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This paper is concernedwith the existence of quasiperiodic solutionswith two frequencies of completely resonant, quasiperiodically
forced nonlinear wave equations subject to periodic spatial boundary conditions. The solutions turn out to be, at the first order,
the superposition of traveling waves, traveling in the opposite or the same directions. The proofs are based on the variational
Lyapunov-Schmidt reduction and the linking theorem, while the bifurcation equations are solved by variational methods.

1. Introduction

This paper is devoted to the study of the existence of small-
amplitude quasiperiodic solutions of completely resonant
forced nonlinear wave equations like

𝑢
𝑡𝑡
− 𝑢

𝑥𝑥
+ 𝑓 (𝜔

1
𝑡, 𝜔

2
𝑡, 𝑥, 𝑢) = 0, (1)

with periodic boundary conditions

𝑢 (𝑡, 𝑥) = 𝑢 (𝑡, 𝑥 + 2𝜋) , (𝑡, 𝑥) ∈ R
2
, (2)

while the nonlinear forced term 𝑓 is

𝑓 (𝜔
1
𝑡, 𝜔

2
𝑡, 𝑥, 𝑢) := ∑

𝑘≥3

𝑎
𝑘
(𝜔

1
𝑡 + 𝑥, 𝜔

2
𝑡 + 𝑥) 𝑢

𝑘
, (3)

when the traveling waves are in the same directions, and 𝑓 is

𝑓 (𝜔
1
𝑡, 𝜔

2
𝑡, 𝑥, 𝑢) := ∑

𝑘≥3

𝑎
𝑘
(𝜔

1
𝑡 − 𝑥, 𝜔

2
𝑡 + 𝑥) 𝑢

𝑘
, (4)

when the traveling waves are in the opposite directions.
Moreover, the nonlinear forced terms are all analytic in a
neighborhood of 𝑢 = 0.

Periodic or quasiperiodic solutions in nonresonant PDEs
have been obtained, for instance, in [1–12] by the Lyapunov-
Schmidt reduction together with Nash-Moser theory and
KAM theory, while the completely resonant autonomous
PDEs have been originally studied by variational methods
starting fromRabinowitz [13–19].They obtained the existence
of periodic solutions with period being a rational multiple
of 𝜋, and such solutions correspond to a zero-measure set
of values of the amplitudes. The case with period being
irrational of 𝜋, which in principle could provide a large
measure of values, has beenmostly studied under strongDio-
phantine conditions; see [20–25] and the references therein.
In [26, 27], using the Lindstedt series method, Gentile and
Procesi obtained the existence of periodic solutions for a
large measure set of frequencies for the nonlinear wave
equations andnonlinear Schrödinger equationswith periodic
boundary conditions. In [28], Yuan obtained the existence
of quasiperiodic solution for a large measure set of at least
three dimensional rotation vectors by the KAM method. In
[29], under the periodic boundary condition and with the
periodic forced nonlinearities 𝑓(𝜔

1
𝑡, 𝑢) = 𝑎(𝜔

1
𝑡)𝑢

2𝑑−1
+

𝑂(𝑢
2𝑑
), 𝑑 > 2, Berti and Procesi got the existence of

quasiperiodic solution of nonlinear wave equation in the
form of V(𝑡, 𝑥) = 𝑢(𝜔

1
𝑡, 𝜔

2
𝑡 + 𝑥). In [30], Procesi firstly
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obtained the quasiperiodic solutions with two frequencies in
the form of V(𝑡, 𝑥) = 𝑢(𝜔

1
𝑡 + 𝑥, 𝜔

2
𝑡 − 𝑥) for the specific

nonlinearities 𝑓 = 𝑢3 + 𝑂(𝑢5), where the forced terms do
not depend on the time and the bifurcation equations are
solved by ODE methods. In [31], Baldi proved the existence
of small-amplitude quasiperiodic solutions in the form of
V(𝑡, 𝑥) = 𝑢(𝜔

1
𝑡 + 𝑥, 𝜔

2
𝑡 + 𝑥) with the general nonlinearities

𝑓 = 𝑢
3
+𝑂(𝑢

4
), which also do not depend on the time. In [32],

they considered the existence of quasiperiodic solution of the
forced wave equation, in which the solutions are traveling in
opposite directions. However, they did not give the regularity
of the solutions, and the results are the special case of our
results in Section 4. Moreover, we mention the work [33] of
Bambusi, where a simple proof of an infinite-dimensional
extension of the Lyapunov center theorem is given.

In this paper, for the completely resonant wave equation
(1) subjecting to the quasiperiodic forced terms, we will prove
the existence and regularity of quasiperiodic solutions with
two frequencies, 𝜔

1
, 𝜔

2
, in both of the following two cases.

Case (A1). The first case considers the wave traveling in the
same directions 𝑢(𝑡, 𝑥) = V(𝜔

1
𝑡 + 𝑥, 𝜔

2
𝑡 + 𝑥).

Case (A2). The second case considers the wave traveling in
opposite directions 𝑢(𝑡, 𝑥) = V(𝜔

1
𝑡 − 𝑥, 𝜔

2
𝑡 + 𝑥).

2. Main Results

We look for quasiperiodic solutions 𝑢(𝑡, 𝑥) of (1) of the
following form:

(in the same directions)

𝑢 (𝑡, 𝑥) = V (𝜔
1
𝑡 + 𝑥, 𝜔

2
𝑡 + 𝑥) = V (𝜑

1
, 𝜑

2
) ,

V (𝜑
1
, 𝜑

2
) = V (𝜑

1
+ 2𝑘

1
𝜋, 𝜑

2
+ 2𝑘

2
𝜋) , ∀𝑘

1
, 𝑘
2
∈ Z,

(5)

with frequencies 𝜔 = (𝜔
1
, 𝜔

2
) = (1 + 𝜖, 1 + 𝑎𝜖

2
), 𝑎 ∈ R−, or

(in opposite directions)

𝑢 (𝑡, 𝑥) = V (𝜔
1
𝑡 − 𝑥, 𝜔

2
𝑡 + 𝑥) = V (𝜑

1
, 𝜑

2
) ,

V (𝜑
1
, 𝜑

2
) = V (𝜑

1
+ 2𝑘

1
𝜋, 𝜑

2
+ 2𝑘

2
𝜋) , ∀𝑘

1
, 𝑘
2
∈ Z,

(6)

with frequencies 𝜔 = (𝜔
1
, 𝜔

2
) = (1 + 𝜖, 1 + 𝑎𝜖), 𝑎 ∈ R−,

imposing the frequencies 𝜔 = (𝜔
1
, 𝜔

2
) to be close to linear

frequency 1. Therefore, finding the quasiperiodic solutions of
(1) with frequencies, respectively, (𝜔

1
, 𝜔

2
) is equivalent to

finding 2𝜋 periodic solutions with respect to (𝜑
1
, 𝜑

2
) for the

following equations:

(in the same directions)

(𝜕
2

𝑡𝑡
− 𝜕

2

𝑥𝑥
) V = (𝜕

𝑡
− 𝜕

𝑥
) ∘ (𝜕

𝑡
+ 𝜕

𝑥
) V

= [𝜔
1
𝜕
𝜑
1

+ 𝜔
2
𝜕
𝜑
2

− 𝜕
𝜑
1

− 𝜕
𝜑
2

]

∘ [𝜔
1
𝜕
𝜑
1

+ 𝜔
2
𝜕
𝜑
2

+ 𝜕
𝜑
1

+ 𝜕
𝜑
2

] V

= ((𝜔
2

1
− 1) 𝜕

2

𝜑
1

+ (𝜔
2

2
− 1) 𝜕

2

𝜑
2

+2 (𝜔
1
𝜔
2
− 1) 𝜕

𝜑
1

𝜕
𝜑
2

) V

= − 𝑓 (𝜑
1
, 𝜑

2
, V) ,

(7)

(in opposite directions)

(𝜕
2

𝑡𝑡
− 𝜕

2

𝑥𝑥
) V = (𝜕

𝑡
− 𝜕

𝑥
) ∘ (𝜕

𝑡
+ 𝜕

𝑥
) V

= [𝜔
1
𝜕
𝜑
1

+ 𝜔
2
𝜕
𝜑
2

+ 𝜕
𝜑
1

− 𝜕
𝜑
2

]

∘ [𝜔
1
𝜕
𝜑
1

+ 𝜔
2
𝜕
𝜑
2

− 𝜕
𝜑
1

+ 𝜕
𝜑
2

] V

= ((𝜔
2

1
− 1) 𝜕

2

𝜑
1

+ (𝜔
2

2
− 1) 𝜕

2

𝜑
2

+ 2 (𝜔
1
𝜔
2
+ 1) 𝜕

𝜑
1

𝜕
𝜑
2

) V

= − 𝑓 (𝜑
1
, 𝜑

2
, V) .

(8)

We assume that the quasiperiodic forced term 𝑓 : T2 × R →

R,

𝑓 (𝜑
1
, 𝜑

2
, V) = 𝑎

3
(𝜑

1
, 𝜑

2
) V3 + 𝑂 (V4) , (9)

is analytic in V but has only finite regularity in 𝜑
1
, 𝜑

2
. More

precisely,

(H) 𝑓(𝜑
1
, 𝜑

2
, V) := ∑∞

𝑘=3
𝑎
𝑘
(𝜑
1
, 𝜑

2
)V𝑘, and the coefficients

𝑎
𝑘
(𝜑
1
, 𝜑

2
) ∈ 𝐻

1
(T2) verify, for some 𝑟 > 0,

∑
∞

𝑘=3
|𝑎
𝑘
|
𝐻
1𝑟
𝑘
< ∞. The function 𝑓(𝜑

1
, 𝜑

2
, V) is not

identically constant in (𝜑
1
, 𝜑

2
).

We look for solutions V of (7)-(8) in the Banach space

H
𝜎,𝑠

:=

{

{

{

V (𝜑) = ∑

(𝑙1,𝑙2)∈Z
2

V̂
(𝑙
1
,𝑙
2
)
𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2
: V̂∗
(𝑙1,𝑙2)

= V̂
(−𝑙
1
,−𝑙
2
)
,

|V|
𝜎,𝑠
= ∑

(𝑙1 ,𝑙2)∈Z
2

󵄨
󵄨
󵄨
󵄨
󵄨
V̂
(𝑙
1
,𝑙
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
|𝑙
2
|𝜎
(max {0, 󵄨󵄨󵄨

󵄨
𝑙
1

󵄨
󵄨
󵄨
󵄨
})
𝑠

< +∞

}

}

}

,

(10)

where 𝑙 = (𝑙
1
, 𝑙
2
) ∈ Z2

, V̂∗
(𝑙
1
,𝑙
2
)
denotes its complex conjugate,

and 𝜎 > 0, 𝑠 ≥ 0.
The space H

𝜎,𝑠
is a Banach algebra with respect to

multiplications of functions, namely,

V
1
, V
2
∈H

𝜎,𝑠
󳨐⇒ V

1
V
2
∈H

𝜎,𝑠
,

󵄨
󵄨
󵄨
󵄨
V
1
V
2

󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤ 𝐶
󵄨
󵄨
󵄨
󵄨
V
1

󵄨
󵄨
󵄨
󵄨𝜎,𝑠

󵄨
󵄨
󵄨
󵄨
V
2

󵄨
󵄨
󵄨
󵄨𝜎,𝑠
.

(11)

We will prove the following theorems.
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Theorem 1. Assume that the nonlinearity 𝑓 satisfies (H) and
𝑎
3
(𝜑
1
, 𝜑

2
) ̸= 0, ∀(𝜑

1
, 𝜑

2
) ∈ T2. Let B

𝛾
be the uncountable

zero-measure Cantor set
B

𝛾

:= { (𝑎, 𝜖) ∈ R
−
×R, 1 + 𝜖 ̸= 0, 1 + 𝑎𝜖

2
̸= 0, 2 + 𝑎𝜖

2
̸= 0,

(

2 + 𝜖

2 + 𝑎𝜖
2
, 𝑎𝜖) ∈ C

𝛾
1

∩ (1 − 𝜖
0
, 1 + 𝜖

0
)

×C
𝛾
2

∩ (−𝜖
0
, 𝜖
0
) ,

1 + 𝜖

1 + 𝑎𝜖
2
∉ Q, for 𝜖

0
∈ (0,

1

2

)} ,

(12)

where C
𝛾
𝑖

, 𝑖 = 1, 2, are sets of badly approximate numbers
defined as

C
𝛾
1

:= {

2 + 𝜖

2 + 𝑎𝜖
2
:

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑙
2
+

2 + 𝜖

2 + 𝑎𝜖
2
𝑙
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

>

𝛾

󵄨
󵄨
󵄨
󵄨
𝑙
1

󵄨
󵄨
󵄨
󵄨

} ,

C
𝛾
2

:= {𝑎𝜖 :
󵄨
󵄨
󵄨
󵄨
𝑙
1
+ 𝑎𝜖𝑙

2

󵄨
󵄨
󵄨
󵄨
>

𝛾

󵄨
󵄨
󵄨
󵄨
𝑙
2

󵄨
󵄨
󵄨
󵄨

}

(13)

for ∀𝑙
1
, 𝑙
2
∈ Z \ {0}, and 0 < 𝛾 < 1/4. There exist constants

𝜎 > 0, 𝑠 > 2, and 𝜖(𝑅) > 0, such that, for (𝑎, 𝜖) ∈B
𝛾
, |𝜖|/𝛾 <

𝜖(𝑅), there exists a solution V(𝜖, 𝜑
1
, 𝜑

2
) ∈ H

𝜎,𝑠
of (7), having

the form

V (𝜖, 𝜑
1
, 𝜑

2
)

= |𝜖| (𝑞
0
+ 𝑞

−
(𝜑

2
) + 𝑞

+
(𝜑

1
+ 𝜑

2
) + 𝑝 (𝜖, 𝜑

1
, 𝜑

2
)) ,

(14)

with
󵄨
󵄨
󵄨
󵄨
𝑝 (𝜖, 𝜑

1
, 𝜑

2
)
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤ 𝐶(

|𝜖|

𝛾

) , (15)

where 𝐶 is a constant. As a consequence, (1) possesses
the quasiperiodic solutions, traveling in the same directions,
𝑢(𝜖, 𝑡, 𝑥) = V(𝜖, 𝜔

1
𝑡 + 𝑥, 𝜔

2
𝑡 + 𝑥), with two frequencies

(𝜔
1
, 𝜔

2
) = (1 + 𝜖, 1 + 𝑎𝜖

2
).

Theorem 2. Assume that 𝑓 satisfies assumption (H) and
𝑎
3
(𝜑
1
, 𝜑

2
) ̸= 0, ∀(𝜑

1
, 𝜑

2
) ∈ T2. Let D

𝛾
⊂ (−𝜖

0
, 𝜖
0
) × (−𝜖

0
, 𝜖
0
)

be the uncountable zero-measure Cantor set

D
𝛾
:= {(𝑎, 𝜖) ∈ R

−
×R, (

𝑎𝜖

2 + 𝜖

,

𝜖

2 + 𝑎𝜖

) ∈ E
𝛾
,

1 + 𝜖

1 + 𝑎𝜖

∉ Q, 1 + 𝜖 ̸= 0, 1 + 𝑎𝜖 ̸= 0, 2 + 𝑎𝜖 ̸= 0} ,

(16)

where E
𝛾
is a set of badly approximate numbers defined as

E
𝛾

:= { (

𝑎𝜖

2 + 𝜖

,

𝜖

2 + 𝑎𝜖

) := (𝜖
1
, 𝜖
2
) ∈ (−𝜖

0
, 𝜖
0
) × (−𝜖

0
, 𝜖
0
) :

󵄨
󵄨
󵄨
󵄨
𝑙
1
+ 𝜖

1
𝑙
2

󵄨
󵄨
󵄨
󵄨
>

𝛾

󵄨
󵄨
󵄨
󵄨
𝑙
2

󵄨
󵄨
󵄨
󵄨

,
󵄨
󵄨
󵄨
󵄨
𝑙
2
+ 𝜖

2
𝑙
1

󵄨
󵄨
󵄨
󵄨
>

𝛾

󵄨
󵄨
󵄨
󵄨
𝑙
1

󵄨
󵄨
󵄨
󵄨

}

(17)

for ∀𝑙
1
, 𝑙
2
∈ Z \ {0}, and 0 < 𝛾 < 1/4, 𝜖

0
∈ (0, 1/2). There

exist positive numbers 𝜎, 𝜖, 𝐶, 𝑠 > 2, such that, ∀(𝑎, 𝜖) ∈ D
𝛾
,

(8) admits solutions in the form of

V
𝑎,𝜖
(𝑡, 𝑥) = V (𝜖, 𝜑

1
, 𝜑

2
)

= √|𝜖| (𝑞
0
+ 𝑞

−
(𝜑

2
) + 𝑞

+
(𝜑

1
)

+𝑝 (𝜖, 𝜑
1
, 𝜑

2
)) ∈H

𝜎,𝑠
,

(18)

satisfying

󵄨
󵄨
󵄨
󵄨
𝑝 (𝜖, 𝜑

1
, 𝜑

2
)
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤ 𝐶(

|𝜖|

𝛾

) . (19)

As a consequence, (1) possesses the quasiperiodic solutions,
𝑢
𝑎,𝜖
(𝑡, 𝑥) = V

𝑎,𝜖
((1+ 𝜖)𝑡+𝑥, (1+𝑎𝜖)𝑡−𝑥), traveling in opposite

directions.

Remark 3. The quasiperiodic solutions of traveling waves we
obtained are different from the ones got by KAM methods
since the quasiperiodic solutions we get depending on 𝑥 and
𝑡 are coupled and in the form of the traveling waves.

Remark 4. We can get the similar result with more general
nonlinearity, such as 𝑓(𝜔

1
𝑡, 𝜔

2
𝑡, 𝑥, 𝑢) = 𝑎

𝑑
(𝜑
1
, 𝜑

2
)𝑢
𝑑
+

𝑂(𝑢
(𝑑+1)

), for any 𝑑 ∈ N, 𝑑 ≥ 3.

This paper is organized as follows: we first prove the
existence of quasiperiodic solutions, at the first order, to the
superposition of traveling waves, traveling in the same direc-
tions. In Section 4, we prove the existence of quasiperiodic
solutions traveling in opposite directions.

3. Waves Traveling in the Same Directions

Substituting 𝜔
1
= 1 + 𝜖, 𝜔

2
= 1 + 𝑎𝜖

2 into (7), we can obtain
the equations

LV + 𝑓 (𝜑
1
, 𝜑

2
, V) = 0, (20)

where, see (7), we have

L = ((𝜔
2

1
− 1) 𝜕

2

𝜑
1

+ (𝜔
2

2
− 1) 𝜕

2

𝜑
2

+ 2 (𝜔
1
𝜔
2
− 1) 𝜕

𝜑
1

𝜕
𝜑
2

) V

= 𝜖 (2𝜕
2

𝜑
1

+ 2𝜕
𝜑
1

𝜕
𝜑
2

)

+ 𝜖
2
(𝜕
2

𝜑
1

+ (2𝑎 + 𝑎
2
𝜖
2
) 𝜕

2

𝜑
2

+ 2𝑎 (1 + 𝜖) 𝜕
𝜑
1

𝜕
𝜑
2

) ,

(21)

and 𝑓(𝜑
1
, 𝜑

2
, V) = 𝑎

3
(𝜑
1
, 𝜑

2
)V3 + 𝑂(V4). To prove Theorem 1,

instead of looking for solutions of (7) in a shrinking neigh-
borhood of zero, it is convenient to perform the rescaling
V(𝜑

1
, 𝜑

2
) → 𝜖V(𝜑

1
, 𝜑

2
), enhancing the relation between the

amplitude and the frequencies. Without confusion, we define

L
𝑎,𝜖
= (2𝜕

2

𝜑
1

+ 2𝜕
𝜑
1

𝜕
𝜑
2

)

+ 𝜖 (𝜕
2

𝜑
1

+ (2𝑎 + 𝑎
2
𝜖
2
) 𝜕

2

𝜑
2

+ 2𝑎 (1 + 𝜖) 𝜕
𝜑
1

𝜕
𝜑
2

)

= L
0
+ 𝜖L

1
,

(22)
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so the problem becomes

L
𝑎,𝜖
+ 𝜖𝑓 (𝜑

1
, 𝜑

2
, V, 𝜖) = 0. (23)

To find the solutions of (23), we will apply the Lyapunov-
Schmidt reduction method which leads to solving separately
a “range equation” and a “bifurcation equation.” In order to
solve the range equation (avoiding small divisor problems),
we restrict 𝜖 to the uncountable zero-measure set B

𝛾
for

Theorem 1, and we apply the ContractionMappingTheorem;
similar nonresonance conditions have been employed, for
example, in [21–23, 25, 29, 30].

Equation (23) is the Euler-Lagrange equation of the action
functional Ψ

𝜖
∈ 𝐶

1
(H

𝜎,𝑠
,R) defined by

Ψ
𝜖
(V) := ∫

T2
(𝜕
𝜑
1

V)
2

+ (𝜕
𝜑
1

V) (𝜕
𝜑
2

V)

+ 𝜖(

1

2

(𝜕
𝜑
1

V)
2

+

2𝑎 + 𝑎
2
𝜖
2

2

(𝜕
𝜑
2

V)
2

+𝑎 (1 + 𝜖) (𝜕
𝜑
1

V) (𝜕
𝜑
2

V))

− 𝜖𝐹 (𝜑
1
, 𝜑

2
, V, 𝜖)

= Ψ
0
(V) + 𝜖Ψ

1
(V, 𝜖) ,

(24)

where

𝐹 (𝜑
1
, 𝜑

2
, V, 𝜖) := ∫

V

0

𝑓 (𝜑
1
, 𝜑

2
, 𝜉, 𝜖) 𝑑𝜉,

Ψ
0
(V) = ∫

T2
(𝜕
𝜑
1

V)
2

+ (𝜕
𝜑
1

V) (𝜕
𝜑
2

V) ,

Ψ
1
(V, 𝜖) := ∫

T2
(

1

2

(𝜕
𝜑
1

V)
2

+

2𝑎 + 𝑎
2
𝜖
2

2

(𝜕
𝜑
2

V)
2

+𝑎 (1 + 𝜖) (𝜕
𝜑
1

V) (𝜕
𝜑
2

V))

− 𝜖𝐹 (𝜑
1
, 𝜑

2
, V, 𝜖) .

(25)

To find critical points of Ψ
𝜖
(V), we perform a variational

Lyapunov-Schmidt reduction inspired by Berti and Bolle [22,
23, 29]; see also Ambrosetti and Badiale [34].

3.1. The Variational Lyapunov-Schmidt Reduction. The oper-
atorL

𝑎,𝜖
is diagonal defined on the Banach spaceH

𝜎,𝑠
under

the Fourier basis 𝑒
𝑙
= 𝑒

𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2 with eigenvalues

−𝐷
𝑙
= (2𝑙

2

1
+ 2𝑙

1
𝑙
2
) + 𝜖 (𝑙

2

1
+ (2𝑎 + 𝑎

2
𝜖
2
) 𝑙
2

2
+ 2𝑎 (1 + 𝜖) 𝑙

1
𝑙
2
)

= (𝑙
1
+ 𝑎𝜖𝑙

2
) ((2 + 𝜖) 𝑙

1
+ (2 + 𝑎𝜖

2
) 𝑙
2
) .

(26)

So, we have

L
𝑎,𝜖
[V] = ∑

(𝑙1 ,𝑙2)∈Z
2

𝐷
𝑙
V̂
𝑙
1
,𝑙
2

𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2
, ∀V ∈H

𝜎,𝑠
. (27)

The critical points of the unperturbed functional Ψ
0
:

H
𝜎,𝑠
→ R form an infinite-dimensional linear space 𝑄, and

they are the solutions of the equation

L
0
𝑞 = (2𝜕

2

𝜑
1

+ 2𝜕
𝜑
1

𝜕
𝜑
2

) 𝑞 = 0. (28)

The space 𝑄 can be written as

𝑄 =

{

{

{

𝑞 = ∑

(𝑙
1
,𝑙
2
)∈Z2

𝑞
𝑙
1
,𝑙
2

𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2
∈H

𝜎,𝑠
| 𝑞

𝑙
1
,𝑙
2

= 0,

for 𝑙
1
(2𝑙

1
+ 2𝑙

2
) ̸= 0

}

}

}

.

(29)

In view of the variational argument that we will use to solve
the bifurcation equation, we split 𝑄 as 𝑄 = 𝑄

+
+ 𝑄

0
+ 𝑄

−
,

where

𝑄
+
:= {𝑞 ∈ 𝑄 : 𝑞

𝑙
1
,𝑙
2

= 0, for (𝑙
1
, 𝑙
2
) ∉ Λ

+
}

= {𝑞
+
:= 𝑞

+
(𝜑) ∈H

0

𝜎,𝑠
} ,

𝑄
0
:= {𝑞 : 𝑞

0,0
∈ R} ,

𝑄
−
:= {𝑞 ∈ 𝑄 : 𝑞

𝑙
1
,𝑙
2

= 0, for (𝑙
1
, 𝑙
2
) ∉ Λ

−
}

= {𝑞
−
:= 𝑞

−
(𝜑) ∈H

0

𝜎,𝑠
} ,

(30)

with

Λ
+
:= {(𝑙

1
, 𝑙
2
) ∈ Z

2
: 𝑙
1
= 0, 𝑙

2
̸= 0} ,

Λ
−
:= {(𝑙

1
, 𝑙
2
) ∈ Z

2
: 𝑙
1
+ 𝑙

2
= 0, (𝑙

1
, 𝑙
2
) ̸= (0, 0)} ,

Λ
0
:= {(𝑙

1
, 𝑙
2
) ∈ Z

2
: (𝑙

1
, 𝑙
2
) ≡ (0, 0)} .

(31)

We will also use in 𝑄 the norm

󵄨
󵄨
󵄨
󵄨
𝑞
󵄨
󵄨
󵄨
󵄨

2

𝐻
1 =
󵄨
󵄨
󵄨
󵄨
𝑞
+

󵄨
󵄨
󵄨
󵄨

2

𝐻
1
(T)
+ 𝑞

2

0,0
+
󵄨
󵄨
󵄨
󵄨
𝑞
−

󵄨
󵄨
󵄨
󵄨

2

𝐻
1
(T)

∼ ∑

(𝑙1 ,𝑙2)∈Λ +∪Λ 0∪Λ +

𝑞
2

𝑙
1
,𝑙
2

(
󵄨
󵄨
󵄨
󵄨
𝑙
1

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑙
2

󵄨
󵄨
󵄨
󵄨

2

+ 1) .

(32)

So, we can decompose the spaceH
𝜎,𝑠
= 𝑄 + 𝑃, where

𝑃 :=

{

{

{

𝑝 = ∑

𝑙
1
,𝑙
2
∈Z

𝑝
𝑙
1
,𝑙
2

𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2
∈H

𝜎,𝑠
| 𝑝

𝑙
1
,𝑙
2

= 0,

for 𝑙
1
(2𝑙

1
+ 2𝑙

2
) = 0

}

}

}

.

(33)

Projecting (23) onto the closed subspaces 𝑄 and 𝑃, setting
V = 𝑞 + 𝑝 ∈H

𝜎,𝑠
with 𝑞 ∈ 𝑄 and 𝑝 ∈ 𝑃, we obtain

(𝑄) L
1
[𝑞] + Π

𝑄
𝑓 (𝜑

1
, 𝜑

2
, 𝑞 + 𝑝, 𝜖) = 0,

(𝑃) L
𝑎,𝜖
[𝑝] + 𝜖Π

𝑃
𝑓 (𝜑

1
, 𝜑

2
, 𝑞 + 𝑝, 𝜖) = 0,

(34)
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where Π
𝑄
: H

𝜎,𝑠
→ 𝑄, Π

𝑃
: H

𝜎,𝑠
→ 𝑃 are the projectors,

respectively, onto 𝑄 and 𝑃.
In order to prove analyticity of the solutions and to high-

light the compactness of the problem, we perform a finite-
dimensional Lyapunov-Schmidt reduction, introducing the
decomposition 𝑄 = 𝑄

1
+ 𝑄

2
, where

𝑄
1
:=

{

{

{

𝑞 = ∑

|𝑙
1
|+|𝑙
2
|≤𝑁

𝑞
𝑙
1
,𝑙
2

𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2
∈ 𝑄

}

}

}

,

𝑄
2
:=

{

{

{

𝑞 = ∑

|𝑙
1
|+|𝑙
2
|≤𝑁

𝑞
𝑙
1
,𝑙
2

𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2
∈ 𝑄

}

}

}

.

(35)

Setting 𝑞 = 𝑞
1
+ 𝑞

2
with 𝑞

1
∈ 𝑄

1
and 𝑞

2
∈ 𝑄

2
, we finally get

(𝑄
1
) L

1
[𝑞
1
] + Π

𝑄
1

[𝑓 (𝜑
1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
+ 𝑝, 𝜖)] = 0

⇐⇒ 𝑑Ψ
𝜖
(V) [ℎ] = 0, ∀ℎ ∈ 𝑄

1
;

(36)

(𝑄
2
) L

1
[𝑞
2
] + Π

𝑄
2

[𝑓 (𝜑
1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
+ 𝑝, 𝜖)] = 0

⇐⇒ 𝑑Ψ
𝜖
(V) [ℎ] = 0, ∀ℎ ∈ 𝑄

2
;

(37)

(𝑃) L
𝑎,𝜖
[𝑝] + 𝜖Π

𝑃
[𝑓 (𝜑

1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
+ 𝑝, 𝜖)] = 0

⇐⇒ 𝑑Ψ
𝜖
(V) [ℎ] = 0, ∀ℎ ∈ 𝑃,

(38)

where Π
𝑄
𝑖

:H
𝜎,𝑠
→ 𝑄

𝑖
are the projectors onto 𝑄

𝑖
(𝑖 = 1, 2),

andΠ
𝑃
:H

𝜎,𝑠
→ 𝑃 is the projector onto𝑃.Wewill solve first

the (𝑄
2
)-(𝑃)-equations for all |𝑞

1
|
𝐻
1 ≤ 2𝑅, provided 𝜖 belongs

to a suitable Cantor-like set, |𝜖| ≤ 𝜖
0
(𝑅) is sufficiently small,

and 𝑁 ≥ 𝑁
0
(𝑅) is large enough (see Lemma 7). Next, we

will solve the 𝑄
1
-equation by means of a variational linking

argument; see Section 3.4.

3.2.The (𝑄
2
)-(𝑃)-Equations. Wefirst prove thatL

𝑎,𝜖
restrict-

ed to 𝑃 has a bounded inverse when (𝑎, 𝜖) belongs to the
uncountable zero-measure set

B
𝛾

:= { (𝑎, 𝜖) ∈ R
−
×R, 1 + 𝜖 ̸= 0, 1 + 𝑎𝜖

2
̸= 0, 2 + 𝑎𝜖

2
̸= 0,

(

2 + 𝜖

2 + 𝑎𝜖
2
, 𝑎𝜖) ∈ C

𝛾
1

∩ (1 − 𝜖
0
, 1 + 𝜖

0
)

×C
𝛾
2

∩ (−𝜖
0
, 𝜖
0
) ,

1 + 𝜖

1 + 𝑎𝜖
2
∉ Q, for 𝜖

0
∈ (0,

1

2

) } ,

(39)

where C
𝛾
𝑖

, 𝑖 = 1, 2, is a set of badly approximate numbers
defined by

C
𝛾
1

: = {

2 + 𝜖

2 + 𝑎𝜖
2
:

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑙
2
+

2 + 𝜖

2 + 𝑎𝜖
2
𝑙
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

>

𝛾

󵄨
󵄨
󵄨
󵄨
𝑙
1

󵄨
󵄨
󵄨
󵄨

} ,

C
𝛾
2

: = {𝑎𝜖 :
󵄨
󵄨
󵄨
󵄨
𝑙
1
+ 𝑎𝜖𝑙

2

󵄨
󵄨
󵄨
󵄨
>

𝛾

󵄨
󵄨
󵄨
󵄨
𝑙
2

󵄨
󵄨
󵄨
󵄨

} ,

(40)

for ∀𝑙
1
, 𝑙
2
∈ Z \ {0}, and 0 < 𝛾 < 1/4.C

𝛾
𝑖

, 𝑖 = 1, 2, accumulate
at 1 and zero, respectively, from both the right and the left;
see [21, 31, 35].

The operator L
𝜖

is diagonal in the Fourier basis
{𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2
, (𝑙

1
, 𝑙
2
) ∈ Z2

} with eigenvalues

𝐷
𝑙
1
,𝑙
2

= − (𝑙
1
+ 𝑎𝜖𝑙

2
) ((2 + 𝜖) 𝑙

1
+ (2 + 𝑎𝜖

2
) 𝑙
2
)

= − (2 + 𝑎𝜖
2
) (𝑙

1
+ 𝑎𝜖𝑙

1
) (𝑙

2
+

2 + 𝜖

2 + 𝑎𝜖
2
𝑙
1
) .

(41)

Lemma 5. For (𝑎, 𝜖) ∈ B
𝛾
, the eigenvalues 𝐷

𝑙
1
,𝑙
2

of L
𝑎,𝜖

restricted to 𝑃 satisfy
󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
𝑙
1
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑙
1
+ 𝑎𝜖𝑙

2
) ((2 + 𝜖) 𝑙

1
+ (2 + 𝑎𝜖

2
) 𝑙
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
> 𝛾,

∀𝑙
1
, 𝑙
2
̸= 0.

(42)

As a consequence, the operator L
𝑎,𝜖
: 𝑃 → 𝑃 has a bounded

inverseL−1

𝑎,𝜖
and satisfies

󵄨
󵄨
󵄨
󵄨
󵄨
L

−1

𝑎,𝜖
[ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤

|ℎ|
𝜎,𝑠

𝛾

, ∀ℎ ∈ 𝑃. (43)

Proof. Denote by [𝑥] the nearest integer close to 𝑥 and by
{𝑥} = 𝑥 − [𝑥] its fractional part. If both 𝑙

1
̸= − [𝑎𝜖𝑙

2
] and

𝑙
2
̸= − [((2 + 𝜖)/(2 + 𝑎𝜖

2
))𝑙
1
], we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
𝑙
1
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
(𝑙
1
+ 𝑎𝜖𝑙

2
)
󵄨
󵄨
󵄨
󵄨
⋅

󵄨
󵄨
󵄨
󵄨
󵄨
(2 + 𝑎𝜖

2
)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑙
2
+

2 + 𝜖

2 + 𝑎𝜖
2
𝑙
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

> 1.

(44)

If 𝑙
1
= −[𝑎𝜖𝑙

2
], then |𝑙

1
| < (1/2)|𝑙

2
|, so that |𝑙

2
+ ((2 + 𝜖)/(2 +

𝑎𝜖
2
))𝑙
1
| > (1/2)|𝑙

2
|. This implies that

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
𝑙
1
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝑙
1
+ 𝑎𝜖𝑙

2

󵄨
󵄨
󵄨
󵄨
⋅

󵄨
󵄨
󵄨
󵄨
󵄨
2 + 𝑎𝜖

2󵄨󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2 + 𝜖

2 + 𝑎𝜖
2
𝑙
1
+ 𝑙

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥

𝛾

󵄨
󵄨
󵄨
󵄨
𝑙
2

󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(2 + 𝜖)

× (𝜖 {

𝑎𝜖

2 + 𝜖

𝑙
2
} + 2𝑙

2
+ 𝑎𝜖 (1 −

𝜖

2 + 𝜖

) 𝑙
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝛾.

(45)

In the same way, if 𝑙
2
= −[((2 + 𝜖)/(2 + 𝑎𝜖

2
))𝑙
1
], we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
𝑙
1
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
≥

𝛾

󵄨
󵄨
󵄨
󵄨
𝑙
1

󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(2 + 𝑎𝜖
2
) (𝜖 {

(2 + 𝜖) 𝑎

2 + 𝑎𝜖
2
𝑙
1
} +

2 − 2𝑎𝜖

2 + 𝑎𝜖
2
𝑙
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝛾.

(46)

So, the operator L
𝑎,𝜖

restricted to 𝑃 has a bounded inverse
and satisfies

󵄨
󵄨
󵄨
󵄨
󵄨
L

−1

𝑎,𝜖
[ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
= ∑

(𝑙
1
,𝑙
2
)∈Z2

󵄨
󵄨
󵄨
󵄨
󵄨

̂
ℎ
𝑙
1
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
|𝑙
2
|𝜎
(max {0, 󵄨󵄨󵄨

󵄨
𝑙
1

󵄨
󵄨
󵄨
󵄨
})
𝑠

𝐷
𝑙
1
,𝑙
2

≤

|ℎ|
𝜎,𝑠

𝛾

, ∀ℎ ∈ 𝑃.

(47)
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Lemma 6. The operator L
1
: 𝑄

2
→ 𝑄

2
has a bounded

inverseL−1

1
, satisfying

󵄨
󵄨
󵄨
󵄨
󵄨
L

−1

1
[ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤

|ℎ|
𝜎,𝑠

𝑁
2
. (48)

Proof. L
1
is diagonal in the Fourier basis of 𝑄 : 𝑒𝑖𝑙1𝜑1𝑒𝑖𝑙2𝜑2

with (𝑙
1
, 𝑙
2
) ∈ Λ

+
∪ Λ

0
∪ Λ

−
with eigenvalues

𝑑
𝑙
1
,𝑙
2

= {

(1 + 𝜖 (−2𝑎 + 𝑎
2
𝜖)) 𝑙

2

2
, if 𝑙

1
+ 𝑙

2
= 0,

𝑎 (2 + 𝑎𝜖
2
) 𝑙
2

2
, if 𝑙

1
= 0.

(49)

The eigenvalues of L
1
restricted to 𝑄

2
(𝑁) verify |𝑑

𝑙
1
,𝑙
2

| ≥

𝑁
2
/𝐶, where the constant 𝐶 depends on (𝜖, 𝑎), and (48)

holds.

Fixed points of the nonlinear operator P : 𝑄
2
⊕ 𝑃 →

𝑄
2
⊕ 𝑃 defined by

P (𝑞
2
, 𝑝, 𝑞

1
) := (−L

−1

1
Π
𝑄
2

𝑓 (𝜑
1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
+ 𝑝, 𝜖) ,

−𝜖L
−1

𝑎,𝜖
Π
𝑃
𝑓 (𝜑

1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
+ 𝑝, 𝜖))

(50)

are solutions of the (𝑄
2
)-(𝑃)-equations. Using the Contrac-

tion MappingTheorem, we can prove the following lemma.

Lemma 7. For any 𝑅 > 0, there exist an integer 𝑁
0
(𝑅) ∈ N+

and positive constants 𝜖
0
(𝑅) > 0, 𝐶

0
(𝑅) > 0 such that

∀
󵄨
󵄨
󵄨
󵄨
𝑞
1

󵄨
󵄨
󵄨
󵄨𝐻
1 ≤ 2𝑅, ∀𝜖 ∈B

𝛾
, |𝜖| 𝛾

−1
≤ 𝜖

0
(𝑅) ,

∀𝑁 ≥ 𝑁
0
(𝑅) : 0 ≤ 𝑁𝜎 ≤ 1,

(51)

and there exists a unique solution (𝑞
2
(𝑞
1
), 𝑝(𝑞

1
)) :=

(𝑞
2
(𝜖,𝑁, 𝑞

1
), 𝑝(𝜖,𝑁, 𝑞

1
)) ∈ 𝑄

2
⊕ 𝑃 of the (𝑄

2
)-(𝑃)-equations

satisfying

󵄨
󵄨
󵄨
󵄨
𝑞
2
(𝜖,𝑁, 𝑞

1
)
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤

𝐶
0
(𝑅)

𝑁
2
,

󵄨
󵄨
󵄨
󵄨
𝑝 (𝜖,𝑁, 𝑞

1
)
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤ 𝐶

0
(𝑅) |𝜖| 𝛾

−1
.

(52)

Moreover, the map 𝑞
1
→ (𝑞

2
(𝑞
1
), 𝑝(𝑞

1
)) is 𝐶1(𝐵

2𝑅
, 𝑄

2
⊕ 𝑃)

and

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
󸀠

2
(𝑞
1
) [ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤

𝐶
0
(𝑅)

𝑁
2
|ℎ|

𝐻
1 ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
󸀠
(𝑞
1
) [ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤ 𝐶

0
(𝑅) |𝜖| 𝛾

−1
|ℎ|

𝐻
1 ∀ℎ ∈ 𝑄

1
.

(53)

Proof. Let us consider the ball

𝐵 := {(𝑞
2
, 𝑝) ∈ 𝑄

2
⊕ 𝑃,

󵄨
󵄨
󵄨
󵄨
𝑞
2

󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤ 𝜌

1
,
󵄨
󵄨
󵄨
󵄨
𝑝
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤ 𝜌

2
} (54)

with norm |(𝑞
2
, 𝑝)|

𝜎,𝑠
:= |𝑞

2
|
𝜎,𝑠
+ |𝑝|

𝜎,𝑠
. We can claim that,

under assumptions (51), there exist 𝜌
1
, 𝜌
2
∈ (0, 1) such that

the map (𝑞
2
, 𝑝) → P(𝑞

2
, 𝑝; 𝑞

1
) is a contraction mapping in

𝐵, that is, we have to prove

(i) (𝑞
2
, 𝑝) ∈ 𝐵 ⇒ P(𝑞

2
, 𝑝; 𝑞

1
) ∈ 𝐵;

(ii) |P(𝑞
2
, 𝑝; 𝑞

1
) −P(𝑞

2
, 𝑝; 𝑞

1
)|
𝜎,𝑠
≤ 𝜂|(𝑞

2
, 𝑝) − (𝑞

2
, 𝑝)|

𝜎,𝑠
,

∀(𝑞
2
, 𝑝), (𝑞

2
, 𝑝) ∈ 𝐵,

where the constant 𝜂 ∈ (0, 1). In the following, 𝜅
𝑖
(𝑖 =

1, 2, . . . , 5) denote different constants. By (48) and the Banach
property ofH

𝜎,𝑠
,

󵄨
󵄨
󵄨
󵄨
P
1
(𝑞
2
, 𝑝; 𝑞

1
)
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
=

󵄨
󵄨
󵄨
󵄨
󵄨
L

−1

1
Π
𝑄
2

𝑓 (𝜑
1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
+ 𝑝, 𝜖)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝜅
1

𝑁
2
(
󵄨
󵄨
󵄨
󵄨
𝑞
1

󵄨
󵄨
󵄨
󵄨

3

𝜎,𝑠
+
󵄨
󵄨
󵄨
󵄨
𝑞
2

󵄨
󵄨
󵄨
󵄨

3

𝜎,𝑠
+
󵄨
󵄨
󵄨
󵄨
𝑝
󵄨
󵄨
󵄨
󵄨

3

𝜎,𝑠
) .

(55)

Similarly, for (𝑎, 𝜖) ∈B
𝛾
, by (43), we have

󵄨
󵄨
󵄨
󵄨
P
2
(𝑞
2
, 𝑝; 𝑞

1
)
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝜖L

−1

𝑎,𝜖
Π
𝑃
𝑓 (𝜑

1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
+ 𝑝, 𝜖)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝜅
2
|𝜖|

𝛾

(
󵄨
󵄨
󵄨
󵄨
𝑞
1

󵄨
󵄨
󵄨
󵄨

3

𝜎,𝑠
+
󵄨
󵄨
󵄨
󵄨
𝑞
2

󵄨
󵄨
󵄨
󵄨

3

𝜎,𝑠
+
󵄨
󵄨
󵄨
󵄨
𝑝
󵄨
󵄨
󵄨
󵄨

3

𝜎,𝑠
) .

(56)

For all 𝑞
1
∈ 𝑄

1
(𝑁), setting [𝑥] = max{0, |𝑥|}, we can get

󵄨
󵄨
󵄨
󵄨
𝑞
1

󵄨
󵄨
󵄨
󵄨𝜎,𝑠

= ∑

|𝑙2|≤𝑁,𝑙1=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
0,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
|𝑙
2
|𝜎
+ ∑

|𝑙2|≤𝑁,𝑙1+𝑙2=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
−𝑙
2
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
|𝑙
2
|𝜎
[−𝑙

2
]
𝑠

≤ 𝑒
𝑁𝜎
( ∑

|𝑙2|≤𝑁,𝑙1=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
𝑙
1
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
([−𝑙

2
− 𝑙

2

2
])

𝑠

+ ∑

|𝑙2|≤𝑁,𝑙1+𝑙2=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
−𝑙
2
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
[−𝑙

2
]
𝑠

)

≤ 𝜅
3
(( ∑

|𝑙2|≤𝑁,𝑙1=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
0,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨

2

[𝑙
2
]
2

)

1/2

(∑

𝑙
2
∈Z

1

[𝑙
2
]
2
)

1/2

+ ( ∑

|𝑙2|≤𝑁,𝑙1+𝑙2=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
−𝑙
2
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨

2

[𝑙
2
]
2

)

1/2

× (∑

𝑙
2
∈Z

1

([𝑙
2
])
2(1−𝑠)

)

1/2

)

≤ 𝜅
4

󵄨
󵄨
󵄨
󵄨
𝑞
1

󵄨
󵄨
󵄨
󵄨𝐻
1

(57)

whenever 0 ≤ 𝑁𝜎 ≤ 1, 0 ≤ 𝑠 < 1/2. Thus, ∀|𝑞
1
|
𝐻
1

≤

2𝑅, |𝑞
2
|
𝜎,𝑠
≤ 𝜌

1
, |𝑝|

𝜎,𝑠
≤ 𝜌

2
, we get

󵄨
󵄨
󵄨
󵄨
P
1
(𝑞
2
, 𝑝; 𝑞

1
)
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤

𝜅
5

𝑁
2
(𝑅

3
+ 𝜌

3

1
+ 𝜌

3

2
) ,

󵄨
󵄨
󵄨
󵄨
P
2
(𝑞
2
, 𝑝; 𝑞

1
)
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤

𝜅
5
|𝜖|

𝛾

(𝑅
3
+ 𝜌

3

1
+ 𝜌

3

2
) .

(58)

Now, set 𝐶
0
(𝑅) := 𝜅

5
𝑅
3, and we define 𝜌

1
:= 2𝐶

0
(𝑅)/𝑁

3/2,
𝜌
2
:= 2𝐶

0
(𝑅)(|𝜖|/𝛾). By the inequality above, there exist
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𝑁
0
(𝑅) ∈ N+ and 𝜖

0
(𝑅) > 0 such that ∀𝑁 ≥ 𝑁

0
(𝑅) and

∀|𝜖|𝛾
−1
≤ 𝜖

0
(𝑅),

󵄨
󵄨
󵄨
󵄨
P
1
(𝑞
2
, 𝑝; 𝑞

1
)
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤ 𝜌

1
,

󵄨
󵄨
󵄨
󵄨
P
2
(𝑞
2
, 𝑝; 𝑞

1
)
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤ 𝜌

2
. (59)

So, we get the proof of (i). Item (ii) can be obtained with the
same estimates.

By the Contraction Mapping Theorem, there exists
a unique fixed point (𝑞

2
(𝑞
1
), 𝑝(𝑞

1
)) := (𝑞

2
(𝜖,𝑁, 𝑞

1
),

𝑝(𝜖,𝑁, 𝑞
1
)) of P in 𝐵. The bounds of (52) follow by the

definition of 𝜌
1
and 𝜌

2
.

Since the map P ∈ 𝐶
1
(𝑄

2
⊕ 𝑃 × 𝑄

1
; 𝑄

2
⊕ 𝑃 × 𝑄

1
),

the Implicit Function Theorem implies that the map 𝑞
1
→

(𝑞
2
(𝜖,𝑁, 𝑞

1
), 𝑝(𝜖,𝑁, 𝑞

1
)) is 𝐶1. Differentiating both sides of

(𝑞
2
(𝑞
1
), 𝑝(𝑞

1
)) = P(𝑞

2
(𝑞
1
), 𝑝(𝑞

1
), 𝑞

1
), we can get

𝑞
󸀠

2
(𝑞
1
) [ℎ]

= −L
−1

1
Π
𝑄
2

(𝜕V𝑓) (𝜑1, 𝜑2, 𝑞1 + 𝑞2 (𝑞1) + 𝑝 (𝑞1) , 𝜖)

× (ℎ + 𝑞
󸀠

2
(𝑞
1
) [ℎ] + 𝑝

󸀠
(𝑞
1
) [ℎ]) ,

𝑝
󸀠
(𝑞
1
) [ℎ]

= −𝜖L
−1

𝜖
Π
𝑃
(𝜕V𝑓) (𝜑1, 𝜑2, 𝑞1 + 𝑞2 (𝑞1) + 𝑝 (𝑞1) , 𝜖)

× (ℎ + 𝑞
󸀠

2
(𝑞
1
) [ℎ] + 𝑝

󸀠
(𝑞
1
) [ℎ]) .

(60)

Using (43)–(48) and the Banach property ofH
𝜎,𝑠
, we get

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
󸀠

2
(𝑞
1
) [ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠

≤

𝐶 (𝑅)

𝑁
2
(|ℎ|

𝜎,𝑠
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
󸀠

2
(𝑞
1
) [ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
󸀠
(𝑞
1
) [ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
) ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
󸀠
(𝑞
1
) [ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠

≤

𝐶 (𝑅) |𝜖|

𝛾

(|ℎ|
𝜎,𝑠
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑞
󸀠

2
(𝑞
1
) [ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
󸀠
(𝑞
1
) [ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
) ,

(61)

which implies the bounds (53), sincewhen𝐶(𝑅)(|𝜖|/𝛾+1/𝑁2
)

is small enough, we can get

det

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 −

𝐶 (𝑅)

𝑁
2

−

𝐶 (𝑅)

𝑁
2

−

𝐶 (𝑅) |𝜖|

𝛾

1 −

𝐶 (𝑅) |𝜖|

𝛾

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥

1

2

. (62)

3.3. The (𝑄
1
)-Equation. Once the (𝑄

2
)-(𝑃)-equations have

been solved by (𝑞
2
(𝑞
1
), 𝑝(𝑞

1
)) ∈ 𝑄

2
⊕ 𝑃, there remains the

finite-dimensional 𝑄
1
-equation

L
1
[𝑞
1
] + Π

𝑄
1

𝑓 (𝜑
1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
(𝑞
1
) + 𝑝 (𝑞

1
) , 𝜖) = 0. (63)

The geometric interpretation of the construction of
(𝑞
2
(𝑞
1
), 𝑝(𝑞

1
)) is that, on the finite-dimensional submanifold

𝑍 := {𝑞
1
+ 𝑞

2
(𝑞
1
) + 𝑝(𝑞

1
) : |𝑞

1
| < 2𝑅}, diffeomorphic to the

ball

𝐵
2𝑅
:= {𝑞 ∈ 𝑄

1
:
󵄨
󵄨
󵄨
󵄨
𝑞
1

󵄨
󵄨
󵄨
󵄨𝐻
1 < 2𝑅} , (64)

the partial derivatives of the action functionalΨ
𝜖
with respect

to the variables (𝑞
2
, 𝑝) vanish.We claim that, at a critical point

of Ψ
𝜖
restricted to 𝑍, also the partial derivative of Ψ

𝜖
with

respect to the variable 𝑞
1
vanishes, and therefore such a point

is critical also for the nonrestricted functional Ψ
𝜖
: H

𝜎,𝑠
→

R.
Actually, the bifurcation equation (63) is the Euler-

Lagrange equation of the reduced action functional

Φ
𝜖,𝑁
: 𝐵

2𝑅
⊂ 𝑄

1
󳨀→ R,

Φ
𝜖,𝑁
(𝑞
1
) := Ψ

𝜖
(𝑞
1
+ 𝑞

2
(𝑞
1
+ 𝑝 (𝑞

1
))) .

(65)

Lemma 8. Φ
𝜖,𝑁
∈ 𝐶

1
(𝐵

2𝑅
,R) and a critical point 𝑞

1
∈ 𝐵

2𝑅
of

Φ
𝜖,𝑁

is a solution of the bifurcation (63). Moreover, Φ
𝜖,𝑁

can
be written as

Φ
𝜖,𝑁
(𝑞
1
) = 𝑐𝑜𝑛𝑠𝑡 + 𝜖 (Γ (𝑞

1
) +R

𝜖,𝑁
(𝑞
1
)) , (66)

where

Γ (𝑞
1
) := ∫

T2

1

2

(𝜕
𝜑
1

𝑞
1
)

2

+

(2𝑎 + 𝑎
2
𝜖
2
)

2

(𝜕
𝜑
2

𝑞
1
)

2

+ 𝑎 (1 + 𝜖) (𝜕
𝜑
1

𝑞
1
) (𝜕

𝜑
2

𝑞
1
) − 𝑎

3
(𝜑

1
, 𝜑

2
)

𝑞
4

1

4

,

R
𝜖,𝑁
(𝑞
1
) := ∫

T2
𝐹 (𝜑

1
, 𝜑

2
, 𝑞
1
, 𝜖 = 0)

− 𝐹 (𝜑
1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
+ 𝑝, 𝜖)

+

1

2

𝑓 (𝜑
1
, 𝜑

2
, V, 𝜖) (𝑞

2
+ 𝑝) ,

(67)

and for some positive constant 𝐶
2
(𝑅) ≥ 𝐶

1
(𝑅), we can get

󵄨
󵄨
󵄨
󵄨
R
𝜖,𝑁
(𝑞
1
)
󵄨
󵄨
󵄨
󵄨
≤ 𝐶

2
(𝑅) (𝜖 +

|𝜖|

𝛾

+

1

𝑁
2
) ,

󵄨
󵄨
󵄨
󵄨
󵄨
R
󸀠

𝜖,𝑁
(𝑞
1
) [ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶

2
(𝑅) (𝜖 +

|𝜖|

𝛾

+

1

𝑁
2
) |ℎ|

𝐻
1 ,

∀ℎ ∈ 𝑄
1
.

(68)

Proof. By (37) and (38), we have that, at V := 𝑞
1
+ 𝑞

2
(𝑞
1
) +

𝑝(𝑞
1
),

𝑑Ψ
𝜖
(V) [ℎ] = 0, ∀ℎ ∈ 𝑄

2
,

𝑑Ψ
𝜖
(V) [ℎ] = 0, ∀ℎ ∈ 𝑃.

(69)

Since 𝑞󸀠
2
(𝑞
1
)[ℎ] ∈ 𝑄

2
and 𝑝󸀠(𝑞

1
)[ℎ] ∈ 𝑃, ∀ℎ ∈ 𝑄

1
, we deduce

that

𝑑Φ
𝜖,𝑁
(𝑞
1
) [ℎ] = 𝑑Ψ

𝜖
(V) [[ℎ] + 𝑞󸀠

2
(𝑞
1
) [ℎ] + 𝑝

󸀠
(𝑞
1
) [ℎ]]

= 𝑑Ψ
𝜖
(V) [ℎ] , ∀ℎ ∈ 𝑄

1
,

(70)
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and therefore V := 𝑞
1
+ 𝑞

2
(𝑞
1
) + 𝑝(𝑞

1
) solves also the (𝑄

1
)-

equation (36). WriteΨ
𝜖
(V) := Ψ(2)

𝜖
(V) − 𝜖 ∫

T2
𝐹(𝜑

1
, V, 𝜖), where

Ψ
(2)

𝜖
(V) = ∫

T2
(1 +

1

2

𝜖) (𝜕
𝜑
1

V)
2

+ 𝜖

2𝑎 + 𝑎
2
𝜖
2

2

(𝜕
𝜑
2

V)
2

+ (1 + 𝜖𝑎 (1 + 𝜖)) (𝜕
𝜑
1

V) (𝜕
𝜑
2

V)

(71)

is a homogeneous functional of degree two. By homogeneity,

Ψ
𝜖
(V) =

1

2

𝑑Ψ
(2)

𝜖
(V) [V] − 𝜖∫

T2
𝐹 (𝜑

1
, 𝜑

2
, V, 𝜖) , (72)

and, according to (69), we have

𝑑Ψ
(2)

𝜖
(𝑞
1
+ 𝑞

2
(𝑞
1
) + 𝑝 (𝑞

1
)) [𝑞

2
(𝑞
1
) + 𝑝 (𝑞

1
)]

= 𝜖∫

T2
𝑓 (𝜑

1
, 𝜑

2
, V, 𝜖) (𝑞

2
(𝑞
1
) + 𝑝 (𝑞

1
)) .

(73)

Substituting the above equality into (72), we obtain, at V :=
𝑞
1
+ 𝑞

2
(𝑞
1
) + 𝑝(𝑞

1
),

Φ
𝜖,𝑁
(𝑞
1
) = Ψ

𝜖
(𝑞
1
+ 𝑞

2
(𝑞
1
) + 𝑝 (𝑞

1
))

=

1

2

𝑑Ψ
(2)

𝜖
(V) [𝑞

1
+ 𝑞

2
(𝑞
1
) + 𝑝 (𝑞

1
)]

− 𝜖∫

T2
𝐹 (𝜑

1
, 𝜑

2
, V, 𝜖)

=

1

2

𝑑Ψ
(2)

𝜖
(𝑞
1
) [𝑞

1
]

+

1

2

𝜖∫

T2
𝑓 (𝜑

1
, 𝜑

2
, V, 𝜖) (𝑞

2
(𝑞
1
) + 𝑝 (𝑞

1
))

− 𝜖∫

T2
𝐹 (𝜑

1
, 𝜑

2
, V, 𝜖)

= ∫

T2
(𝜕
𝜑
1

𝑞
1
)

2

+ (𝜕
𝜑
1

𝑞
1
) (𝜕

𝜑
2

𝑞
1
)

+ 𝜖 (∫

T2

1

2

(𝜕
𝜑
1

𝑞
1
)

2

+

(2𝑎 + 𝑎
2
𝜖
2
)

2

(𝜕
𝜑
2

𝑞
1
)

2

+ 𝑎 (1 + 𝜖) (𝜕
𝜑
1

𝑞
1
) (𝜕

𝜑
2

𝑞
1
)

+

1

2

𝑓 (𝜑
1
, 𝜑

2
, V, 𝜖) (𝑞

2
(𝑞
1
) + 𝑝 (𝑞

1
))

−𝐹 (𝜑
1
, 𝜑

2
, V, 𝜖) )

= Ψ
0
(𝑞
1
)

+ 𝜖(∫

T2

1

2

(𝜕
𝜑
1

𝑞
1
)

2

+

(2𝑎 + 𝑎
2
𝜖
2
)

2

(𝜕
𝜑
2

𝑞
1
)

2

+ 𝑎 (1 + 𝜖) (𝜕
𝜑
1

𝑞
1
) (𝜕

𝜑
2

𝑞
1
)

+

1

2

𝑓 (𝜑
1
, 𝜑

2
, V, 𝜖) (𝑞

2
(𝑞
1
) + 𝑝 (𝑞

1
))

− 𝐹 (𝜑
1
, 𝜑

2
, V, 𝜖) ) .

(74)

Because Ψ
0
(𝑞
1
) ≡ const, by (52), we can get the bounds of

(68).

The problem of finding nontrivial solutions of the 𝑄
1
-

equation is reduced to finding nontrivial critical points of
the reduced action functional Φ

𝜖,𝑁
in 𝐵

2𝑅
. By (66), this is

equivalent to finding critical points of the rescaled functional

Φ̂
𝜖,𝑁
= Γ (𝑞

1
) +R

𝜖,𝑁
(𝑞
1
)

= (Q (𝑞
1
) − ∫

T2
𝑎
3
(𝜑

1
, 𝜑

2
)

𝑞
4

1

4

) +R
𝜖,𝑁
(𝑞
1
) ,

(75)

where the quadratic form

Q (𝑞) := ∫
T2

1

2

(𝜕
𝜑
1

𝑞
1
)

2

+

(2𝑎 + 𝑎
2
𝜖
2
)

2

(𝜕
𝜑
2

𝑞
1
)

2

+ 𝑎 (1 + 𝜖) (𝜕
𝜑
1

𝑞
1
) (𝜕

𝜑
2

𝑞
1
)

(76)

is positive definite on 𝑄
+
, negative definite on 𝑄

−
, and zero

definite on𝑄
0
. For 𝑞

1
= 𝑞

+
+ 𝑞

−
+ 𝑞

0
∈ 𝑄

1
and 𝑎 < 0, we have

Q (𝑞
+
) = ∫

T2

1

2

(𝜕
𝜑
1

𝑞
+
)

2

+

(2𝑎 + 𝑎
2
𝜖
2
)

2

(𝜕
𝜑
2

𝑞
+
)

2

+ 𝑎 (1 + 𝜖) (𝜕
𝜑
1

𝑞
+
) (𝜕

𝜑
2

𝑞
+
)

= ∫

T2
∑

(𝑙
1
,𝑙
2
)∈Z2

𝑙
2

2
(−𝑎 −

𝑎
2
𝜖
2

2

) 𝑞
𝑙
1
,𝑙
2

𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2

=

𝛼
+
(𝑎)

2

󵄨
󵄨
󵄨
󵄨
𝑞
+

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 ,

Q (𝑞
0
) = 0,

Q (𝑞
−
) = ∫

T2
∑

(𝑙1,𝑙2)∈Z
2

𝑙
2

2

(1 + 𝑎𝜖)
2

2

𝑞
𝑙
1
,𝑙
2

𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2

= −

𝛼
−
(𝑎)

2

󵄨
󵄨
󵄨
󵄨
𝑞
−

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 ,

(77)

where the positive constants 𝛼
+
(𝑎), 𝛼

−
(𝑎) are bounded away

from zero and independent of 𝜖. We will prove the existence
of critical point of Φ̂

𝜖,𝑁
in 𝐵

2𝑅
of linking type.

3.4. Linking Critical Points of the Reduced Action Functional
Φ̂
𝜖,𝑁

. We cannot directly apply the linking theorem because
Φ̂
𝜖,𝑁

is defined only in the ball 𝐵
2𝑅
. Therefore, we first extend
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Φ̂
𝜖,𝑁

to the whole space 𝑄
1
. We define the extended action

function Φ̃
𝜖,𝑁
∈ 𝐶

1
(𝑄

1
,R) as

Φ̃
𝜖,𝑁
(𝑞
1
) = Γ (𝑞

1
) +
̃R
𝜖,𝑁
(𝑞
1
) , (78)

wherẽR
𝜖,𝑁
(𝑞
1
) : 𝑄

1
→ R is

̃R
𝜖,𝑁
(𝑞
1
) := 𝜆(

󵄨
󵄨
󵄨
󵄨
𝑞
1

󵄨
󵄨
󵄨
󵄨

2

𝐻
1

𝑅
2
)R

𝜖,𝑁
(𝑞
1
) , (79)

and 𝜆 : [0, +∞) → [0, 1] is a smooth, nonincreasing, cut-off
function such that

𝜆 (𝑥) = 1, if |𝑥| ≤ 1;

𝜆 (𝑥) = 0, if |𝑥| ≥ 4, 󵄨
󵄨
󵄨
󵄨
󵄨
𝜆
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
< 1.

(80)

By definition, Φ̃
𝜖,𝑁
(𝑞
1
) ≡ Φ̂

𝜖,𝑁
(𝑞
1
) on 𝐵

𝑅
:= {𝑞

1
∈ 𝑄

1
:

|𝑞
1
|
𝐻
1 ≤ 𝑅} and Φ̃𝜖,𝑁(𝑞1) = Γ(𝑞1) outside 𝐵2𝑅. Moreover,

by (68), there is a constant 𝐶
3
(𝑅) ≥ 𝐶

2
(𝑅) > 0 such that

∀|𝑞|
𝐻
1 ≤ 2𝑅, and

󵄨
󵄨
󵄨
󵄨
󵄨

̃R
𝜖,𝑁
(𝑞
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶

3
(𝑅) (𝜖 + |𝜖| 𝛾

−1
+

1

𝑁
2
) , (81)

󵄨
󵄨
󵄨
󵄨
󵄨

̃R
󸀠

𝜖,𝑁
(𝑞
1
) [ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶

3
(𝑅) (𝜖 + |𝜖| 𝛾

−1
+

1

𝑁
2
) |ℎ|

𝐻
1 ,

∀ℎ ∈ 𝑄
1
.

(82)

Second, we will verify that Φ̃
𝜖,𝑁
(𝑞
1
) satisfies the geometrical

hypotheses of the linking theorem.

Lemma 9. There exist positive constants 𝜌, 𝛽, 𝑟
1
, 𝑟
2
> 𝜌, and

0 < 𝜖
1
(𝑅) ≤ 𝜖

0
(𝑅), 𝑁

1
(𝑅) ≥ 𝑁

0
(𝑅), which are independent of

(𝜖,𝑁, 𝛾), such that, ∀(|𝜖|/𝛾) ≤ 𝜖
1
and ∀𝑁 ≥ 𝑁

1
(𝑅),

(i) inf
𝑞
1
∈𝑆
+Φ̃

𝜖,𝑁
(𝑞
1
) ≥ 𝛽 > 0, ∀𝑞

1
∈ 𝑆

+
:= {𝑞

1
∈ 𝑄

1
∩𝑄

+
:

|𝑞
1
|
𝐻
1 = 𝜌},

(ii) ∑
𝑞
1
∈𝜕𝑊
− Φ̃

𝜖,𝑁
(𝑞
1
) ≤ 𝛽/2, ∀𝑞

1
∈ 𝜕𝑊

−,

where𝑊− is the rectangle in 𝑄
−
⊕ 𝑄

0
,

𝑊
−
:= {𝑞

1
= 𝑞

0
+ 𝑞

+
+ 𝑟𝑒

+
,
󵄨
󵄨
󵄨
󵄨
𝑞
0
+ 𝑞

−

󵄨
󵄨
󵄨
󵄨
≤ 𝑟

1
, 𝑞

−
∈ 𝑄

1
∩ 𝑄

−
,

𝑞
0
∈ R, 𝑟 ∈ [0, 𝑟

2
]} ,

(83)

and 𝑒
+
is the unit vector in 𝑄

1
⊕ 𝑄

0
.

Proof. (i) ∀𝑞
+
∈ 𝑄

1
∩ 𝑄

+
with |𝑞

+
|
𝐻
1 = 𝜌 < 𝑅, we have

Φ̃
𝜖,𝑁
(𝑞
+
) = Φ̂

𝜖,𝑁
(𝑞
+
)

= Q (𝑞
+
) − ∫

T2
𝑎
3
(𝜑

1
, 𝜑

2
)

𝑞
4

+

4

+R
𝜖,𝑁
(𝑞
+
)

≥

𝛼
+
(𝑎)

2

𝜌
2
− 𝜅

1
𝜌
4
− 𝐶

3
(𝑅) (𝜖 +

𝜖

𝛾

+

1

𝑁
2
) .

(84)

Now, we fix 𝜌 > 0 small such that (𝛼
+
(𝑎)/2)𝜌

2
− 𝜅

1
𝜌
4
≥

(𝛼
+
(𝑎)/4)𝜌

2. Since 𝐶
3
(𝑅)(𝜖 + 𝜖/𝛾 + 1/𝑁

2
) ≤ (𝛼

+
(𝑎)/8)𝜌

2, by
(84), we can get

Φ̃
𝜖,𝑁
(𝑞
+
) ≥

𝛼
+
(𝑎)

8

𝜌
2
:= 𝛽 > 0, ∀𝑞

+
∈ 𝑄

1
∩ 𝑄

+
,

with 󵄨󵄨󵄨
󵄨
𝑞
+

󵄨
󵄨
󵄨
󵄨𝐻
1 = 𝜌.

(85)

(ii) Let

𝐵
1
:= {𝑞

1
= 𝑞

0
+ 𝑞

−
+ 𝑟

2
𝑒
+
with 󵄨󵄨󵄨

󵄨
𝑞
0
+ 𝑞

−

󵄨
󵄨
󵄨
󵄨𝐻
1 ≤ 𝑟1

,

𝑞− ∈ 𝑄
1
∩ 𝑄

−
} ⊂ 𝜕𝑊

−
,

(86)

𝐵
2
:= {𝑞

1
= 𝑞

0
+ 𝑞

−
+ 𝑟𝑒

+
with 󵄨󵄨󵄨

󵄨
𝑞
0
+ 𝑞

−

󵄨
󵄨
󵄨
󵄨𝐻
1 = 𝑟1

,

𝑞− ∈ 𝑄
1
∩ 𝑄

−
, 𝑟 ∈ [0, 𝑟

2
]} ⊂ 𝜕𝑊

−
,

(87)

with 𝑟
1
, 𝑟
2
> 2𝑅. For 𝑞

1
= 𝑞

0
+ 𝑞

−
+ 𝑟𝑒

+
∈ 𝐵

1
∪ 𝐵

2
,

Φ̃
𝜖,𝑁
(𝑞
1
) = 𝛾 (𝑞

1
)

= Q (𝑞
1
) − ∫

T2
𝑎
3
(𝜑

1
, 𝜑

2
)

(𝑞
0
+ 𝑞

−
+ 𝑟𝑒

+
)
4

4

≤ −

𝛼
−
(𝑎)

2

󵄨
󵄨
󵄨
󵄨
𝑞
−

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 + 𝑟

2
Q (𝑒

+
)

− ∫

T2
𝑎
3
(𝜑

1
, 𝜑

2
)

(𝑞
0
+ 𝑞

−
+ 𝑟𝑒

+
)
4

4

≤ −

𝛼
−
(𝑎)

2

󵄨
󵄨
󵄨
󵄨
𝑞
−

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 + 𝑟

2
Q (𝑒

+
)

− 𝛼∫

T2
(𝑞
0
+ 𝑞

−
+ 𝑟𝑒

+
)
4

,

(88)

because 𝑎
3
(𝜑
1
, 𝜑

2
)/4 ≥ 𝛼 > 0. Now, by Hölder inequality and

orthogonality,

∫

T2
(𝑞
0
+ 𝑞

−
+ 𝑟𝑒

+
)
4

≥ 𝜅
2
(∫

T2
(𝑞
0
+ 𝑞

−
+ 𝑟𝑒

+
)
2

)

2

= 𝜅
2
(𝑞
2

0
+ 𝑞

2

−
+ 𝑟

2
𝑒
2

+
)

2

≥ 𝜅
3
(𝑞
2

0
+ 𝑟

2
)

2

≥ 𝜅
3
(𝑞
4

0
+ 𝑟

4
) ,

(89)

and by (88) we deduce that

Φ̃
𝜖,𝑁
(𝑞
0
+ 𝑞

−
+ 𝑟𝑒

+
) ≤ (𝜅

4
𝑟
2
− 𝜅

3
𝑟
4
)

− (

𝛼
−
(𝑎)

2

󵄨
󵄨
󵄨
󵄨
𝑞
−

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 + 𝜅3

𝑞
4

0
) .

(90)

Now, we fix 𝑟
2
large such that 𝜅

4
𝑟
2

2
− 𝜅

3
𝑟
4

2
≤ 0, and therefore

Φ̃
𝜖,𝑁
(𝑞
1
) ≤ 𝜅

4
𝑟
2

2
− 𝜅

3
𝑟
4

2
≤ 0, ∀𝑞

1
∈ 𝐵

1
. (91)

Next, setting𝑀 := max
[0,𝑟
2
]
𝜅
4
𝑟
2
− 𝜅

3
𝑟
4, we fix 𝑟

1
large such

that
𝛼
−
(𝑎)

2

󵄨
󵄨
󵄨
󵄨
𝑞
−

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 + 𝜅3

𝑞
4

0
≥ 𝑀, ∀

󵄨
󵄨
󵄨
󵄨
𝑞
−
+ 𝑞

0

󵄨
󵄨
󵄨
󵄨
= 𝑟

1
, (92)
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and therefore

Φ̃
𝜖,𝑁
(𝑞
1
) ≤ 𝑀 − (

𝛼
−
(𝑎)

2

󵄨
󵄨
󵄨
󵄨
𝑞
−

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 + 𝜅3

𝑞
4

0
) ≤ 0, ∀𝑞

1
∈ 𝐵

2
.

(93)

Finally, if 𝑞
1
= 𝑞

−
+ 𝑞

0
,

Φ̃
𝜖,𝑁
(𝑞
1
) = Q (𝑞

−
) − ∫

T2
𝑎
3
(𝜑

1
, 𝜑

2
)

𝑞
4

1

4

+
̃R
𝜖,𝑁
(𝑞
1
)

≤

󵄨
󵄨
󵄨
󵄨
󵄨

̃R
𝜖,𝑁
(𝑞
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶

3
(𝑅) (𝜖 + |𝜖| 𝛾

−1
+

1

𝑁
2
) .

(94)

So, if𝐶
3
(𝑅)(√𝜖+|𝜖|𝛾

−1
+(1/𝑁

2
)) ≤ 𝛽/2, we can get Φ̃

𝜖,𝑁
(𝑞
1
) ≤

𝛽/2, ∀𝑞
1
∈ 𝜕𝑊

−.

We introduce the minimax class S := {𝜓 ∈ 𝐶(𝑊−

, 𝑄) |

𝜓 = Id on 𝜕𝑊
−
}. According to Proposition 5.9 of [19], the

maps ofS have an important intersection property as follows.

Proposition 10. (𝑆+ and𝑊− link with respect to 𝜓). Consider

𝜓 ∈ S 󳨐⇒ 𝜓(𝑊
−
) ∩ 𝑆

+
̸= 0. (95)

One defines the minimax linking level as follows:

𝑐
𝜖
:= inf

𝜓∈S
max
𝑞
1
∈𝑊
−

Φ̃
𝜖,𝑁
(𝜓 (𝑞

1
)) . (96)

Obviously, by Proposition 10 and Lemma 9,

max
𝑞
1
∈𝑊
−

Φ̃
𝜖,𝑁
(𝜓 (𝑞

1
)) ≥ min

𝑞
1
∈𝑆
+

Φ̃
𝜖,𝑁
(𝑞
1
) ≥ 𝛽 > 0, ∀𝜓 ∈ S,

(97)

and, therefore, 𝑐
𝜖
> 𝛽 > 0.

Since Id ∈ S, so

𝑐
𝜖
≤ max
𝑞∈𝑊
−

Φ̃
𝜖,𝑁
((𝑞

1
)) ≤ max

𝑞∈𝑊
−

(Γ (𝑞
1
) +
̃R
𝜖,𝑁
(𝑞
1
))

≤ max
𝑞∈𝑊
−

(

𝛼
+
(𝑎)

2

󵄨
󵄨
󵄨
󵄨
𝑞
+

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 +

𝛼
−
(𝑎)

2

󵄨
󵄨
󵄨
󵄨
𝑞
−

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 + ∫

T2
𝜅𝑞

4

1
)

+ 1 ≤ 𝑐
∞
≤ +∞,

(98)

where 𝑐
∞

is independent of 𝑁, 𝜖, 𝛾. By the linking theorem,
we deduce the existence of a Palais-Smale sequence (𝑞

𝑛
) ∈ 𝑄

1

at the level 𝑐
𝜖
, namely,

Φ̃
𝜖,𝑁
(𝑞
𝑛
) 󳨀→ 𝑐

𝜖
, Φ̃

󸀠

𝜖,𝑁
(𝑞
𝑛
) 󳨀→ 0 when 𝑛 󳨀→ ∞. (99)

Third, we will prove that the Palais-Smale sequence (𝑞
𝑛
) (up

to subsequence) converges to some nontrivial critical point
𝑞
1
̸= 0 in some open ball of𝑄

1
, where Φ̃

𝜖,𝑁
and Φ̂

𝜖,𝑁
coincide.

Because the space 𝑄
1
is finite dimensional, we only need to

prove that the sequence (𝑞
𝑛
) is bounded.

Lemma 11. There is a constant 𝑀 > 0 independent of
𝑅, 𝜖,𝑁, 𝛾, such that, for all |𝜖|/𝛾 small enough and 𝑁 large
enough, the Palais-Smale sequence (𝑞

𝑛
) is bounded; that is,

|𝑞
𝑛
|
𝐻
1 < 𝑀. So, there exists a subsequence of the P-S sequence

that converges to some critical point 𝑞
1
̸= 0, and the functional

Φ̃
𝜖,𝑁

possesses a nontrivial critical point 𝑞
1
∈ 𝑄

1
with critical

value Φ̃
𝜖,𝑁
(𝑞
1
) = 𝑐

𝜖
.

Proof. In the sequel, we will always assume that (𝜖 + |𝜖|𝛾−1 +
1/𝑁

2
) < 1. Writing Φ̃

𝜖,𝑁
(𝑞) = Γ(𝑞) +

̃R
𝜖,𝑁
(𝑞), by (81)-(82),

we can get

Φ̃
𝜖,𝑁
(𝑞
𝑛
) −

1

2

Φ̃
󸀠

𝜖,𝑁
(𝑞
𝑛
) [𝑞

𝑛
]

= Γ (𝑞
𝑛
) −

1

2

Γ
󸀠
(𝑞
𝑛
) [𝑞

𝑛
]

+ (
̃R
𝜖,𝑁
(𝑞
𝑛
) −

1

2

̃R
󸀠

𝜖,𝑁
(𝑞
𝑛
) [𝑞

𝑛
])

= (

1

2

−

1

4

)∫

T2
𝑎
3
(𝜑

1
) 𝑞

4

𝑗

+ (
̃R
𝜖,𝑁
(𝑞
𝑛
) −

1

2

̃R
󸀠

𝜖,𝑁
(𝑞
𝑛
) [𝑞

𝑛
])

≥ 𝛼 (

1

2

−

1

4

)∫

T2
𝑞
4

𝑗
− (𝜖 + |𝜖| 𝛾

−1
+

1

𝑁
2
) .

(100)

Then, by 𝑐
𝜖
< 𝑐

∞
< +∞ and Φ̃󸀠

𝜖,𝑁
(𝑞
𝑛
) → 0 (𝑛 → ∞),

𝑐
∞
+ 1 +

󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨𝐻
1 ≥ 𝜅6

∫

T2
𝑞
4

𝑛
:= 𝜅

6

󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨

4

𝐿
4 . (101)

By Hölder inequality and orthogonality,

𝑐
∞
+ 1 +

󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨𝐻
1 ≥ 𝜅7

(∫

T2
(𝑞
0,𝑛
+ 𝑞

−,𝑛
+ 𝑞

+,𝑛
)
2

)

2

= 𝜅
7
(∫

T2
𝑞
2

0,𝑛
+ 𝑞

2

−,𝑛
+ 𝑞

2

+,𝑛
)

2

≥ 𝜅
8
(𝑞
0,𝑛
)
4

,

(102)

and therefore |𝑞
0,𝑛
| ≤ (1 + |𝑞

𝑛
|
𝐻
1)
1/4. In the same way, by

Hölder inequality and (82),

Φ̃
󸀠

𝜖,𝑁
(𝑞
𝑛
) [𝑞

+,𝑛
] = 𝛼

+
(𝑎)
󵄨
󵄨
󵄨
󵄨
𝑞
+,𝑛

󵄨
󵄨
󵄨
󵄨

2

𝐻
1

− ∫

T2
𝑎
3
(𝜑

1
) 𝑞

3

𝑛
𝑞
+,𝑛
+
̃R
󸀠

𝜖,𝑁
(𝑞
𝑛
) [𝑞

+,𝑛
]

≥ 𝛼
+
(𝑎)
󵄨
󵄨
󵄨
󵄨
𝑞
+,𝑛

󵄨
󵄨
󵄨
󵄨

2

𝐻
1

− 𝜅
9

󵄨
󵄨
󵄨
󵄨
𝑞
+,𝑛

󵄨
󵄨
󵄨
󵄨𝐻
1

∫

T2

󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨

3

− 𝐶
3
(𝑅) (√𝜖 + |𝜖| 𝛾

−1
+

1

𝑁
3/2
)
󵄨
󵄨
󵄨
󵄨
𝑞
+,𝑛

󵄨
󵄨
󵄨
󵄨𝐻
1

≥ 𝜅
10

󵄨
󵄨
󵄨
󵄨
𝑞
+,𝑛

󵄨
󵄨
󵄨
󵄨𝐻
1

(
󵄨
󵄨
󵄨
󵄨
𝑞
+,𝑛

󵄨
󵄨
󵄨
󵄨𝐻
1

−
󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨

3

𝐿
4 − 1) .

(103)

By (101) and the above inequalities, using Φ̃󸀠
𝜖,𝑁
(𝑞
𝑛
) →

0 (𝑛 → ∞), we conclude that |𝑞
+,𝑛
|
𝐻
1

≤ 𝜅
11
(1 + |𝑞

𝑛
|
3/4

𝐻
1

).
Estimating analogously, we derive |𝑞

−,𝑛
|
𝐻
1

≤ 𝜅
12
(1 + |𝑞

𝑛
|
3/4

𝐻
1

).
Finally, we deduce that

󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨𝐻
1

=
󵄨
󵄨
󵄨
󵄨
𝑞
0,𝑛

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑞
+,𝑛

󵄨
󵄨
󵄨
󵄨𝐻
1

+
󵄨
󵄨
󵄨
󵄨
𝑞
−,𝑛

󵄨
󵄨
󵄨
󵄨𝐻
1

≤ 𝜅
13
(1 +

󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨

3/4

𝐻
1

+
󵄨
󵄨
󵄨
󵄨
𝑞
𝑛

󵄨
󵄨
󵄨
󵄨

3/4

𝐻
1

) .

(104)
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So, we can conclude that |𝑞
𝑛
|
𝐻
1

≤ 𝑀 for a suitable constant
𝑀 > 0, which is independent of 𝑅, 𝜖,𝑁, 𝛾. Since 𝑄

1
is finite

dimensional, {𝑞
𝑛
} converges, up to subsequence, to some

critical point 𝑞 of Φ̃
𝜖,𝑁

with |𝑞|
𝐻
1

< 𝑀. Since Φ̃
𝜖,𝑁
(𝑞) = 𝑐

𝜖
≥

𝛽 > 0, we conclude that 𝑞 ̸= 0.

Proof of Theorem 1. Let us fix 𝑅 := 𝑀 + 1 and take |𝜖|𝛾−1 ≤
𝜖
2
(𝑅) := 𝜖. According to Lemma 7, we can get, for 0 <
𝜎𝑁(𝑅) ≤ 1, 0 ≤ 𝑠 < 1/2, a solution (𝑞

2
(𝑞
1
), 𝑝(𝑞

1
)) ∈

(𝑄
2
(𝑁) ⊕ 𝑃) ∩H

𝜎,𝑠
of the (𝑄

2
)-(𝑃)-equations with ∀|𝑞

1
|
𝐻
1

≤

2𝑅. By Lemma 11, the extended functional Φ̃
𝜖,𝑁
(𝑞
1
) possesses

a nontrivial critical point 𝑞 with |𝑞
1
|
𝐻
1

≤ 𝑀 < 𝑅. Since Φ̃
𝜖,𝑁

coincides with Φ
𝜖,𝑁

on the ball 𝐵
𝑅,
by Lemma 8, there exists

a nontrivial weak solution 𝑞
1
+ 𝑞

2
(𝑞
1
) + 𝑝(𝑞

1
) ∈H

𝜎,𝑠
of (23).

Finally, 𝑢 = 𝜖[𝑞
1
+ 𝑞

2
(𝑞
1
) + 𝑝(𝑞

1
)] = 𝜖[𝑞

𝜖
+ 𝑝(𝑞

1
)] solves (7).

According to Lemma 6, by the regularizing property of
the operator L

1
, the solution 𝑞

𝜖
:= 𝑞

1
+ 𝑞

2
(𝑞
1
) of the (𝑄)-

equation belongs toH
𝜎,𝑠+2

∩ 𝑄. By the 𝑃-equation

((2 + 𝜖) 𝜕
2

𝜑
1

+ 2 (1 + 𝑎 (𝜖 + 𝜖
2
)) 𝜕

𝜑
1

𝜕
𝜑
2

) 𝑝

= −𝜖 ((2𝑎 + 𝑎
2
𝜖
2
) 𝜕

2

𝜑
2

+ Π
𝑃
𝑓 (𝜑

1
, 𝜑

2
, 𝑞
𝜖
+ 𝑝, 𝜖)) 𝑝,

(105)

where 𝑝 = 𝑝(𝑞
1
), we can get that

−𝜖 ((2𝑎 + 𝑎
2
𝜖
2
) 𝜕

2

𝜑
2

+ Π
𝑃
𝑓 (𝜑

1
, 𝜑

2
, 𝑞
𝜖
+ 𝑝, 𝜖)) 𝑝 ∈H

𝜎󸀠,𝑠
,

(106)

for 0 < 𝜎󸀠 < 𝜎, satisfying |𝜖(2𝑎 + 𝑎2𝜖2)𝑙2
2
|𝑒
|𝑙
2
|𝜎
󸀠

< 𝑒
|𝑙
2
|𝜎. For

(𝑎, 𝜖) ∈B
𝛾
, the eigenvalues of operator (2+𝜖)𝜕2

𝜑
1

+2(1+𝑎(𝜖+

𝜖
2
))𝜕

𝜑
1

𝜕
𝜑
2

restricted to𝑃 satisfy |(2+𝜖)𝑙2
1
+2(1+𝑎𝜖+𝑎𝜖

2
)𝑙
1
𝑙
2
| ≥

|2 + 𝜖|(𝛾|𝑙
1
|/|𝑙

2
|), ∀𝑙

1
̸= 0, 𝑙

1
+ 𝑙

2
̸= 0, and, thus, we deduce that

𝑝 ∈ H
𝜎
󸀠󸀠
,𝑠+1

, for all 0 < 𝜎󸀠󸀠 < 𝜎󸀠 (satisfying 𝐶|𝑙
2
|𝑒
|𝑙
2
|𝜎
󸀠󸀠

<

𝑒
|𝑙
2
|𝜎
󸀠

), and |𝜕
𝜑
1

𝑝|
𝜎
󸀠󸀠
,𝑠
= 𝑂(|𝜖|/𝛾). By (105),

(2 + 𝜖) 𝜕
2

𝜑
1

𝑝

= −2 (1 + 𝑎 (𝜖 + 𝜖
2
)) 𝜕

𝜑
1

𝜕
𝜑
2

𝑝

− 𝜖 ((2𝑎 + 𝑎
2
𝜖
2
) 𝜕

2

𝜑
2

+ Π
𝑃
𝑓 (𝜑

1
, 𝜑

2
, 𝑞
𝜖
+ 𝑝, 𝜖)) 𝑝,

(107)

we get 𝑝 ∈H
𝜎,𝑠+2

, and |𝑝|
𝜎,𝑠+2

= 𝑂(|𝜖|𝛾
−1
), with 0 < 𝜎 < 𝜎󸀠󸀠.

Thus, (15) follows with 𝑠 = 𝑠 + 2, 0 < 𝜎 < 𝜎󸀠󸀠. By (5), 𝑢(𝑡, 𝑥) =
𝜖V((1+𝜖)𝑡+𝑥, (1+𝑎𝜖2)𝑡+𝑥) is the solution of (1), for all (𝑎, 𝜖) ∈
B

𝛾
. To show that 𝑢(𝑡, 𝑥) is quasiperiodic, it remains to prove

that V depends on both variables (𝜑
1
, 𝜑

2
) independently.

According to Lemma 9, ∀|𝑞
1
|
𝐻
1

≤ 𝑅, Φ̃
𝜖,𝑁
(𝑞
1
) ≥ 𝛽. On the

other hand, Φ̃
𝜖,𝑁
(𝑞
−
+ 𝑞

0
) ≤ 𝛽/2, ∀|𝑞

−
+ 𝑞

0
|
𝐻
1

≤ 𝑅, so that
𝑞
1
∉ 𝑄

−
⊕ 𝑄

0
, and, therefore, V depends on 𝜑

2
. In fact, any

solution V of (23) depending only on 𝜑
2
, that is, the solutions

of

(2𝑎 + 𝑎
2
𝜖
2
)

𝑑
2V (𝜑

2
)

𝑑𝜑
2

2

+ 𝑓 (𝜑
1
, 𝜑

2
, V (𝜑

2
) , 𝜖) = 0, (108)

is V(𝜑
2
) ≡ 0. Indeed, by the homogeneity of𝑓(𝜑

1
, 𝜑

2
, V, 𝜖), we

have

𝜖
3
𝑓 (𝜑

1
, 𝜑

2
, V, 𝜖) = 𝑓 (𝜑

1
, 𝜑

2
, 𝜖V) =

∞

∑

𝑘=3

𝑎
𝑘
(𝜑

1
, 𝜑

2
) (𝜖V)𝑘.

(109)

Now consider a smooth function ℎ(𝜑
1
) with zero mean, ant

it satisfies ∫
T
𝑎
𝑘
(𝜑
1
, 𝜑

2
)ℎ(𝜑

1
)𝑑𝜑

1
̸= 0 for some 𝑘. Multiplying

(108) by ℎ(𝜑
1
) and integrating over [0, 𝜋], we have

∫

2𝜋

0

(2𝑎 + 𝑎
2
𝜖
2
)

𝑑
2V (𝜑

2
)

𝑑𝜑
2

2

ℎ (𝜑
1
) 𝑑𝜑

1

+ ∫

2𝜋

0

𝑓 (𝜑
1
, 𝜑

2
, V (𝜑

2
) , 𝜖) ℎ (𝜑

1
) 𝑑𝜑

1
= 0.

(110)

According to ℎ(𝜑
1
) that has zeromean andmultiplying above

equation by 𝜖3, we get

∫

2𝜋

0

𝑓 (𝜑
1
, 𝜑

2
, 𝜖V (𝜑

2
)) ℎ (𝜑

1
) 𝑑𝜑

1

=

∞

∑

𝑘=3

(𝜖V (𝜑
2
))
𝑘

∫

2𝜋

0

𝑎
𝑘
(𝜑

1
, 𝜑

2
) ℎ (𝜑

1
) 𝑑𝜑

1
= 0.

(111)

The function 𝐺(𝑧(𝜑
2
)) = ∑

∞

𝑘=3
𝑏
𝑘
(𝜑
2
)(𝑧(𝜑

2
))
𝑘, with 𝑏

𝑘
=

∫

2𝜋

0
𝑎
𝑘
(𝜑
1
, 𝜑

2
)ℎ(𝜑

1
)𝑑𝜑

1
, is a nontrivial analytic function.

Thus, the equation 𝐺(𝜖V(𝜑
2
)) = 0 cannot have a sequence of

zeros accumulating to zero. So, for 𝜖 small enough, V(𝜑
2
) ≡

0.

4. Waves Traveling in Opposite Directions

Substituting 𝜔
1
= 1 + 𝜖, 𝜔

2
= 1 + 𝑎𝜖 into (8), we get

L
𝑎,𝜖
V + 𝑓 (𝜑

1
, 𝜑

2
, V) = 0, (112)

where (see (8))

L
𝑎,𝜖
:= [(1 + 𝜖 + 1) 𝜕

𝜑
1

+ (𝑎𝜖) 𝜕
𝜑
2

] ∘ [𝜖𝜕
𝜑
1

+ (2 + 𝑎𝜖) 𝜕
𝜑
2

]

= 4𝜕
𝜑
1

𝜕
𝜑
2

+ 𝜖 [(2 + 𝜖) 𝜕
2

𝜑
1

+ (2𝑎 + 𝑎
2
𝜖) 𝜕

2

𝜑
2

+ 2 (𝑎 + 1 + 𝑎𝜖) 𝜕
𝜑
1

𝜕
𝜑
2

] =L
0
+ 𝜖L

1
.

(113)

We rescale (112) in order to highlight the relationship between
the amplitude and the variation in frequency: V(𝜑

1
, 𝜑

2
) →

√|𝜖|V(𝜑
1
, 𝜑

2
), and, for convenience, we assume 𝜖 > 0. In the

following, we consider the scaled equation

L
𝑎,𝜖
V + 𝜖𝑓 (𝜑

1
, 𝜑

2
, V, 𝜖) = 0, (114)

where 𝑓(𝜑
1
, 𝜑

2
, V, 𝜖) = 𝑎

3
(𝜑
1
, 𝜑

2
)V3 + √𝜖𝑂(V4).
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Equation (114) is the Euler-Lagrange equation of the
Lagrange action functional Ψ

𝜖
∈ 𝐶

1
(H

𝜎,𝑠
,R) defined by

Ψ
𝜖
(V) := ∫

T2
2 (𝜕

𝜑
1

V) (𝜕
𝜑
2

V) +
𝜖 (2 + 𝜖)

2

(𝜕
𝜑
1

V)
2

+

𝜖 (2𝑎 + 𝑎
2
𝜖)

2

(𝜕
𝜑
2

V)
2

+ 𝜖 (𝑎 + 1 + 𝑎𝜖) (𝜕
𝜑
1

V) (𝜕
𝜑
2

V) − 𝜖𝐹 (𝜑
1
, V, 𝛿)

= Ψ
0
(V) + 𝜖Ψ

1
(V, 𝛿) ,

(115)

where 𝐹(𝜑
1
, 𝜑

2
, V, 𝜖) := ∫

V
0
𝑓(𝜑

1
, 𝜑

2
, 𝜉, 𝜖)𝑑𝜉 and Ψ

0
(V) :=

∫
T2
2(𝜕

𝜑
1

V)(𝜕
𝜑
2

V),

Ψ
1
(V, 𝛿) := ∫

T2

(2 + 𝜖)

2

(𝜕
𝜑
1

V)
2

+

2𝑎 + 𝑎
2
𝜖

2

(𝜕
𝜑
2

V)
2

+ (𝑎 + 1 + 𝑎𝜖) (𝜕
𝜑
1

V) (𝜕
𝜑
2

V) − 𝐹 (𝜑
1
, 𝜑

2
, V, 𝜖) .
(116)

In order to find critical points of Ψ
𝜖
(V), we use the same

method as in Section 3.The operatorL
𝑎,𝜖

is diagonal defined
on the Banach space H

𝜎,𝑠
under the Fourier basis 𝑒

𝑙
1
,𝑙
2

=

𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2 with eigenvalue 𝐷

𝑙
1
,𝑙
2

= −[(2 + 𝜖)𝑙
1
+ 𝑎𝜖𝑙

2
][𝜖𝑙

1
+

(2 + 𝑎𝜖)𝑙
2
]. So, we have

L
𝑎,𝜖
[V] = ∑

(𝑙
1
,𝑙
2
)∈Z2

𝐷
𝑙
1
,𝑙
2

V̂
𝑙
1
,𝑙
2

𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2
, ∀V ∈H

𝜎,𝑠
. (117)

The unperturbed functional Ψ
0
: H

𝜎,𝑠
→ R possesses an

infinite-dimensional linear space 𝑄 of critical points, which
are the solutions of the equation

L
0
𝑞 = 4𝜕

𝜑
1

𝜕
𝜑
2

𝑞 = 0. (118)

The space 𝑄 can be written as

𝑄 =

{

{

{

𝑞 = ∑

(𝑙
1
,𝑙
2
)∈Z2

𝑞
𝑙
1
,𝑙
2

𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2
∈H

𝜎,𝑠
| 𝑞

𝑙
1
,𝑙
2

= 0,

for 𝑙
1
𝑙
2
̸= 0

}

}

}

.

(119)

We split 𝑄 as

𝑄 = 𝑄
+
+ 𝑄

0
+ 𝑄

−
, (120)

where

𝑄
+
:= {𝑞 ∈ 𝑄 : 𝑞

𝑙
1
,𝑙
2

= 0, for (𝑙
1
, 𝑙
2
) ∉ Λ

+
}

= {𝑞
+
:= 𝑞

+
(𝜑) ∈H

0

𝜎,𝑠
} ,

𝑄
0
:= {𝑞 : 𝑞

0,0
∈ R} ,

𝑄
−
:= {𝑞 ∈ 𝑄 : 𝑞

𝑙
1
,𝑙
2

= 0, for (𝑙
1
, 𝑙
2
) ∉ Λ

−
}

= {𝑞
−
:= 𝑞

−
(𝜑) ∈H

0

𝜎,𝑠
} ,

Λ
+
:= {(𝑙

1
, 𝑙
2
) ∈ Z

2
: 𝑙
1
= 0, (𝑙

1
, 𝑙
2
) ̸= (0, 0)} ,

Λ
−
:= {(𝑙

1
, 𝑙
2
) ∈ Z

2
: 𝑙
2
= 0, (𝑙

1
, 𝑙
2
) ̸= (0, 0)} .

(121)

We decompose the spaceH
𝜎,𝑠
= 𝑄 + 𝑃, where

𝑃 :=

{

{

{

𝑝 = ∑

(𝑙
1
,𝑙
2
)∈Z2

𝑝
𝑙
1
,𝑙
2

𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2
∈H

𝜎,𝑠
| 𝑝

𝑙
1
,𝑙
2

= 0,

for 𝑙
1
𝑙
2
= 0

}

}

}

.

(122)

Projecting (114) onto the closed subspaces 𝑄 and 𝑃, setting
V = 𝑞 + 𝑝 ∈H

𝜎,𝑠
with 𝑞 ∈ 𝑄 and 𝑝 ∈ 𝑃, we obtain

(𝑄) L
1
[𝑞] + Π

𝑄
𝑓 (𝜑

1
, 𝜑

2
, 𝑞 + 𝑝, 𝜖) = 0,

(𝑃) L
𝑎,𝜖
[𝑝] + 𝜖Π

𝑃
𝑓 (𝜑

1
, 𝜑

2
, 𝑞 + 𝑝, 𝜖) = 0,

(123)

where Π
𝑄
: H

𝜎,𝑠
→ 𝑄, Π

𝑃
: H

𝜎,𝑠
→ 𝑃 are the projectors,

respectively, onto 𝑄 and 𝑃; moreover, they are continuous.
In the same way, we decompose the space 𝑄 = 𝑄

1
+ 𝑄

2
.

Setting 𝑞 = 𝑞
1
+ 𝑞

2
with 𝑞

1
∈ 𝑄

1
and 𝑞

2
∈ 𝑄

2
, we finally get

(𝑄
1
) L

1
[𝑞
1
] + Π

𝑄
1

[𝑓 (𝜑
1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
+ 𝑝, 𝜖)] = 0

⇐⇒ 𝑑Ψ
𝜖
(V) [ℎ] = 0, ∀ℎ ∈ 𝑄

1
,

(124)

(𝑄
2
) L

1
[𝑞
2
] + Π

𝑄
2

[𝑓 (𝜑
1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
+ 𝑝, 𝛿)] = 0

⇐⇒ 𝑑Ψ
𝜖
(V) [ℎ] = 0, ∀ℎ ∈ 𝑄

2
,

(125)

(𝑃) L
𝑎,𝜖
[𝑝] + 𝜖Π

𝑃
[𝑓 (𝜑

1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
+ 𝑝, 𝜖)] = 0

⇐⇒ 𝑑Ψ
𝜖
(V) [ℎ] = 0, ∀ℎ ∈ 𝑃.

(126)

The operator L
𝑎,𝜖

is diagonal in the Fourier basis
{𝑒
𝑖𝑙
1
𝜑
1
𝑒
𝑖𝑙
2
𝜑
2
, (𝑙

1
, 𝑙
2
) ∈ Z2

} with eigenvalues𝐷
𝑙
1
,𝑙
2

= −[(2 + 𝜖)𝑙
1
+

𝑎𝜖𝑙
2
][𝜖𝑙

1
+ (2 + 𝑎𝜖)𝑙

2
]. We first prove thatL

𝑎,𝜖
restricted to 𝑃

has a bounded inverse when (𝑎, 𝜖) belongs to the uncountable
zero-measure set

D
𝛾
:= {(𝑎, 𝜖) ∈ R

−
×R, (

𝑎𝜖

2 + 𝜖

,

𝜖

2 + 𝑎𝜖

) ∈ E
𝛾
,

1 + 𝜖

1 + 𝑎𝜖

∉ Q, 1 + 𝜖 ̸= 0, 1 + 𝑎𝜖 ̸= 0, 2 + 𝑎𝜖 ̸= 0} ,

(127)
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where E
𝛾
is a set of badly approximate numbers defined as

E
𝛾
:= { (

𝑎𝜖

2 + 𝜖

,

𝜖

2 + 𝑎𝜖

) := (𝜖
1
, 𝜖
2
) ∈ (−𝜖

0
, 𝜖
0
) × (−𝜖

0
, 𝜖
0
) :

󵄨
󵄨
󵄨
󵄨
𝑙
1
+ 𝜖

1
𝑙
2

󵄨
󵄨
󵄨
󵄨
>

𝛾

󵄨
󵄨
󵄨
󵄨
𝑙
2

󵄨
󵄨
󵄨
󵄨

,
󵄨
󵄨
󵄨
󵄨
𝑙
2
+ 𝜖

2
𝑙
1

󵄨
󵄨
󵄨
󵄨
>

𝛾

󵄨
󵄨
󵄨
󵄨
𝑙
1

󵄨
󵄨
󵄨
󵄨

}

(128)

for ∀𝑙
1
, 𝑙
2
∈ Z \ {0}, and 0 < 𝛾 < 1/4, 𝜖

0
∈ (0, 1/2).

Lemma 12. For (𝑎, 𝜖) ∈ D
𝛾
, the eigenvalues 𝐷

𝑙
1
,𝑙
2

of L
𝑎,𝜖

restricted to 𝑃 satisfy
󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
𝑙
1
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
((2 + 𝜖) 𝑙

1
+ 𝑎𝜖𝑙

2
) (𝜖𝑙

1
+ (2 + 𝑎𝜖) 𝑙

2
)
󵄨
󵄨
󵄨
󵄨
> 𝛾,

∀𝑙
1
𝑙
2
̸= 0.

(129)

As a consequence, the operator L
𝑎,𝜖
: 𝑃 → 𝑃 has a bounded

inverseL−1

𝑎,𝜖
and satisfies

󵄨
󵄨
󵄨
󵄨
󵄨
L

−1

𝑎,𝜖
[ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤

|ℎ|
𝜎,𝑠

𝛾

, ∀ℎ ∈ 𝑃. (130)

Proof. Denote by [𝑥] the nearest integer close to 𝑥 and {𝑥} =
𝑥−[𝑥]. If both 𝑙

1
̸= −[(𝑎𝜖/(2+𝜖))𝑙

2
] and 𝑙

2
̸= −[(𝜖/(2+𝑎𝜖))𝑙

1
],

then we have
󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
𝑙
1
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(2 + 𝜖) (𝑙
1
+

𝑎𝜖

2 + 𝜖

𝑙
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(2 + 𝑎𝜖) (𝑙
2
+

𝜖

2 + 𝑎𝜖

𝑙
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

> 1.

(131)

If 𝑙
1
= −[(𝑎𝜖/(2 + 𝜖))𝑙

2
], then

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
𝑙
1
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(2 + 𝜖) (𝑙
1
+

𝑎𝜖

2 + 𝜖

𝑙
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜖 (𝑙
1
+

𝑎𝜖

2 + 𝜖

𝑙
2
) + (2 + 𝑎𝜖) 𝑙

2
−

𝑎𝜖

2 + 𝜖

𝜖𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥

𝛾

󵄨
󵄨
󵄨
󵄨
𝑙
2

󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(2 + 𝜖) (𝜖 {

𝑎𝜖

2 + 𝜖

𝑙
2
} + 2𝑙

2

+𝑎𝜖 (1 −

𝜖

2 + 𝜖

) 𝑙
2
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝛾.

(132)

In the same way, if 𝑙
2
= −[(𝜖/(2 + 𝑎𝜖))𝑙

1
], then we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
𝑙
1
,𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨

≥

𝛾

󵄨
󵄨
󵄨
󵄨
𝑙
1

󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(2 + 𝑎𝜖) (𝑎𝜖 {

𝜖

2 + 𝑎𝜖

𝑙
1
} + 2𝑙

1

+𝜖(1 −

𝑎
2
𝜖

2 + 𝑎𝜖

) 𝑙
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝛾.

(133)

Lemma 13. The operator L
1
: 𝑄

2
→ 𝑄

2
has a bounded

inverseL−1

1
which satisfies

󵄨
󵄨
󵄨
󵄨
󵄨
L

−1
[ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨𝜎,𝑠
≤

|ℎ|
𝜎,𝑠

𝑁
2
. (134)

Proof. L
1
is diagonal in the Fourier basis of 𝑄 : 𝑒𝑖𝑙1𝜑1𝑒𝑖𝑙2𝜑2

with (𝑙
1
, 𝑙
2
) ∈ Λ

+
∪ {(0, 0)} ∪ Λ

−
with eigenvalues

𝑑
𝑙
1
,𝑙
2

= {

− (2 + 𝜖) 𝑙
2

1
, if 𝑙

2
= 0,

−𝑎 (2 + 𝑎𝜖) 𝑙
2

2
, if 𝑙

1
= 0.

(135)

The eigenvalues of L
1
restricted to 𝑄

2
(𝑁) verify |𝑑

𝑙
1
,𝑙
2

| ≥

𝑁
2
/𝐶, where the constant 𝐶 depends on (𝜖, 𝑎), and (134)

holds.

Similarly, the solution of 𝑄
1
-equation (124) is the Euler-

Lagrange equation of the reduced Lagrangian action func-
tional:

Φ
𝜖,𝑁
: 𝐵

2𝑅
⊂ 𝑄

1
󳨀→ R,

Φ
𝜖,𝑁
(𝑞
1
) := Ψ

𝜖
(𝑞
1
+ 𝑞

2
(𝑞
1
+ 𝑝 (𝑞

1
))) .

(136)

Lemma 14. Φ
𝜖,𝑁
∈ 𝐶

1
(𝐵

2𝑅
,R) and a critical point 𝑞

1
∈ 𝐵

2𝑅
of

Φ
𝜖,𝑁

is a solution of the bifurcation equation (124). Moreover,
Φ
𝜖,𝑁

can be written as

Φ
𝜖,𝑁
(𝑞
1
) = 𝑐𝑜𝑛𝑠𝑡 + 𝜖 (Γ (𝑞

1
) +R

𝜖,𝑁
(𝑞
1
)) , (137)

where

Γ (𝑞
1
) := ∫

T2

(2 + 𝜖)

2

(𝜕
𝜑
1

𝑞
1
)

2

+ (1 + 𝑎 + 𝑎𝜖) (𝜕
𝜑
1

𝑞
1
) (𝜕

𝜑
2

𝑞
1
)

+

2𝑎 + 𝑎
2
𝜖

2

(𝜕
𝜑
2

𝑞
1
)

2

− 𝑎
3
(𝜑

1
, 𝜑

2
)

𝑞
4

1

4

,

R
𝜖,𝑁
(𝑞
1
) := ∫

T2
𝑎
3
(𝜑

1
, 𝜑

2
)

𝑞
4

1

4

− 𝐹 (𝜑
1
, 𝜑

2
, 𝑞
1
+ 𝑞

2
+ 𝑝, 𝜖)

+

1

2

𝑓 (𝜑
1
, 𝜑

2
, V, 𝜖) (𝑞

2
+ 𝑝) ,

(138)

and, for some positive constant 𝐶
2
(𝑅) ≥ 𝐶

1
(𝑅), we can get

󵄨
󵄨
󵄨
󵄨
R
𝜖,𝑁
(𝑞
1
)
󵄨
󵄨
󵄨
󵄨
≤ 𝐶

2
(𝑅) (√𝜖 + 𝜖𝛾

−1
+

1

𝑁
2
) ,

󵄨
󵄨
󵄨
󵄨
󵄨
R
󸀠

𝜖,𝑁
(𝑞
1
) [ℎ]

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶

2
(𝑅) (√𝜖 + 𝜖𝛾

−1
+

1

𝑁
2
) |ℎ|

𝐻
1 ,

∀ℎ ∈ 𝑄
1
.

(139)

The problem of finding nontrivial solutions of the 𝑄
1
-

equation is reduced to finding nontrivial critical points of
the reduced action functional Φ

𝜖,𝑁
in 𝐵

2𝑅
. By (137), this is
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equivalent to finding critical points of the rescaled functional
denoted by Φ̂

𝜖,𝑁
and called the reduced action functional

Φ̂
𝜖,𝑁
(𝑞
1
) = Γ (𝑞

1
) +R

𝜖,𝑁
(𝑞
1
)

≡ (Q (𝑞
1
) − ∫

T2
𝑎
3
(𝜑

1
, 𝜑

2
)

𝑞
4

1

4

+R
𝜖,𝑁
(𝑞
1
)) ,

(140)

where the quadratic form

Q (𝑞
1
) = ∫

T2

(2 + 𝜖)

2

(𝜕
𝜑
1

𝑞
1
)

2

+ (1 + 𝑎 + 𝑎𝜖) (𝜕
𝜑
1

𝑞
1
) (𝜕

𝜑
2

𝑞
1
)

+

2𝑎 + 𝑎
2
𝜖

2

(𝜕
𝜑
2

𝑞
1
)

2

(141)

is positive definite on 𝑄
+
, negative definite on 𝑄

−
, and zero

definite on 𝑄
0
. For 𝑞

1
= 𝑞

+
+ 𝑞

−
+ 𝑞

0
∈ 𝑄

1
, we have

Q (𝑞
+
) = ∫

T2

(2 + 𝜖)

2

(𝜕
𝜑
1

𝑞
+
)

2

=

𝛼
+

2

󵄨
󵄨
󵄨
󵄨
𝑞
+

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 ,

Q (𝑞
0
) = 0,

Q (𝑞
−
) = ∫

T2

(𝑎 + 𝑎𝜖)

2

(𝜕
𝜑
1

𝑞
−
)

2

= −

𝛼
−

2

󵄨
󵄨
󵄨
󵄨
𝑞
−

󵄨
󵄨
󵄨
󵄨

2

𝐻
1 ,

(142)

where the positive constants 𝛼
+
, 𝛼
−
are bounded away from

zero and independent of 𝜖. The following steps of finding the
nontrivial solutions of the𝑄

1
-equation are similar to Lemmas

9 and 11 in Section 3.4.

Proof of Theorem 2. We can get the solution of (8) as follows:

V = √|𝜖| [𝑞
1
+ 𝑞

2
(𝑞
1
) + 𝑝 (𝑞

1
)] = √|𝜖| [𝑞

𝜖
+ 𝑝 (𝑞

1
)] . (143)

According to Lemma 13, by the regularizing property of the
operatorL

1
, the solution 𝑞

𝜖
:= 𝑞

1
+𝑞

2
(𝑞
1
) of the (𝑄)-equation

belongs toH
𝜎,𝑠+2

∩ 𝑄. By the 𝑃-equation

(𝜖 (2 + 𝜖) 𝜕
2

𝜑
1

+ (4 + 2𝑎𝜖 + 2𝜖 + 2𝑎𝜖
2
) 𝜕

𝜑
1

𝜕
𝜑
2

) 𝑝

= −𝜖 ((2𝑎 + 𝑎
2
𝜖) 𝜕

2

𝜑
2

+ Π
𝑃
𝑓 (𝜑

1
, 𝜑

2
, 𝑞
𝜖
+ 𝑝, 𝜖)) 𝑝,

(144)

where 𝑝 = 𝑝(𝑞
1
), we can get that

−𝜖 ((2𝑎 + 𝑎
2
𝜖) 𝜕

2

𝜑
2

+ Π
𝑃
𝑓 (𝜑

1
, 𝜑

2
, 𝑞
𝜖
+ 𝑝, 𝜖)) 𝑝 ∈H

𝜎
󸀠
,𝑠
,

(145)

for 0 < 𝜎󸀠 < 𝜎, satisfying |𝜖(2𝑎 + 𝑎2𝜖)𝑙2
2
|𝑒
|𝑙
2
|𝜎
󸀠

< 𝑒
|𝑙
2
|𝜎. For

(𝑎, 𝜖) ∈ D
𝛾
, the eigenvalues of operator

𝜖 (2 + 𝜖) 𝜕
2

𝜑
1

+ (4 + 2𝑎𝜖 + 2𝜖 + 2𝑎𝜖
2
) 𝜕

𝜑
1

𝜕
𝜑
2

(146)

restricted to 𝑃 satisfy

󵄨
󵄨
󵄨
󵄨
󵄨
𝜖 (2 + 𝜖) 𝑙

2

1
+ (4 + 2𝑎𝜖 + 𝜖 + 𝑎𝜖

2
) 𝑙
1
𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
≥ |2 + 𝜖|

𝛾
󵄨
󵄨
󵄨
󵄨
𝑙
1

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑙
2

󵄨
󵄨
󵄨
󵄨

,

∀𝑙
1
̸= 0, 𝑙

2
̸= 0,

(147)

and, thus, we deduce that 𝑝 ∈ H
𝜎
󸀠󸀠
,𝑠+1

, for all 0 < 𝜎󸀠󸀠 < 𝜎󸀠

(satisfying 𝐶|𝑙
2
|𝑒
|𝑙
2
|𝜎
󸀠󸀠

< 𝑒
|𝑙
2
|𝜎
󸀠

), and |𝜕
𝜑
1

𝑝|
𝜎
󸀠󸀠
,𝑠
= 𝑂(|𝜀|/𝛾). By

(144),

𝜖 (2 + 𝜖) 𝜕
2

𝜑
1

𝑝

= − (4 + 2𝑎𝜖 + 2𝜖 + 2𝑎𝜖
2
) 𝜕

𝜑
1

𝜕
𝜑
2

𝑝

− 𝜖 ((2𝑎 + 𝑎
2
𝜖) 𝜕

2

𝜑
2

+ Π
𝑃
𝑓 (𝜑

1
, 𝜑

2
, 𝑞
𝜖
+ 𝑝, 𝜖)) 𝑝,

(148)

we get 𝑝 ∈ H
𝜎,𝑠+2

, and |𝑝|
𝜎,𝑠+2

= 𝑂(|𝜖|/𝛾), with 0 < 𝜎 < 𝜎󸀠󸀠.
Thus, (19) follows with 𝑠 = 𝑠 + 2, 0 < 𝜎 < 𝜎󸀠󸀠. By (6), 𝑢(𝑡, 𝑥) =
√|𝜖|V((1 + 𝜖)𝑡 − 𝑥, (1 + 𝑎𝜖)𝑡 + 𝑥) is the solution of (1), for all
(𝑎, 𝜖) ∈ D

𝛾
. Obviously, V depends on both variables (𝜑

1
, 𝜑

2
)

independently. So, 𝑢(𝑡, 𝑥) is a quasiperiodic solution of (1),
with frequencies (𝜔

1
, 𝜔

2
) = (1 + 𝜖, 1 + 𝑎𝜖).

5. Conclusion

In this paper, for the completely resonant nonlinear wave
equations, under periodic boundary conditions, we obtain
the existence and regularity of quasiperiodic solutions. The
forced terms we consider are quasiperiodic, and, according
to the linking theorem, the bifurcation equations are solved
by variational method. Moreover, the solutions depending
on the the spatial and time variables are coupled and in the
form of traveling waves. In [28], Yuan got the existence of
quasiperiodic solutions with 𝑛 ∈ N (𝑛 ≥ 3) frequencies by
KAM theory, in which the form of the solutions is 𝑢(𝑡, 𝑥) =
V(𝜔

1
𝑡, 𝜔

2
𝑡, . . . , 𝜔

𝑛
𝑡, 𝑥). In the future work, we will investigate

the existence of quasiperiodic solutions with the traveling
wave form as 𝑢(𝑡, 𝑥) = V(𝜔

1
𝑡 + 𝑥, 𝜔

2
+ 𝑥, . . . , 𝜔

𝑛
𝑡 + 𝑥).
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