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Multigranulation rough set is an extension of classical rough set, and optimistic multigranulation and pessimistic multigranulation
are two special cases of it. 𝛽 multigranulation rough set is a more generalized multigranulation rough set. In this paper, we first
introduce fuzzy rough theory into 𝛽 multigranulation rough set to construct a 𝛽 multigranulation fuzzy rough set, which can be
used to deal with continuous data; then some properties are discussed. Reduction is an important issue of multigranulation rough
set, and an algorithm of granular space reduction to 𝛽multigranulation fuzzy rough set for preserving positive region is proposed.
To test the algorithm, experiments are taken on five UCI data sets with different values of 𝛽. The results show the effectiveness of
the proposed algorithm.

1. Introduction

Qian et al. [1–3] proposed a multigranulation rough set,
which is constructed on a family of granular structures and
is different from Pawlak’s rough set [4–7]. Qian’s multigran-
ulation rough set can be used to approximate an unknown
concept through a family of binary relations; each binary
relation can generate a granulation space, which may be
partition [1], covering [8, 9] or even neighborhood system
[10–12] on the universe of discourse.

Qian’s rough set includes two basic models, one is opti-
misticmultigranulation rough set and the other is pessimistic
multigranulation rough set.Theword “optimistic”means that
at least one of the granulation spaces can be used for approx-
imating while the word “pessimistic” means that all of the
granulation spaces should be used for approximating. In these
two models, all of the binary relations, or granulation spaces,
are presented simultaneously; therefore, optimistic and pes-
simistic are two special cases of multigranulation rough set.
To get amore suitablemodel for practical application, Xu et al.
[13] proposed a more generalized multigranulation rough

set, called 𝛽 multigranulation rough set that designed by a
threshold 𝛽 for controlling the number of the equivalence
classes, which are contained in the target.

In recent years, the multigranulation approach has
attracted many researchers’ attention [14–18]. Xu et al.
generalized multigranulation fuzzy rough sets to tolerance
approximation space to construct optimistic and pessimistic
multigranulation fuzzy rough sets models [14]. Qian et al.
further generalized their optimistic multigranulation rough
set into incomplete information system [15]. In [16] Yang et
al. introduced fuzzy theory into multigranulation rough set,
which employed the T-similarity relations (reflexive, sym-
metric, and T-transitive) to construct the multigranulation
fuzzy rough sets. Therefore, how to generalize multigranula-
tion rough set is an important research field, as we all know
how to introduce the fuzzy case to rough set model plays an
important role in the development of rough set theory; fuzzy
rough set [19] has attracted increasing attention from the
domains of machine learning and intelligence data analysis.
So, it is not difficult to introduce fuzzy rough set theory into
𝛽multigranulation rough set.
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Granular space reduction is an important issue of multi-
granulation rough set and it is recently researched by many
scholars [20–24]. In this paper, we focus on the problem
to deal with 𝛽 multigranulation rough set. Hu et al. in
[25] proposed a fuzzy-rough attribute reduction. Motivated
by this idea, we will introduce fuzzy rough set into 𝛽
multigranulation rough set to construct 𝛽 multigranulation
fuzzy rough set model and design an algorithm of granular
space reduction to 𝛽 multigranulation fuzzy rough set.
The algorithm can be used to granular space reduction in
multigranular structures for preserving positive region of 𝛽
multigranulation fuzzy rough set and will be very useful in
big continuous data.

The purpose of this paper is to further generalize 𝛽multi-
granulation rough set to fuzzy environment. To facilitate our
discussion, we first present some basic knowledge of rough
set in Section 2. In Section 3, 𝛽multigranulation fuzzy rough
set will be constructed and the properties will be discussed.
In Section 4, an algorithm of granular space reduction to
𝛽 multigranulation fuzzy rough set will be proposed and
experiments are taken on five UCI data sets. In Section 5,
conclusion is made.

2. Preliminaries

2.1. Rough Sets. Formally, a decision system is an information
system 𝐼 = ⟨𝑈, 𝐴𝑇∪𝐷⟩, in which𝑈 is a nonempty finite set of
objects called the universe of discourse and𝐴𝑇 is a nonempty
finite set of the condition attributes;𝐷 is the set of the decision
attributes and 𝐴𝑇 ∩ 𝐷 = ⌀.

For all 𝑥 ∈ 𝑈, let us denote by 𝑎(𝑥) the value that 𝑥
holds on 𝑎 (𝑎 ∈ 𝐴𝑇). For an information system 𝐼, one then
can describe the relationship between objects through their
attributes’ values. With respect to a subset of attributes such
that 𝐴 ⊆ 𝐴𝑇, an indiscernibility relation IND (𝐴𝑇) may be
defined as

IND (𝐴𝑇) = {(𝑥, 𝑦) ∈ 𝑈
2 : 𝑎 (𝑥) = 𝑎 (𝑦) , ∀𝑎 ∈ 𝐴𝑇} . (1)

The relation IND (𝐴𝑇) is reflexive, symmetric, and tran-
sitive; then IND (𝐴𝑇) is an equivalence relation.

Definition 1. Let 𝐼 = ⟨𝑈, 𝐴𝑇 ∪ 𝐷⟩ be a knowledge base
in which 𝐴 ⊆ 𝐴𝑇, for all 𝑋 ⊆ 𝑈, the lower and upper
approximations of 𝑋 in terms of the equivalence relation
IND(𝐴𝑇) are denoted by 𝐴𝑇(𝑋) and 𝐴𝑇(𝑋), respectively:

𝐴𝑇 (𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝐴𝑇 ⊆ 𝑋} ,

𝐴𝑇 (𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝐴𝑇 ∩ 𝑋 ̸=⌀} ,
(2)

where [𝑥]
𝐴𝑇

is the equivalence class based on indiscernibility
relation IND(𝐴𝑇) and is denoted as [𝑥]

𝐴𝑇
= {𝑦 ∈ 𝑈 : (𝑥, 𝑦) ∈

IND(𝐴𝑇)}.
(𝐴(𝑋), 𝐴(𝑋)) is referred to as Pawlak’s rough set.

2.2. Multigranulation Rough Set. Multigranulation rough set
is different fromPawlak’s rough set.The former is constructed
on a family of the equivalence relations, and the latter is

constructed on an equivalence relation. In Qian et al.’s multi-
granulation rough set theory, two basic models were defined.
The first one is the optimistic multigranulation rough set,
and the second one is the pessimistic multigranulation rough
set.

Definition 2. Let 𝑆 be an information system in which
𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
⊆ 𝐴𝑇; for all 𝑋 ⊆ 𝑈, the optimistic multi-

granulation lower and upper approximations are denoted by
∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋) and ∑𝑚
𝑖=1

𝐴
𝑖

𝑂

(𝑋), respectively:

𝑚

∑
𝑖=1

𝐴
𝑖

𝑂

(𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝐴
1

⊆ 𝑋 ∨ ⋅ ⋅ ⋅ ∨ [𝑥]𝐴
𝑚

⊆ 𝑋}

𝑚

∑
𝑖=1

𝐴
𝑖

𝑂

(𝑋) = ∼
𝑚

∑
𝑖=1

𝐴
𝑖

𝑂

(∼ 𝑋) ,

(3)

where ∼ 𝑋 is the complementary set of𝑋.

Definition 3. Let 𝑆 be an information system in which
𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
⊆ 𝐴𝑇; for all 𝑋 ⊆ 𝑈, the pessimistic multi-

granulation lower and upper approximations are denoted by
∑
𝑚

𝑖=1
𝐴
𝑖

𝑃

(𝑋) and ∑𝑚
𝑖=1

𝐴
𝑖

𝑃

(𝑋), respectively:

𝑚

∑
𝑖=1

𝐴
𝑖

𝑃

(𝑋) = {𝑥 ∈ 𝑈 : [𝑥]𝐴
1

⊆ 𝑋 ∧ ⋅ ⋅ ⋅ ∧ [𝑥]𝐴
𝑚

⊆ 𝑋}

𝑚

∑
𝑖=1

𝐴
𝑖

𝑃

(𝑋) = ∼
𝑚

∑
𝑖=1

𝐴
𝑖

𝑃

(∼ 𝑋) ,

(4)

where ∼ 𝑋 is the complementary set of𝑋.

2.3. 𝛽 Multigranulation Rough Set. Optimistic and pes-
simistic are two special cases of multigranulation rough
set. Optimistic case is loose since if only one equiva-
lence class of an object is contained in the target, then
such object is included into lower approximation; pes-
simistic is strict since if all the equivalence classes of an
object are contained in the target, then such object is
included into lower approximation. To solve this problem,
Xu et al. [13] proposed a more generalized multigranula-
tion rough set, called 𝛽 multigranulation rough set that
are designed by a threshold 𝛽 for controlling the num-
ber of the equivalence classes, which are contained in the
target.

Definition 4. Let 𝑆 be a multigranulation decision system; for
all 𝑥 ∈ 𝑈 and𝑋 ⊆ 𝑈, the characteristic function is defined as

𝐶𝑖
𝑋
(𝑥) =

{
{
{

1 : [𝑥]𝐴
𝑖

⊆ 𝑋

0 : otherwise,
(5)

where 𝐴
𝑖
∈ 𝐴𝑇.
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Definition 5. Let 𝑆 be a multigranulation decision system;
for all 𝑋 ⊆ 𝑈, the 𝛽 multigranulation lower and upper
approximations of𝑋 are denoted by

𝑚

∑
𝑖=1

𝐴
𝑖

𝛽

(𝑋) = {𝑥 ∈ 𝑈 :
∑
𝑚

𝑖=1
𝐶𝑖
𝑋
(𝑥)

𝑚
≥ 𝛽} ;

𝑚

∑
𝑖=1

𝐴
𝑖

𝛽

(𝑋) = {𝑥 ∈ 𝑈 :
∑
𝑚

𝑖=1
(1 − 𝐶𝑖

∼𝑋
(𝑥))

𝑚
≻ 1 − 𝛽} ,

(6)

where 𝛽 ∈ (0, 1]. ∼ 𝑋 is the complementary set of𝑋.
(∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋), ∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋)) is referred to as 𝛽 multi-
granulation rough set of𝑋.

2.4. Fuzzy Rough Set. Fuzzy rough set is a generalization of
rough set. It can be used for decision information system to
deal with continuous types of conditional attributes. Usually a
fuzzy similarity relation is computed by conditional attributes
and is employed to measure similarity between two objects,
which then develop upper and lower approximations of fuzzy
sets. Fuzzy rough set generalize the objects discussed in rough
set to fuzzy set and turn the equivalence relation to fuzzy
equivalence relation.

Definition 6. Let 𝑈 ̸=⌀ be a universe of discourse and R
𝐴

a fuzzy similarity relation of 𝑈; for all 𝐹 ∈ F(𝑈), the fuzzy
lower and upper approximations of 𝐹 are denoted by

R
𝐴
(𝐹) (𝑥) = ∧

𝑦∈𝑈

𝑆 (1 −R
𝐴
(𝑥, 𝑦) , 𝐹 (𝑦)) ,

R
𝐴
(𝐹) (𝑥) = ∨

𝑦∈𝑈

𝑇 (R
𝐴
(𝑥, 𝑦) , 𝐹 (𝑦)) .

(7)

In fuzzy rough set, measurement should be introduced
to construct fuzzy similarity relation, such as the max-min
method. Then fuzzy similarity matrix can be constructed by
fuzzy similarity relation; after that, fuzzy equivalent matrix
can be constructed in terms of fuzzy similarity matrix by
transitive closure method:

𝑀(𝑅) = (

𝑟
11

𝑟
12

⋅ ⋅ ⋅ 𝑟
1𝑛

𝑟
21

𝑟
2𝑛

⋅ ⋅ ⋅ 𝑟
2𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝑟
𝑛1

𝑟
𝑛2

⋅ ⋅ ⋅ 𝑟
𝑛𝑛

), (8)

where 𝑟
𝑖𝑗
∈ [0, 1] is the relation value of 𝑥

𝑖
and 𝑥

𝑗
.

𝑅 is a fuzzy equivalence relation if 𝑅 satisfies reflectivity,
symmetry, and transitivity.

2.5. Multigranulation Fuzzy Rough Set. In [15], Qian et al.
introduced the theory of fuzzy set into multigranulation
rough set to construct the optimistic and pessimistic multi-
granulation fuzzy rough sets.

Definition 7. Let 𝑆 be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆ 𝐴𝑇 are 𝑚 fuzzy subsets, and 𝐷 decision

attribute; for all 𝑋 ⊆ 𝑈, the optimistic multi-granulation
fuzzy lower and upper approximations of𝑋 are denoted by

𝑚

∑
𝑖=1

𝐴
𝑖

𝑂

(𝑋)

= {𝑥 ∈ 𝑈 : [𝑥]
𝐴
1

⊆ 𝑋 ∨ [𝑥]
𝐴
2

⊆ 𝑋 ∨ ⋅ ⋅ ⋅ ∨ [𝑥]
𝐴
𝑚

⊆ 𝑋} ;

(9)

𝑚

∑
𝑖=1

𝐴
𝑖

𝑂

(𝑋) = ∼ (
𝑚

∑
𝑖=1

𝐴
𝑖

𝑂

(∼ 𝑋)) , (10)

where [𝑥]
𝐴
𝑖

= {𝑦 ∈ 𝑈 : (𝑥, 𝑦) ∈ IND (𝐴𝑇)} is the fuzzy
equivalent class of 𝑥. ∼ 𝑋 is the complementary set of𝑋.

(∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋), ∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋)) is optimistic multigranula-
tion fuzzy rough set.

Definition 8. Let 𝑆 be a fuzzy decision information
system,𝐴

1
, 𝐴
2
, . . . 𝐴

𝑚
⊆ 𝐴𝑇𝑚 fuzzy subsets, and 𝐷 decision

attribute; for all 𝑋 ⊆ 𝑈, the pessimistic multigranulation
fuzzy lower and upper approximations of𝑋 are denoted by

𝑚

∑
𝑖=1

𝐴
𝑖

𝑃

(𝑋)

= {𝑥 ∈ 𝑈 : [𝑥]
𝐴
1

⊆ 𝑋 ∧ [𝑥]
𝐴
2

⊆ 𝑋 ∧ ⋅ ⋅ ⋅ ∧ [𝑥]
𝐴
𝑚

⊆ 𝑋} ;

𝑚

∑
𝑖=1

𝐴
𝑖

𝑃

(𝑋) = ∼ (
𝑚

∑
𝑖=1

𝐴
𝑖

𝑃

(∼ 𝑋)) ,

(11)

where (∑𝑚
𝑖=1

𝐴
𝑖

𝑃

(𝑋), ∑
𝑚

𝑖=1
𝐴
𝑖

𝑃

(𝑋)) is pessimistic multigranu-
lation fuzzy rough set. ∼ 𝑋 is the complementary set of𝑋.

3. 𝛽 Multigranulation Fuzzy Rough Sets

In 𝛽 multigranulation rough sets, by setting different values
of 𝛽, we can get different reductions from which the most
suitable reduction can be used in next research. The fuzzy
rough set is very suitable for big continuous data set. So
it is natural to introduce the theory of fuzzy set into 𝛽
multigranulation rough sets to construct 𝛽 multigranulation
fuzzy rough sets model.

In this section, we will give some definitions of 𝛽
multigranulation fuzzy rough sets model and discuss some
properties of it.

Definition 9. Let 𝑆 be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆ 𝐴𝑇𝑚 fuzzy subsets, and 𝐷 is decision

attribute; for all 𝑥 ∈ 𝑈 and𝑋 ⊆ 𝑈, the characteristic function
is defined as

𝐶𝑖
𝑋
(𝑥) = {

1 : [𝑥]
𝐴
𝑖

⊆ 𝑋

0 : otherwise,
(12)
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where [𝑥]
𝐴
𝑖

= {𝑦 ∈ 𝑈 : (𝑥, 𝑦) ∈ IND (𝐴𝑇)} is the fuzzy
equivalent class of 𝑥. Then 𝛽 multigranulation fuzzy rough
set is defined as follows.

Definition 10. Let 𝑆 be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆ 𝐴𝑇 are𝑚 fuzzy subsets, and 𝐷 decision

attribute; for all 𝑋 ⊆ 𝑈, the 𝛽 multigranulation fuzzy lower
and upper approximations of𝑋 are denoted by

𝑚

∑
𝑖=1

𝐴
𝑖

𝛽

(𝑋) = {𝑥 ∈ 𝑈 :
∑
𝑚

𝑖=1
𝐶𝑖
𝑋
(𝑥)

𝑚
≥ 𝛽} ; (13)

𝑚

∑
𝑖=1

𝐴
𝑖

𝛽

(𝑋) =
{
{
{

𝑥 ∈ 𝑈 :
∑
𝑚

𝑖=1
(1 − 𝐶𝑖

∼𝑋
(𝑥))

𝑚
≻ 1 − 𝛽

}
}
}

;

(14)

where (∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋), ∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋)) is 𝛽 multigranulation
fuzzy rough set. ∼𝑋 is the complementary set of𝑋.

Following Definition 10, we will employ the following
denotations:

positive region of𝑋: POS𝛽
𝐴𝑇
(𝑋) = ∑

𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋);

negative region of𝑋: NEG𝛽
𝐴𝑇
(𝑋) = 𝑈 − ∑

𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋);

boundary region of 𝑋: BND𝛽
𝐴𝑇
(𝑋) = ∑

𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋) −

∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋).

Theorem 11. Let S be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆ 𝐴𝑇 are𝑚 fuzzy subsets, and 𝐷 decision

attribute; for all𝑋 ⊆ 𝑈,

𝑚

∑
𝑖=1

𝐴
𝑖

1/𝑚

(𝑋) =
𝑚

∑
𝑖=1

𝐴
𝑖

𝑂

(𝑋) , (15)

𝑚

∑
𝑖=1

𝐴
𝑖

1/𝑚

(𝑋) =
𝑚

∑
𝑖=1

𝐴
𝑖

𝑂

(𝑋) , (16)

𝑚

∑
𝑖=1

𝐴
𝑖

1

(𝑋) =
𝑚

∑
𝑖=1

𝐴
𝑖

𝑃

(𝑋) , (17)

𝑚

∑
𝑖=1

𝐴
𝑖

1

(𝑋) =
𝑚

∑
𝑖=1

𝐴
𝑖

𝑃

(𝑋) . (18)

Proof. We only prove (15); others can be proven analogously.
For all 𝑥 ∈ ∑

𝑚

𝑖=1
𝐴
𝑖

1/𝑚

(𝑋), by (13), there exist

∑
𝑚

𝑖=1
𝐶𝑖
𝑋
(𝑥)/𝑚 ≥ 1/𝑚, ∑𝑚

𝑖=1
𝐶𝑖
𝑋
(𝑥) ≥ 1; there must be 𝐴

𝑖
∈

𝐴𝑇 such that 𝐶𝑖
𝑋
(𝑥) = 1, from which we can conclude that

[𝑥]
𝐴
𝑖

⊆ 𝑋, 𝑥 ∈ ∑𝑚
𝑖=1

𝐴
𝑖

𝑂

(𝑋).

For all 𝑥 ∈ ∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋), by (9), there exists 𝐴
𝑖
∈

𝐴𝑇 such that [𝑥]
𝐴
𝑖

⊆ 𝑋. Therefore, by 𝐶𝑖
𝑋
(𝑥) = 1 and

∑
𝑚

𝑖=1
𝐶𝑖
𝑋
(𝑥) ≥ 1, we can get ∑𝑚

𝑖=1
𝐶𝑖
𝑋
(𝑥)/𝑚 ≥ 1/𝑚 such

that 𝑥 ∈ ∑𝑚
𝑖=1

𝐴
𝑖

1/𝑚

(𝑋).
Theorem 11 shows that if 𝛽 = 𝑚−1, 𝛽 multigranulation

fuzzy rough set turns to optimistic multigranulation fuzzy
rough set. If 𝛽 = 1, 𝛽multigranulation fuzzy rough set turns
to pessimistic multigranulation fuzzy rough set. Obviously, 𝛽
multigranulation fuzzy rough set is an extension of optimistic
multigranulation fuzzy rough set and pessimistic multigran-
ulation fuzzy rough set.

Theorem 12. Let S be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆ 𝐴𝑇 are𝑚 fuzzy subsets, and D decision

attribute; for all 𝑋 ⊆ 𝑈, 𝛽 ∈ (0, 1], we can get
𝑚

∑
𝑖=1

𝐴
𝑖

𝑃

(𝑋) ⊆
𝑚

∑
𝑖=1

𝐴
𝑖

𝛽

(𝑋) ⊆
𝑚

∑
𝑖=1

𝐴
𝑖

𝑂

(𝑋) , (19)

𝑚

∑
𝑖=1

𝐴
𝑖

𝑂

(𝑋) ⊆
𝑚

∑
𝑖=1

𝐴
𝑖

𝛽

(𝑋) ⊆
𝑚

∑
𝑖=1

𝐴
𝑖

𝑃

(𝑋) . (20)

Proof. For all 𝑥 ∈ ∑
𝑚

𝑖=1
𝐴
𝑖

𝑃

(𝑋), by (17), there exists 𝑥 ∈

∑
𝑚

𝑖=1
𝐴
𝑖

1

(𝑋); by (13), there must be 𝑥 ∈ ∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋), such

that ∑𝑚
𝑖=1

𝐴
𝑖

𝑃

(𝑋) ⊆ ∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋).

For all 𝑥 ∈ ∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋), by (13), there exists

∑
𝑚

𝑖=1
𝐶𝑖
𝑋
(𝑥)/𝑚 ≥ 𝛽; there must be [𝑥]

𝐴
𝑖

⊆ 𝑋 such that
𝐶𝑖
𝑋
(𝑥) = 1; then ∑𝑚

𝑖=1
𝐶𝑖
𝑋
(𝑥)/𝑚 ≥ 1/𝑚; by (15), there exists

𝑥 ∈ ∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋) such that ∑𝑚
𝑖=1

𝐴
𝑖

𝛽

(𝑋) ⊆ ∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋).

So ∑𝑚
𝑖=1

𝐴
𝑖

𝑃

(𝑋) ⊆ ∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋) ⊆ ∑
𝑚

𝑖=1
𝐴
𝑖

𝑂

(𝑋).
Formula (20) can be proven analogously.

4. Reduction of 𝛽 Multigranulation
Fuzzy Rough Sets

In single granular fuzzy rough set, reduction is a minimal
subset of the attributes, which is independent and has
the same discernibility power as all of the attributes. The
method of preserving the positive region is usually used for
attribute reduction. In this paper, we consider each attribute
as a granular space. It is natural to introduce this method
into 𝛽 multigranulation fuzzy rough set for granular space
reduction.

Definition 13. Let 𝑆 be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆ 𝐴𝑇 are 𝑚 fuzzy subsets, 𝐷 is decision

attribute, 𝑈/IND (𝐷) = {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
} is the partition

induced by a set of decision attributes𝐷, and approximation
qualities of 𝑈/IND (𝐷) in terms of 𝛽multigranulation fuzzy
rough set are defined as

𝛾 (𝐴𝑇, 𝛽,𝐷) =

󵄨󵄨󵄨󵄨󵄨󵄨
⋃ {∑
𝑚

𝑖=1
𝐴
𝑖

𝛽

(𝑋
𝑗
) : 1 ≤ 𝑗 ≤ 𝑛}

󵄨󵄨󵄨󵄨󵄨󵄨
|𝑈|

, (21)

where, |𝑋| is the cardinal number of set𝑋.
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4.1. Significance of Granulation

Definition 14. Let 𝑆 be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆ 𝐴𝑇 are 𝑚 fuzzy subsets, 𝐷 is decision

attribute, and 𝐵 is a reduction if and only if

(1) 𝛾(𝐵, 𝛽,𝐷) = 𝛾(𝐴𝑇, 𝛽,𝐷);

(2) for all 𝐵󸀠 ⊆ 𝐵, 𝛾(𝐵󸀠, 𝛽, 𝐷) ̸= 𝛾(𝐴𝑇, 𝛽,𝐷).

By Definition 10, we can get a reduction of 𝑆when preserving
the approximation quality.

Definition 15. Let 𝑆 be a fuzzy decision information system,
𝐴
1
, 𝐴
2
, . . . 𝐴

𝑚
⊆ 𝐴𝑇 are 𝑚 fuzzy subsets, 𝐷 is decision

attribute, and 𝐵 ⊆ 𝐴𝑇; for all 𝐴
𝑖
∈ 𝐵, the significance of

granulation of 𝐴
𝑖
in terms of𝐷 is defined as

sigin (𝐴 𝑖, 𝐵, 𝐷) = 𝛾 (𝐵, 𝛽,𝐷) − 𝛾 (𝐵 − 𝐴 𝑖, 𝛽, 𝐷) , (22)

where sigin(𝐴 𝑖, 𝐵, 𝐷) represents the changes of the approxi-
mation quality if a set of attributes 𝐴

𝑖
is eliminated from𝐴𝑇.

Also, we can define

sigout (𝐴 𝑖, 𝐵, 𝐷) = 𝛾 (𝐵 ∪ 𝐴 𝑖, 𝛽, 𝐷) − 𝛾 (𝐵, 𝛽,𝐷) (23)

for all 𝐴
𝑖
∈ 𝐴𝑇 − 𝐵, sigout(𝐴 𝑖, 𝐵, 𝐷) represents the changes

of the approximation quality if a set of attributes 𝐴
𝑖
is

put in 𝐴𝑇. These two significances can be used to forward
granular structure selection algorithm, and sigin(𝐴 𝑖, 𝐵, 𝐷)
can determine the significance of every granulation in terms
of the approximation quality.

4.2. Granular Space Reduction Algorithm. See Algorithm 1.

4.3. Experiment. To demonstrate the above approach, we use
5 data sets gotten from UCI Repository of Machine Learning
databases; the description of the selected data sets is listed in
Table 1.

In this experiment, each feature is used to construct a
granular structure. All features then correspond to multiple
granular structures. For each data set, 5 different 𝛽 are used;
then the different results of granular selection of Table 1 under
different values of𝛽 are listed in Table 2. In Table 2, “𝑢”means
the number of features, “0.001” is the smallest value of 𝛽, “1”
is the biggest value of 𝛽, and “1/𝑢” is bigger than 0.01 and
smaller than 1.

Through Table 2, we get an interesting outcome that
the result of granular selection of each data set is changed
with different values of 𝛽. The granular selection results are
increased with the increased value of 𝛽. Take for instance that
when 𝛽 = 0.001, we get the least number of features; when 𝛽
= 1, we get the most number of features. Obviously, when 𝛽
= 1/u, it actually represents the optimistic multigranulation
fuzzy rough set; when 𝛽 = 1, it actually represents pessimistic
multigranulation fuzzy rough set, which is too strict for
only when all of the granulation spaces satisfy the inclusion
condition between the equivalence classes and the target

Table 1: Data description.

ID Data set Samples Feature
1 biodeg 1055 41
2 Ionosphere 351 34
3 Parkinsons 196 22
4 sonar 208 60
5 wdbc 569 30

Table 2: Granular space selection.

ID Data set Granular selection with different 𝛽
1/𝑢 1 0.001 0.005 0.01

1 biodeg 39 41 24 27 31
2 Ionosphere 28 34 26 26 28
3 Parkinsons 15 22 11 11 14
4 sonar 59 60 47 50 55
5 wdbc 25 30 14 21 24

Table 3: Accuracy with neural net.

ID Data set Accuracy with different 𝛽
1/𝑢 1 0.001 0.005 0.01

1 biodeg 88.152 87.204 86.161 85.782 86.161
2 Ionosphere 83.191 88.604 85.755 85.755 83.191
3 Parkinsons 75.385 78.462 76.923 76.923 75.385
4 sonar 72.596 73.077 77.885 70.673 75.481
5 wdbc 89.279 89.279 62.742 62.742 74.165

Table 4: Accuracy with decision tree.

ID Data set Accuracy with different 𝛽
1/𝑢 1 0.001 0.005 0.01

1 biodeg 94.692 94.123 94.028 94.787 95.64
2 Ionosphere 96.581 99.43 96.866 96.866 95.581
3 Parkinsons 92.308 96.41 95.897 95.897 92.308
4 sonar 98.558 98.558 96.635 96.635 98.558
5 wdbc 97.891 98.77 98.418 98.594 99.297

that the object belongs to the lower approximation. in this
experiment, there are no reductions can be gotten, which
shows that it is difficult to get a satisfied reduction result
under pessimistic condition.

In order to test the performance of the proposed algo-
rithm and to get a proper 𝛽, we employ neural network and
decision tree as the validation function. The results are listed
in Tables 3 and 4.

We can find in Tables 3 and 4 that when 𝛽 = 1, the
selected features are just the same as the original data sets,
but the accuracy is not always the biggest, such as the result
of “biodeg” in Table 4; when 𝛽 = 0.005, the accuracy is bigger
than 𝛽 = 1, which shows that when 𝛽 is set a suitable value it
cannot only reduce redundant granular space but also retain
the most useful granular space so as to get better accuracy.
The selection of granular space is crucial to the performance
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Input: a fuzzy decision information system
𝑆= ⟨𝑈, 𝐴𝑇 ∪ 𝐷⟩

Output: a granular space reduction RED
Step 1. ∀𝐴

𝑖
∈ 𝐴𝑇, compute fuzzy similarity matrix

Step 2. ∀𝐴
𝑖
∈ 𝐴𝑇, compute fuzzy equivalence matrix in terms of the result of Step 1,

then get fuzzy equivalence class
Step 3. 𝑅𝐸𝐷 ← ⌀

Step 4. ∀𝐴
𝑖
∈ 𝐴𝑇, compute sigin(𝐴 𝑖, 𝐴𝑇,𝐷)

Step 5. 𝑅𝐸𝐷 ← 𝐴
𝑗
, sigin(𝐴𝑗, 𝐴𝑇,𝐷) = max {sigin (𝐴 𝑖, 𝐴𝑇,𝐷) : 𝐴 𝑖 ∈ 𝐴𝑇}

Step 6. ∀𝐴
𝑖
∈ 𝐴𝑇 − 𝑅𝐸𝐷, compute sigout(𝐴 𝑖, 𝑅𝐸𝐷,𝐷)

If
sigout (𝐴𝑘, 𝑅𝐸𝐷,𝐷) = max {sigout (𝐴 𝑖, 𝑅𝐸𝐷,𝐷) : 𝐴 𝑖 ∈ 𝐴𝑇 − 𝑅𝐸𝐷} , 𝑅𝐸𝐷 = 𝑅𝐸𝐷 ∪ {𝐴

𝑘
}

Until 𝛾(𝑅𝐸𝐷, 𝛽,𝐷) = 𝛾(𝐴𝑇, 𝛽,𝐷)
End

Step 7. return RED

Algorithm 1: Find granular space reduction.

of the sequent learning, so the selection should reflex the
structure of the data and patterns. Comparing the results of
Table 3 with Table 4, we can see that the accuracy of Table 4 is
bigger than Table 3; it shows that the accuracy is also related
to the performance of classifier.

This experiment shows that the proposed algorithm is
more flexible for selecting granular space than optimistic and
pessimistic multigranulation fuzzy rough sets, which can use
fewer features to get higher accuracy.

5. Conclusions

In this paper, a 𝛽 multigranulation fuzzy rough set model
is proposed, and a corresponding algorithm is proposed;
different from other methods, the proposed algorithm is
constructed on multigranular spaces, our experiment shows
that the granular selection results are increased with the
increased value of 𝛽, and the algorithm cannot only deal with
continuous data but also when 𝛽 is set properly, the reduction
will be suitable to be classified to get a good result. The
experiment result shows the effectiveness of our algorithm.
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