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A remarkably large number of fractional integral formulas involving the number of special functions, have been investigated by
many authors. Very recently, Agarwal (National Academy Science Letters) gave some integral transform and fractional integral
formulas involving the 𝐹(𝛼,𝛽)

𝑝
(⋅). In this sequel, here, we aim to establish some image formulas by applying generalized operators

of the fractional integration involving Appell’s function 𝐹
3
(⋅) due to Marichev-Saigo-Maeda. Some interesting special cases of our

main results are also considered.

1. Introduction

In recent decades, several extensions of the well-known
special functions like beta function, gamma functions, and
Gauss hypergeometric functions and their properties started
to be one of the main directions for several researchers (see,
e.g., [1–4]).

In the sequel, recently, Özergin et al. introduced and
studied some fundamental properties and characteristics
of the generalized Gauss hypergeometric functions 𝐹(𝛼,𝛽)

𝑝
(⋅)

which are defined by (see, e.g., [4, page 4606, Section 3]; see
also [3, page 39, Chapter 4])

𝐹
(𝛼,𝛽)

𝑝
(𝑎, 𝑏; 𝑐; 𝑧) :=

∞

∑

𝑛=0

(𝑎)
𝑛

𝐵
(𝛼,𝛽)

𝑝
(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵 (𝑏, 𝑐 − 𝑏)

𝑧
𝑛

𝑛!

(|𝑧| < 1) ,

(1)

(min(R(𝛼),R(𝛽)) > 0; R(𝑐) > R(𝑏) > 0 andR(𝑝) ≥ 0),
where 𝐵(𝛼,𝛽)

𝑝
(⋅, ⋅) is the generalized beta type function defined

by (see, e.g., [4, page 4602, Equation (4)]; see also [3, page 32,
Chapter 4])

𝐵
(𝛼,𝛽)

𝑝
(𝑥, 𝑦) = ∫

1

0

𝑡
𝑥−1

(1 − 𝑡)
𝑦−1

⋅
1
𝐹
1
(𝛼; 𝛽;

−𝑝

𝑡 (1 − 𝑡)
) 𝑑𝑡,

(2)

(R(𝑝) > 0; (R(𝑥),R(𝑦),R(𝛼),R(𝛽)) > 0 and 𝐵(𝛼,𝛽)
0

(𝑥, 𝑦) =

𝐵(𝑥, 𝑦)), and 𝐵(𝑥, 𝑦) is the well-known Euler’s beta function
defined by

𝐵 (𝑥, 𝑦) := ∫

1

0

𝑡
𝑥−1

(1 − 𝑡)
𝑦−1

𝑑𝑡 (R (𝑥) > 0,R (𝑦) > 0) .

(3)

Indeed, in their special case when 𝑝 = 0, the function
𝐹
(𝛼,𝛽)

𝑝
(⋅) would reduce immediately to the extensively inves-

tigated Gauss hypergeometric function
2
𝐹
1
(⋅). The

2
𝐹
1
(⋅) is
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the special case of the well-known generalized hypergeomet-
ric series

𝑝
𝐹
𝑞
(⋅) defined by (see, e.g., [5, Section 1.5])

𝑝
𝐹
𝑞
[
𝛼
1
, . . . , 𝛼

𝑝
;

𝛽
1
, . . . , 𝛽

𝑞
;

𝑧] :=

∞

∑

𝑛=0

(𝛼
1
)
𝑛
⋅ ⋅ ⋅ (𝛼
𝑝
)
𝑛

(𝛽
1
)
𝑛
⋅ ⋅ ⋅ (𝛽
𝑞
)
𝑛

𝑧
𝑛

𝑛!

=
𝑝
𝐹
𝑞
(𝛼
1
, . . . , 𝛼

𝑝
; 𝛽
1
, . . . , 𝛽

𝑞
; 𝑧) ,

(4)

where (𝜆)
𝑛
is the Pochhammer symbol defined (for 𝜆 ∈ C) by

(see [5, page 2 and pages 4–6])

(𝜆)
𝑛
:=

Γ (𝜆 + 𝑛)

Γ (𝜆)

= {
1 (𝑛 = 0; 𝜆 ∈ C \ 0)

𝜆 (𝜆 + 1) ⋅ ⋅ ⋅ (𝜆 + 𝑛 − 1) (𝑛 ∈ N; 𝜆 ∈ C) .

(5)

It is being assumed conventionally that (0)
0
:= 1 and

understood tacitly that the Γ-quotient exists.
The above-mentioned detailed and systematic investiga-

tion by Özergin [3] was indeed motivated largely by the
demonstrated potential for applications of the generalized
Gauss hypergeometric function 𝐹

(𝛼,𝛽)

𝑝
(⋅) and their special

cases in many diverse areas of mathematical, physical, engi-
neering, and statistical sciences (see [3, 4] and the references
cited therein).

Fractional integral operators are widely used to solve
differential equations and integral equations. So a lot of work
has been done on the theory and applications of fractional
integral operators. Most popular fractional integral trans-
forms are due to Saigo, Erdélyi, Kober, Riemann, Liouville,
Weyl, and so on (see, e.g., [6–16]). Here, in this paper,
we use the Marichev-Saigo-Maeda type fractional integral
operator to derive certain image formulas for the generalized
Gauss hypergeometric function 𝐹

(𝛼,𝛽)

𝑝
(⋅). We also consider

some interesting special cases and consequences of our main
results.

2. Generalized Fractional Integration
Operators and Their Applications

This section deals with the composition formulae for the
generalized Gauss hypergeometric type functions 𝐹(𝛼,𝛽)

𝑝
(⋅).

The results are given in the form of theorems. For the purpose
of these results, we use the following fractional integral
operators due to Marichev-Saigo-Maeda.

For 𝑥 > 0 and 𝜇, 𝜇󸀠, ], ]󸀠, 𝜂 ∈ C (R(𝜂) > 0), we have

(𝐼
𝜇,𝜇
󸀠
,],]󸀠,𝜂

0,𝑥
𝑓) (𝑥)

:=
𝑥
−𝜇

Γ (𝜂)
∫

𝑥

0

(𝑥 − 𝑡)
𝜂−1

𝑡
−𝜇
󸀠

𝐹
3

× (𝜇, 𝜇
󸀠

, ], ]󸀠; 𝜂; 1 −
𝑡

𝑥
, 1 −

𝑥

𝑡
)𝑓 (𝑡) 𝑑𝑡,

(𝐼
𝜇,𝜇
󸀠
,],]󸀠,𝜂

𝑥,∞
𝑓) (𝑥)

:=
𝑥
−𝜇
󸀠

Γ (𝜂)
∫

∞

𝑥

(𝑡 − 𝑥)
𝜂−1

𝑡
−𝜇

𝐹
3

× (𝜇, 𝜇
󸀠

, ], ]󸀠; 𝜂; 1 −
𝑥

𝑡
, 1 −

𝑡

𝑥
)𝑓 (𝑡) 𝑑𝑡,

(6)

where the function 𝑓(𝑡) is so constrained that the defining
integrals in (6) exist.

These operators (integral transforms) were introduced by
Marichev [12] as Mellin type convolution operators with the
Appell function 𝐹

3
(⋅) in their kernel. These operators were

rediscovered and studied by Saigo in [14] as generalization
of the so-called Saigo fractional integral operators; see [10].
The properties of these operators were studied by Saigo and
Maeda [15], in particular, relations of operators with the
Mellin transforms, hypergeometric operators (or Saigo frac-
tional integral operators), their decompositions, and acting
properties in the McBride spaces 𝐹

𝑝;𝜇
(see [13]).

In (6), the symbol 𝐹
3
(⋅) denotes the so-called 3rd Appell

function (known also as Horn function) (see [17, page 413]):

𝐹
3
(𝜇, 𝜇
󸀠

, ], ]󸀠; 𝜂; 𝑥; 𝑦) =
∞

∑

𝑚,𝑛=0

(𝜇)
𝑚
(𝜇
󸀠

)
𝑛

(])
𝑚
(]󸀠)
𝑛

(𝜂)
𝑚+𝑛

𝑥
𝑚

𝑚!

𝑦
𝑛

𝑛!

(max {|𝑥| , 󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨} < 1) .

(7)

The properties of this function and some reduction formulas
are discussed in [17, page 412–415] and [16], respectively.

In the sequel, following Saigo and Maeda [15], the left-
hand side and right-hand side generalized integrations of the
type (6) for a power function are given by

(𝐼
𝜇,𝜇
󸀠
,],]󸀠,𝜂

0,𝑥
𝑡
𝜌−1

) (𝑥)

=

Γ (𝜌) Γ (𝜌 + 𝜂 − 𝜇 − 𝜇
󸀠

− ]) Γ (𝜌 + ]󸀠 − 𝜇󸀠)
Γ (𝜌 + ]󸀠) Γ (𝜌 + 𝜂 − 𝜇 − 𝜇󸀠) Γ (𝜌 + 𝜂 − 𝜇󸀠 − ])

× 𝑥
𝜌+𝜂−𝜇−𝜇

󸀠
−1

,

(8)

(R(𝜂) > 0; R(𝜌) > max{0,R(𝜇 + 𝜇
󸀠

+ ] − 𝜂),R(𝜇
󸀠

− ]󸀠)})
and

(𝐼
𝜇,𝜇
󸀠
,],]󸀠,𝜂

𝑥,∞
𝑡
𝜌−1

) (𝑥)

=

Γ (1−𝜌−]) Γ (1−𝜌−𝜂+𝜇+𝜇󸀠) Γ (1−𝜌+𝜇+]󸀠− 𝜂)
Γ (1−𝜌) Γ (1−𝜌+𝜇+𝜇󸀠+]󸀠−𝜂) Γ (1−𝜌+𝜇−])

× 𝑥
𝜌+𝜂−𝜇−𝜇󸀠−1

,

(9)

(R(𝜂) > 0; 0 < R(𝜌) < 1 +min{R(−]),R(𝜇 + 𝜇
󸀠

− 𝜂),R(𝜇 +

]󸀠 − 𝜂)}).
We now establish image formulas for the generalized

Gauss hypergeometric function involving Saigo-Maeda frac-
tional integral operators (6), which are expressed in terms of
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the generalized Gauss hypergeometric type function
3
𝐹
(𝛼,𝛽)

𝑝,3
.

These formulas are given inTheorems 1 and 2 below.
For convenience, we defined the generalizedGauss hyper-

geometric type function
3
𝐹
(𝛼,𝛽)

𝑝,3
as follows:

3
𝐹
(𝛼,𝛽)

𝑝,3
[
𝑎, 𝑏, 𝑑, 𝑒, 𝑓

𝑐, 𝑔, ℎ, 𝑘
; 𝑧]

:=

∞

∑

𝑛=0

(𝑎)
𝑛

×
(𝑑)
𝑛
(𝑒)
𝑛
(𝑓)
𝑛
𝐵
(𝛼,𝛽)

𝑝
(𝑏 + 𝑛, 𝑐 − 𝑏)

(𝑔)
𝑛
(ℎ)
𝑛
(𝑘)
𝑛
𝐵 (𝑏, 𝑐 − 𝑏)

𝑧
𝑛

𝑛!
(|𝑧| < 1) ,

(10)

(min(R(𝛼),R(𝛽)) > 0; 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑘 ∈ C,R(𝑝) ≥ 0).

Theorem 1. Let 𝑥 > 0, R(𝑝) ≥ 0, and the parameters
𝜇, 𝜇
󸀠

, ], ]󸀠, 𝜂, 𝜌, 𝛾 ∈ C be such that

𝑅𝑒 (𝜂) > 0,

R (𝜌) > max {0,R (𝜇 + 𝜇
󸀠

+ ] − 𝜂) ,R (𝜇
󸀠

− ]󸀠)} .
(11)

Then there holds the following fractional integral formula:

(𝐼
(𝜇,𝜇
󸀠
,],]󸀠,𝜂)

0,𝑥
[𝑡
𝜌−1

𝐹
(𝛼,𝛽)

𝑝
(𝑎, 𝑏; 𝑐; 𝛾 𝑡)]) (𝑥)

= 𝑥
𝜌+𝜂−𝜇−𝜇

󸀠
−1

×

Γ (𝜌) Γ (𝜌 + ]󸀠 − 𝜇󸀠) Γ (𝜌 + 𝜂 − 𝜇 − ] − 𝜇󸀠)
Γ (𝜌 + ]󸀠) Γ (𝜌 + 𝜂 − 𝜇 − 𝜇󸀠) Γ (𝜌 + 𝜂 − ] − 𝜇󸀠)

⋅
3
𝐹
(𝛼,𝛽)

𝑝,3
[

𝑎, 𝑏, 𝜌, 𝜌 + ]󸀠 − 𝜇󸀠, 𝜌 + 𝜂 − 𝜇 − ] − 𝜇󸀠;
𝑐, 𝜌 + ]󸀠, 𝜌 + 𝜂 − 𝜇 − 𝜇󸀠, 𝜌 + 𝜂 − ] − 𝜇󸀠; 𝛾𝑥] .

(12)

Proof. For convenience, we denote the left-hand side of
the result (12) by Δ (𝑥). Then, applying Definition (1) and
changing the order of integration and summation, which is
valid under the condition given withTheorem 1, we get

Δ (𝑥) := (𝐼
(𝜇,𝜇
󸀠
,],]󸀠,𝜂)

0,𝑥
[𝑡
𝜌−1

𝐹
(𝛼,𝛽)

𝑝
(𝑎, 𝑏; 𝑐; 𝛾 𝑡)]) (𝑥)

= (𝐼
(𝜇,𝜇
󸀠
,],]󸀠,𝜂)

0,𝑥

[

[

𝑡
𝜌−1

∞

∑

𝑛=0

𝑎
𝑛

𝐵
(𝛼,𝛽)

𝑝
(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵 (𝑏, 𝑐 − 𝑏)

×
(𝛾𝑡)
𝑛

𝑛!

]

]

) (𝑥)

=

∞

∑

𝑛=0

(𝑎)
𝑛

𝐵
(𝛼,𝛽)

𝑝
(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵 (𝑏, 𝑐 − 𝑏)

⋅
𝛾
𝑛

𝑛!
(𝐼
(𝜇,𝜇
󸀠
,],]󸀠,𝜂)

0,𝑥
[𝑡
𝜌+𝑛−1

]) (𝑥) .

(13)

Now, we canmake use of (8) with 𝜌 replaced by 𝜌+𝑛 (𝑛 ∈ N
0
)

and we thus get from (13)

Δ (𝑥) := 𝑥
𝜌+𝜂−𝜇−𝜇

󸀠
−1

∞

∑

𝑛=0

(𝑎)
𝑛

𝐵
(𝛼,𝛽)

𝑝
(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵 (𝑏, 𝑐 − 𝑏)

⋅

Γ (𝜌−𝜂) Γ (𝜌+]󸀠−𝜇󸀠+𝑛) Γ (𝜌+𝜂−𝜇−]−𝜇󸀠+𝑛)
Γ (𝜌+]󸀠+𝑛) Γ (𝜌+𝜂−𝜇−𝜇󸀠+𝑛) Γ (𝜌+𝜂−]−𝜇󸀠+𝑛)

×
(𝛾𝑥)
𝑛

𝑛!

= 𝑥
𝜌+𝜂−𝜇−𝜇

󸀠
−1

×

Γ (𝜌) Γ (𝜌 + ]󸀠 − 𝜇󸀠) Γ (𝜌 + 𝜂 − 𝜇 − ] − 𝜇󸀠)
Γ (𝜌 + ]󸀠) Γ (𝜌 + 𝜂 − 𝜇 − 𝜇󸀠) Γ (𝜌 + 𝜂 − ] − 𝜇󸀠)

×

∞

∑

𝑛=0

(𝑎)
𝑛

𝐵
(𝛼,𝛽)

𝑝
(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵 (𝑏, 𝑐 − 𝑏)

⋅

(𝜌)
𝑛
(𝜌 + ]󸀠 − 𝜇󸀠)

𝑛

(𝜌 + 𝜂 − 𝜇 − ] − 𝜇󸀠)
𝑛

(𝜌 + ]󸀠)
𝑛
(𝜌 + 𝜂 − 𝜇 − 𝜇󸀠)

𝑛
(𝜌 + 𝜂 − ] − 𝜇󸀠)

𝑛

×
(𝛾𝑥)
𝑛

𝑛!
.

(14)

Finally by interpreting the last member of (14) by means of
the definition of

3
𝐹
(𝛼,𝛽)

𝑝,3
(⋅), we obtain the right-hand side of

(12). This completes the proof of Theorem 1.

Theorem 2. Let 𝑥 > 0, R(𝑝) ≥ 0, and the parameters
𝜇, 𝜇
󸀠

, ], ]󸀠, 𝜂, 𝜌, 𝛾 ∈ C and satisfy the following inequalities:

R (𝜂) > 0,

0 < R (𝜌) < 1 +min {R (−]) ,R (𝜇 + 𝜇
󸀠

− 𝜂) ,

R (𝜇 + ]󸀠 − 𝜂)} .

(15)

Then the following generalized fractional integral formula
holds true:

(𝐼
𝜇,𝜇
󸀠
,],]󸀠,𝜂

𝑥,∞
[𝑡
𝜌−1

𝐹
(𝛼,𝛽)

𝑝
(𝑎, 𝑏; 𝑐; (

𝛾

𝑡
))]) (𝑥)

= 𝑥
𝜌+𝜂−𝜇−𝜇

󸀠
−1

×

Γ (1−𝜌−]) Γ (1−𝜌−𝜂+𝜇+𝜇󸀠) Γ (1−𝜌−𝜂 +𝜇 +]󸀠)
Γ (1−𝜌) Γ (1−𝜌+𝜇−]) Γ (1−𝜌−𝜂 +𝜇+𝜇󸀠+]󸀠)

⋅
3
𝐹
(𝛼,𝛽)

𝑝,3
[
𝑎, 𝑏, 1−𝜌−], 1−𝜌−𝜂+𝜇+𝜇󸀠, 1−𝜌−𝜂+𝜇 + ]󸀠;

𝑐, 1−𝜌, 1−𝜌+𝜇−], 1−𝜌−𝜂+𝜇+𝜇󸀠+]󸀠;
𝛾

𝑥
].

(16)

Proof. For convenience, we denote the left-hand side of the
result (16) byΩ(𝑥).Then, by making use of Definition (1) and
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changing the order of integration and summation, which is
justified under the conditions stated withTheorem 2, we get

Ω (𝑥) := (𝐼
(𝜇,𝜇
󸀠
,],]󸀠,𝜂)

𝑥,∞
[𝑡
𝜌−1

𝐹
(𝛼,𝛽)

𝑝
(𝑎, 𝑏; 𝑐; (

𝛾

𝑡
))]) (𝑥)

= (𝐼
(𝜇,𝜇
󸀠
,],]󸀠,𝜂)

𝑥,∞

[

[

𝑡
𝜌−1

∞

∑

𝑛=0

𝑎
𝑛

𝐵
(𝛼,𝛽)

𝑝
(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵 (𝑏, 𝑐 − 𝑏)

×
(𝛾/𝑡)
𝑛

𝑛!

]

]

) (𝑥)

=

∞

∑

𝑛=0

(𝑎)
𝑛

𝐵
(𝛼,𝛽)

𝑝
(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵 (𝑏, 𝑐 − 𝑏)

⋅
𝛾
𝑛

𝑛!
(𝐼
(𝜇,𝜇
󸀠
,],]󸀠,𝜂)

𝑥,∞
[𝑡
𝜌−𝑛−1

]) (𝑥) .

(17)

Now, we canmake use of (9) with 𝜌 replaced by 𝜌−𝑛(𝑛 ∈ N
0
)

and we thus get from (17)

Ω (𝑥) = 𝑥
𝜌+𝜂−𝜇−𝜇

󸀠
−1

∞

∑

𝑛=0

(𝑎)
𝑛

𝐵
(𝛼,𝛽)

𝑝
(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵 (𝑏, 𝑐 − 𝑏)

⋅ ( (Γ (1 − 𝜌 − ] + 𝑛) Γ (1 − 𝜌 − 𝜂 + 𝜇 + 𝜇󸀠 + 𝑛)

× Γ (1 − 𝜌 − 𝜂 + 𝜇 + ]󸀠 + 𝑛))

× (Γ (1 − 𝜌 + 𝑛) Γ (1 − 𝜌 + 𝜇 − ] + 𝑛)

×Γ (1 − 𝜌 − 𝜂 + 𝜇 + 𝜇
󸀠

+ ]󸀠 + 𝑛))
−1

) ⋅
(𝛾/𝑥)

𝑛

𝑛!

= 𝑥
𝜌+𝜂−𝜇−𝜇

󸀠
−1

×

Γ (1−𝜌−]) Γ (1−𝜌−𝜂+𝜇+𝜇󸀠) Γ (1−𝜌−𝜂 +𝜇 +]󸀠)
Γ (1−𝜌) Γ (1−𝜌+𝜇−]) Γ (1−𝜌−𝜂+𝜇+𝜇󸀠+]󸀠)

×

∞

∑

𝑛=0

(𝑎)
𝑛

𝐵
(𝛼,𝛽)

𝑝
(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵 (𝑏, 𝑐 − 𝑏)

⋅

(1−𝜌−])
𝑛
(1−𝜌−𝜂+𝜇+𝜇

󸀠

)
𝑛

(1−𝜌−𝜂+𝜇+]󸀠)
𝑛

(1 − 𝜌)
𝑛
(1 − 𝜌 + 𝜇 − ])

𝑛
(1 − 𝜌 − 𝜂 + 𝜇 + 𝜇󸀠 + ]󸀠)

𝑛

⋅
(𝛾/𝑥)

𝑛

𝑛!
.

(18)

Finally by interpreting the last member of (18) by means of
the definition of

3
𝐹
(𝛼,𝛽)

𝑝,3
(⋅), we obtain the right-hand side of

(16). This completes the proof of Theorem 2.

Remark 3. It may be noted that, for 𝜇󸀠 = 0, Theorems 1 and 2
are immediately reduced to the known results due to Agarwal
[6].

3. Special Cases and Concluding Observations

In this section, we consider some consequences of the main
results derived in the preceding sections. If we set 𝛼 = 𝛽 in
(12) and (16), respectively, then by the known formula due
to Chaudhry et al. (see, e.g., [2]), Theorems 1 and 2 yield the
following corollaries.

Corollary 4. Let 𝑥 > 0, R(𝑝) ≥ 0, and the parameters
𝜇, 𝜇
󸀠

, ], ]󸀠, 𝜂, 𝜌, 𝛾 ∈ C be such that

R (𝜂) > 0,

R (𝜌) > max {0,R (𝜇 + 𝜇
󸀠

+ ] − 𝜂) ,

R (𝜇
󸀠

− ]󸀠)} .

(19)

Then there holds the following fractional integral formula:

(𝐼
(𝜇,𝜇
󸀠
,],]󸀠,𝜂)

0,𝑥
[𝑡
𝜌−1

𝐹
𝑝
(𝑎, 𝑏; 𝑐; 𝛾 𝑡)]) (𝑥)

= 𝑥
𝜌+𝜂−𝜇−𝜇

󸀠
−1

×

Γ (𝜌) Γ (𝜌 + ]󸀠 − 𝜇󸀠) Γ (𝜌 + 𝜂 − 𝜇 − ] − 𝜇󸀠)
Γ (𝜌 + ]󸀠) Γ (𝜌 + 𝜂 − 𝜇 − 𝜇󸀠) Γ (𝜌 + 𝜂 − ] − 𝜇󸀠)

⋅
3
𝐹
𝑝,3

[
𝑎, 𝑏, 𝜌, 𝜌 + ]󸀠 − 𝜇󸀠, 𝜌 + 𝜂 − 𝜇 − ] − 𝜇󸀠;
𝑐, 𝜌 + ]󸀠, 𝜌 + 𝜂 − 𝜇 − 𝜇󸀠, 𝜌 + 𝜂 − ] − 𝜇󸀠; 𝛾𝑥] .

(20)

Corollary 5. Let 𝑥 > 0, R(𝑝) ≥ 0, and the parameters
𝜇, 𝜇
󸀠

, ], ]󸀠, 𝜂, 𝜌, 𝛾 ∈ C and satisfy the following inequalities:

R (𝜂) > 0,

R (𝜌) < 1 +min {R (−]) ,R (𝜇 + 𝜇
󸀠

− 𝜂) ,

R (𝜇 + ]󸀠 − 𝜂)} .

(21)

Then the following generalized fractional integral formula
holds true:

(𝐼
𝜇,𝜇
󸀠
,],]󸀠,𝜂

𝑥,∞
[𝑡
𝜌−1

𝐹
𝑝
(𝑎, 𝑏; 𝑐; (

𝛾

𝑡
))]) (𝑥)

= 𝑥
𝜌+𝜂−𝜇−𝜇

󸀠
−1

×

Γ (1−𝜌−]) Γ (1−𝜌−𝜂+𝜇+𝜇󸀠) Γ (1−𝜌−𝜂+𝜇 +]󸀠)
Γ (1−𝜌) Γ (1−𝜌+𝜇−]) Γ (1− 𝜌− 𝜂+ 𝜇+𝜇󸀠+]󸀠)

⋅
3
𝐹
𝑝,3

[
𝑎, 𝑏, 1−𝜌 −], 1−𝜌 −𝜂+𝜇+𝜇󸀠, 1−𝜌−𝜂+𝜇+]󸀠;

𝑐, 1−𝜌, 1−𝜌+𝜇−], 1−𝜌−𝜂+𝜇+𝜇󸀠+]󸀠;
𝛾

𝑥
].

(22)

Remark 6. For 𝜇󸀠 = 0, Corollaries 4 and 5 are immediately
reduced to the known results due to Agarwal [6].

Furthermore, if we set 𝑝 = 0 and then make use of the
result (1), Theorems 1 and 2 yield the various fractional inte-
gral formulas for the generalized hypergeometric function
2
𝐹
1
.
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Next, it can be easily seen that the Saigo fractional integral
operators, the Erdélyi-Kober fractional integral operators,
the Riemann-Liouville fractional integral operator, and the
Weyl fractional integral operator are special cases of the
operators (6). Therefore, we can easily derive several further
consequences of the main results derived in the preceding
sections by setting 𝜇󸀠 = 0, ] = −𝜇, and ] = 0 in the operators
(6) (see, e.g., [18]).

Therefore, we conclude this paper with the remark that
the results obtained in this paper are useful in deriving certain
composition formulas involving various fractional integral
operators and generalized Gauss hypergeometric functions.
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