%,

on Γdoor,

(𝑢
1
, 𝑢
2
, 𝑢
3
) = (0, ⋅, 0) ,

𝛼𝜕
𝑛
𝐶 = 0,

on Γroof,

(𝑢
1
, 𝑢
2
, 𝑢
3
) = (0, 0, 0) ,

𝛼𝜕
𝑛
𝐶 = 0,

on 𝜕Ω\(Γinlet + Γroof + Γdoor) .

(26)

Initial gas mixture velocity and hydrogenmass concentration
are set as follows:

𝑢
0
= (0, 0, 0)

𝐶
0
= 0%.

(27)

It can be seen that Rayleigh number in this research is
very high (>1011), which is the main reason of oscillations in
numerical results reported in [1, 8].

3.3. Domain Decomposition. The ADVENTURE CAD and
ADVENTURE Metis [29] are used to create the geometry
and mesh used in this work. Set 𝐷 as the representative
length of the unstructured mesh and set 𝑅(range, scale) as
the refinement function; the local density of mesh around
the sensors in Figure 1 is increased by 𝑅(0.4, 1/3); the mesh
density near edges is increased by 𝑅(0.3, 1/2) due to the
boundary layer effect; see Figure 2(a); higher density of
meshes appears around the dispersion and ventilation path.
The flow fields around the hydrogen inlet, roof vent, and
door vent are very complicated and turbulent; therefore,
the mesh of these three places is enriched by 𝑅(0.1, 1/4);
especially the dispersion and ventilation path at these
three places is enriched by 𝑅(0.2, 1/5), as is shown by
Figure 2(b).

A hierarchical domain decomposition is employed and
the model is firstly divided into many parts and the processor
element (PE) works only on the part under its charge. Every
part is further divided intomany subdomains and the domain
decomposition is performed by the PE in charge of the part.
A Linux cluster of 176 PEs is used in this work, and the
decomposition of parts is demonstrated by Figures 2(c) and
2(d).

A mesh sensitive study is done for𝐷 = 0.1, 0.05, 0.02, and
0.01 in this work and 𝐷 = 0.02 is found to be the best choice
for this simulation. In this case, the mesh contains 12,712,960
tetrahedral elements and the global linear system contains
11,075,600 degrees of freedom in total.

4. Numerical Results and Discussion

The efficiency of new solver is evaluated in the first part of
this section, and to validate the scheme, exact solutions, and
available benchmark results classical computational models
are compared in the second section. The CG convergence is
judged by Euclidian norm with a tolerance of 10−6; using an
element-based𝐻1 ×𝐿2 ×𝐻1 norm defined in [22], 10−4 is set
as the criterion for nonsteady iterations.
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4.1. Efficiency Test. In order to test the iteration efficiency
of the preconditioners, different domain decomposition pre-
conditioners are applied to solve the hydrogen dispersion
problem at 𝐷 = 0.02 and Δ𝑡 = 0.01. The iteration histories
of the first nonsteady loop are compared and the result is
shown in Figure 3, where “None” denotes no preconditioner
is employed, “DIAG” is the diagonal scaling preconditioning,
and “BDD” refers to the balancing domain decomposition
preconditioner introduced in Section 2.2 by (19), (22), and
(23).

It can be seen that balancing domain decomposition
preconditioner described in Section 2.2 is more efficient than
diagonal scaling preconditioning, and about 10 times of iter-
ation loops are needed for diagonal scaling preconditioning
to converge. The iteration does not converge within 5,000
loops if no preconditioning is employed. By using balancing
domain preconditioning, the initial value of each iteration
is more “correct” (less potential singularities); therefore, it
converges faster than other preconditioners.

Another aim of balancing domain decomposition is to
prevent the growth of condition numbers with the number
of subdomains. The progress is assessed firstly by testing the
so-called numerical scalability. By increasing the number of
subdomains of a test problem with fixedmesh size (1,000,000
elements), the comparison of the numerical scalability of the
balancing domain decomposition in Section 2.2 (BDD) and
the diagonal scaling preconditioning (DIAG) are compared
together with a domain decomposition with no precondi-
tioner (None).

As is shown in Figure 4, with an increase in the number
of subdomains, the number of loops needed for no pre-
conditioning iteration (None) increases dramatically, so are
the diagonal scaling iterations (DIAG). The increasing speed
slows down when enough subdomains are created, which is
due to the limit of test problem size.The iteration time of BDD
does not changemuch for the fixed size test problemwhen the
number of subdomains increases. However, memory usage
increases when too many elements exist in one subdomain;
therefore, a trade-off strategy is necessary for parameteriza-
tion. The balancing domain decomposition preconditioner
shows good convergence and is more suitable for large scale
computations, especially for nonsteady problems with fixed
stiffness matrices.
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Figure 5: Numerical results versus experimental results.

Table 2: Technical details.

Unit Feature
CPU Intel Xeon E5606 2.13 GHz (×44)
Memory 12GB 1333MHz LV RDIMM (×44)
Hard disk 2 TB 7.2 Krpm SAS (×10)
Network Infiniband 40Gb/s
OS Centos 6
MPI MVAPICH 1.9

4.2. Validation and Discussion. The balancing domain de-
composition preconditioner is employed in this work, A
Linux cluster in Sun Yat-sen University is used for this
computation, and 176 parts are created for all the PEs. In each
part, 50 subdomains are created. See Table 2 for the details
of the cluster. The computation took about 24 hours to finish
50,000 nonsteady loops with𝐷 = 0.02 and Δ𝑡 = 0.01.

The computation results of this work are validated by
comparing with the experimental results reported in [7].
Figure 5 compares the computational hydrogen volumetric
concentration values at the nodes closest to the four sensor
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Figure 6: Vectors and 4% volumetric concentration isosurface.

positions with experimental values in [7].The hydrogen con-
centration is measured in terms of volumetric concentration,
which is calculated by

𝐶
𝑉
=

𝐶𝑅H2
𝐶𝑅H2 + (1 − 𝐶) 𝑅air

. (28)

In Figure 5, where 0% indicates that the entire volume is
occupied by air and 100% represents the opposite, it can be
seen that the current numerical results of all 4 sensors agree
with the experimental data very well. Due to the acceleration
and dilution of air, some oscillations are viewed at sensor 2
and sensor 3 (located at the top of the ventilation model)
after 150 s. Compared with numerical results in [1, 8, 30], the
current numerical results are more stable and closer to the
experimental data and thus are more reliable.

Hydrogen has a wide flammability range (4–74% in air)
and the minimum energy required to ignite hydrogen is
very low (0.02mJ, 10% of the minimum energy required to
ignite gasoline vapour); the leakage of hydrogen in a partially
open space introduces the possibility of accidental ignition,
which may cause an explosion in the worst case. In Figure 6,

the isosurface of volumetric concentration at 4% is shown,
presenting the boundary of flammability inside the partially
open space.

Hydrogen leaks at a constant speed with a constant
concentration at the inlet, as is shown in (26). It can be
seen from Figure 6 that the 4% volumetric concentration
isosurface is getting lower and lower toward the bottom
of the ventilation model; after 500 s, the 4% volumetric
concentration isosurface does not get lower obviously and
the height of the isosurface does not change till the end of
the computation. Thus, the reign below the 4% volumetric
concentration isosurface is relatively safe. This finding could
be very helpful for safety in case of the hydrogen leaks.

Through velocity vectors in Figure 6, several characters of
hydrogen dispersion in this model can be observed.

(1) Hydrogen flows vertically and then spreads to the
upper roof vent after reaching the ceiling; therefore,
the sensors near the ceiling (Sensor 2 and Sensor
3) keep a high level of hydrogen concentration. The
concentration value of Sensor 1 is slightly higher
than that of Sensor 4; both of them keep a low level
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concentration value as most hydrogen escapes up
from the roof vent.

(2) Air goes inside the model from the door vent, due to
the changes in pressure field; that is to say, hydrogen’s
concentration near the horizon of the door vent keeps
a low level during the dispersion.

(3) The moving air is a driving force that cannot be
neglected. It also affects the hydrogen to accumulate
inside the partially open space.

Air flows in due to the pressure changes inside the
model; to confirm this, the process of pressure change is
demonstrated by Figure 7 andpressure isoline at 500 s is given
by Figure 8.

It can be seen from Figure 7 that the pressure at the
bottom of the model (Sensor 1 and Sensor 4) keeps negative
value during the dispersion. Pressure at Sensor 1 and Sensor
2 is less stable than that at Sensor 1 and Sensor 4, indicating

that the flow field around the vertical direction of the inlet is
very complicated.

Streamline of right view is displayed in Figure 9 to
investigate the flow field around the vertical direction of the
inlet. As can be seen, the flow becomes turbulent when air
goes inside and eddies appear at the corners and within the
inlet.

5. Conclusions

A ventilation model of hydrogen dispersion is numerically
simulated in three dimensions using balancing domain
decomposition method in this work. By using a new pressure
stabilization scheme and large scale computation, the results
aremore stable and closer than the conventional computation
results.The current results aremore reliable, and the compar-
ison with experimental data convinces us of the solvability
of the current scheme in hydrogen dispersion problems. The
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door plays an important role in preventing the accumulation
of hydrogen around the bottom of the ventilation model.
Air goes inside the model and the dilution effect appears.
Turbulent flow appears around the inlet and the door, and
recirculation zones are found inside the model. Safe reign
inside this partially open model is classified, which could be
very helpful for safety in case of the hydrogen leaks.
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