
Research Article
An Adaptive Approach to Solutions of Fredholm Integral
Equations of the Second Kind

Nebiye Korkmaz and Zekeriya Güney

Department of Secondary Science and Mathematics Education, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
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Copyright © 2014 N. Korkmaz and Z. Güney. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

As an approach to approximate solutions of Fredholm integral equations of the second kind, adaptive hp-refinement is used firstly
together with Galerkin method and with Sloan iteration method which is applied to Galerkin method solution. The linear hat
functions and modified integrated Legendre polynomials are used as basis functions for the approximations.The most appropriate
refinement is determined by an optimization problem given by Demkowicz, 2007. During the calculations 𝐿2-projections of
approximate solutions on four different meshes which could occur between coarse mesh and fine mesh are calculated. Depending
on the error values, these procedures could be repeated consecutively or different meshes could be used in order to decrease the
error values.

1. Introduction and Preliminaries

The aim of this study is to find approximate solutions for the
Fredholm integral equations of the second kind by applying
adaptive refinement together with Galerkin method and
Sloan iteration method. Our reason to apply adaptive refine-
ment is to search for meshes on which wemight obtain better
approximations to the solution of the problems with the
methodsmentioned. In Section 2 we explained how to obtain
a finer mesh from a given mesh, which is called coarse mesh,
and howwe construct the basis functions used for the approx-
imation. In Section 3we solved the problemgivenwith (10) by
Galerkin method and then in order to determine an optimal
mesh we solved the optimization problem given with (18) for
adaptive refinement. In Section 4, as the subsequent step, we
iterate Galerkin method solution by Sloan iteration method
and we solved the same optimization problem for this case
in order to make adaptive refinement. Finally in Section 5 we
presented someproblem examples. In this sectionwewill give
some basic knowledge about two essential subjects that this
study stands on: integral equations and adaptive refinement.

1.1. On Integral Equations. As the theory of integral equations
has significant importance in mathematics, it is also closely

related to various fields of science. Many problems, such
as ordinary and partial differential equations, problems of
mathematical physics, can be laid out as integral equations.
Hochstadt [1]mentioned thatmany existence and uniqueness
results can be derived from the corresponding results from
integral equations and there is almost no area of applied
mathematics and mathematical physics where integral equa-
tions do not play a role. Many studies can be found that state
some of these areas of usage of integral equations. Rahbar
and Hashemizadeh [2] indicated to high applicability of
integral equations in different areas of applied mathematics,
physics, and engineering, and they particularly mentioned
some areas in which these equations are widely used such
as mechanics, geophysics, electricity and magnetism, kinetic
theory of gases, hereditary phenomena in biology, quantum
mechanics, mathematical economics, and queuing theory.
We can sort some more examples of these areas of usage as
follows: automatic control theory, network theory and the
dynamics of nuclear reactors [3], acoustics, optics and laser
theory, potential theory, radiative transfer theory, cardiol-
ogy, fluid mechanics and statics [4], continuum mechan-
ics, hereditary phenomena in physics and biology, renewal
theory, radiation, optimization, optimal control systems,
communication theory, population genetics, medicine and
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mathematical problems of radiative equilibrium, the particle
transport problems of astrophysics and reactor theory, steady
state heat conduction, and fracture mechanics [5].

As Pachpatte [3] expressed, the beginning of the integral
equations can be traced back to N. H. Abel who found an
integral equation in 1812 starting from a problem in mechan-
ics and in 1895 V. Volterra emphasized the significance of the
theory of integral equations.

Lonseth [6] stated that Fredholm published his distin-
guished paper in Acta Mathematica [7] in 1903, in which
he gave the first detailed account of the existence and
multiplicity of solutions of the following two equations where
the kernel𝐾(𝑠, 𝑡) and𝑦(𝑠) are known functions and the values
of 𝜆 (proper values) are values to be determined such that a
continuous solution 𝑥(𝑠) ̸≡ 0 exists:

𝑥 (𝑠) − ∫

1

0

𝐾 (𝑠, 𝑡) 𝑥 (𝑡) 𝑑𝑡 = 𝑦 (𝑠) , 0 ≤ 𝑠 ≤ 1,

𝑥 (𝑠) − 𝜆∫

1

0

𝐾 (𝑠, 𝑡) 𝑥 (𝑡) 𝑑𝑡 = 𝑦 (𝑠) , 0 ≤ 𝑠 ≤ 1.

(1)

In his book Pachpatte [3] stated a few number ofmonographs
that he accepted as an excellent account of integral equations
may be found in the following: Burton [8], Corduneanu [9–
11], Gripenberg et al. [12], Krasnoselskii [13], Miller [14], and
Tricomi [15].

1.2. On Adaptive Refinement. In 1988 Babuška [16] published
his work on the advances in the 𝑝 and ℎ-𝑝 versions of the
finite elementmethod and in this study he distinguished three
versions of the finite elementmethod (FEM) as follows: the ℎ-
version, the 𝑝-version, and the ℎ-𝑝 version. The main idea in
the ℎ-version is to refine the size of the meshes while degrees
of the polynomials used for approximation are kept fixed
(usually 𝑝 = 1, 2); in the 𝑝-version it is the opposite: size of
themeshes kept fixed, but degrees of the polynomials used for
approximation are increased. In the ℎ-𝑝 version both changes
are done simultaneously: size of the meshes are refined and
the degrees of the polynomials used for approximation are
increased. In [16] while the ℎ-version of FEM is introduced
to be the standard one, the other versions are said to be
developed later and the first theoretical papers about the 𝑝-
version and the ℎ-𝑝 version which appeared in 1981 are given
with [17] and [18], respectively.

In Demkowicz’s book [19] which is about computation
with ℎ𝑝-adaptive finite elements, he studied one- and two-
dimensional elliptic and Maxwell problems and he men-
tioned two major components of the one-dimensional ver-
sion of their ℎ𝑝-algorithm as fine grid solution and optimal
mesh selection. For the first component, a given (coarse)
mesh is refined in both ℎ and𝑝 to obtain a corresponding fine
mesh, and then the problem is solved on this finemesh to find
the fine mesh solution. In the latter component, he used this
fine mesh solution to determine optimal mesh refinement of
the coarse mesh, by minimizing the projection based inter-
polation error solving the following discrete optimization
problem where 𝑢, ∏

ℎ𝑝
𝑢, ∏
ℎ𝑝opt
𝑢, 𝑁
ℎ𝑝opt

, and 𝑁
ℎ𝑝

denote,

respectively, the solution on the fine mesh, the interpolant of
the fine grid solution on the original mesh, interpolant of the
fine grid solution on the new optimal mesh to be determined,
the corresponding number of degrees of freedom on the
new optimal mesh to be determined and the corresponding
number of degrees of freedom on the original mesh:

󵄩󵄩󵄩󵄩󵄩
𝑢 − ∏

ℎ𝑝
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐻
1
(0,𝑙)
−
󵄩󵄩󵄩󵄩󵄩󵄩
𝑢 − ∏

ℎ𝑝opt
𝑢
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻
1
(0,𝑙)

𝑁
ℎ𝑝opt

− 𝑁
ℎ𝑝

󳨀→ min . (2)

Here the aim of the optimization problem is said tomaximize
the rate of decrease of the interpolation error. Asadzadeh
and Eriksson [20] gave a few number of references [21–25]
on solving integral equations with FEM in their paper in
which they have chosen to work on the single layer potential
problem for Laplace’s equation with Neumann boundary
conditions in order to be concrete. In their paper, the studies
on solving integral equations with adaptive FEM in that
period are givenwith [25–28]. Adaptive FEMare usually used
to solve partial differential equations; but in literature these
methods are also seen to be used for solving different type
of problems in various branches of science such as hydro-
dynamics [29], optimal design [30], elliptic stochastic equa-
tions [31], parabolic problems [32], parabolic systems [33],
elliptic problems [34], elliptic partial differential equations
[35], elliptic boundary value problems [36, 37], electrostatics
[38], electromagnetic problems [39], biological flows [40],
and Laplace eigenvalue problem [41].

2. Refining a Finer Mesh from a Coarse Mesh
and Construction of Basis Functions

2.1. Refining a Finer Mesh from a Coarse Mesh. Let 𝑎 = 𝑡
1
<

𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑛
= 𝑏 be the node points of a given (finite element)

mesh which is accepted as the coarsemesh and denote the list
of these node points as follows:

𝐿
𝑐
= [𝑡1 𝑡2 ⋅ ⋅ ⋅ 𝑡𝑛] . (3)

For each 𝑖 ∈ {1, 2, . . . , 𝑛 − 1} the interval of the form 𝐼
𝑖
=

[𝑡
𝑖
, 𝑡
𝑖+1
] is called an element (or finite element) having two

parameters: element length ℎ
𝑖
= 𝑡
𝑖+1
− 𝑡
𝑖
and element local

polynomial of order of approximation 𝑝
𝑖
(𝑝
𝑖
≥ 2). What is

meant by element local polynomial of order of approximation
can be explained as follows: “If an element has element local
polynomial of order of approximation of order𝑝, it means the
nonlinear base functions on that element are the polynomials
of degree starting from 2 to 𝑝.” Let 𝐷𝑐 be the list of 𝑛 − 1
numbers of element local polynomial order of approximation
of the coarse mesh elements:

𝐷
𝑐
= [𝑝1 𝑝2 ⋅ ⋅ ⋅ 𝑝𝑛−1] . (4)

Firstly dividing each element of thismesh from themiddle (ℎ-
refinement) and then increasing the element local polynomial
order of approximation by 1 for each new element (𝑝-refine-
ment), we obtain a finer mesh having new lists of node points
and the element local polynomial orders of approximation
given belowwhich are of length 2𝑛−1 and 2𝑛−2, respectively:
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𝐿
𝑓
= [𝑡
1

(𝑡
1
+ 𝑡
2
)

2
𝑡
2
⋅ ⋅ ⋅ 𝑡
𝑛−1

(𝑡
𝑛−1
+ 𝑡
𝑛
)

2
𝑡
𝑛
] , (5)

𝐷
𝑓
= [𝑝1 + 1 𝑝1 + 1 𝑝2 + 1 𝑝2 + 1 ⋅ ⋅ ⋅ 𝑝𝑛−1 + 1 𝑝𝑛−1 + 1] . (6)

2.2. Construction of Basis Functions. In this study, for each
element of a mesh two kinds of basis functions are used: hat
functions and bubble functions. The reasons why these are
called so can be explained as follows: the linear base functions
are called hat functions, because their shapes look like a hat
and the nonlinear ones are called bubble functions, because
they vanish at node points as bubbles. Considering the coarse
mesh given with lists (3) and (4) we explain how to construct
the basis functions on the coarse mesh as sample. Basis
functions of anymesh can be built up similarly. Formulations
of number of 𝑛 hat functions belonging to coarse mesh are as
follows:

𝜑
1
(𝑡) =

{{

{{

{

(𝑡
2
− 𝑡)

(𝑡
2
− 𝑡
1
)
, if 𝑡 ∈ [𝑡

1
, 𝑡
2
]

0, otherwise,

𝜑
𝑖
(𝑡) =

{{{{{{

{{{{{{

{

(𝑡 − 𝑡
𝑖
)

(𝑡
𝑖+1
− 𝑡
𝑖
)
, if 𝑡 ∈ [𝑡

𝑖−1
, 𝑡
𝑖
]

(𝑡
𝑖+1
− 𝑡)

(𝑡
𝑖+1
− 𝑡
𝑖
)
, if 𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1
]

0, otherwise

𝑖 = 2, . . . , 𝑛 − 1,

𝜑
𝑛
(𝑡) =

{{

{{

{

(𝑡 − 𝑡
𝑛−1
)

(𝑡
𝑛
− 𝑡
𝑛−1
)
, if 𝑡 ∈ [𝑡

𝑛−1
, 𝑡
𝑛
]

0, otherwise.

(7)

For the construction of bubble functions in the coarse mesh
the integrated Legendre polynomials are combined with a
function𝜓mapping any closed interval (which is an element)
[𝑡
𝑖
, 𝑡
𝑖+1
] to the domain of integrated Legendre polynomials

that is given as follows:

𝜓 : [𝑡
𝑖
, 𝑡
𝑖+1
] 󳨀→ [−1, 1] , 𝜓 (𝑡) =

2𝑡 − (𝑡
𝑖+1
+ 𝑡
𝑖
)

𝑡
𝑖+1
− 𝑡
𝑖

. (8)

Let 𝐿
𝑝
denote the integrated Legendre polynomial of degree

𝑝. Bubble function of degree 𝑝 in the 𝑖th (𝑖 = 1, 2, . . . , 𝑛 − 1)
element that is used for approximation is defined as follows:

𝜑
𝑖,𝑝
(𝑡) = {

𝐿
𝑝
∘ 𝜓 (𝑡) , if 𝑡 ∈ [𝑡

𝑖−1
, 𝑡
𝑖
]

0, otherwise
𝑖 = 2, . . . , 𝑛, 𝑝 ≥ 2.

(9)

3. Galerkin Method Solution and
Adaptive Refinement by Using
Demkowicz’s Optimization

Firstly we calculate the Galerkin method approximate solu-
tion on the fine mesh 𝐿𝑓 which was constructed in Section 2.

Then in order to decide the optimal mesh, we solve an opti-
mization problem, given byDemkowicz [19], on each element
of the fine mesh. For this we need 𝐿2-projections of the fine
mesh solution on each element of 𝐿𝑓 onto the corresponding
element of the coarse mesh 𝐿𝑐 and on the four possible
optimal mesh refinements of the coarse mesh element. The
possible four optimal mesh refinements are defined clearly in
the latter parts.

3.1. Galerkin Method Solution on the Fine Mesh 𝐿𝑓. Consider
the Fredholm integral equation of the second kind:

𝜆𝑥 (𝑡) − ∫

𝑏

𝑎

𝐾 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 = 𝑓 (𝑡) , 𝑎 ≤ 𝑡 ≤ 𝑏, 𝜆 ̸= 0,

(10)

and the fine mesh having lists (5) and (6). On this mesh the
total number of basis functions is 2𝑛−1+2(𝑝

1
+𝑝
2
+⋅ ⋅ ⋅+𝑝

𝑛−1
)

which we denote by 𝑑
𝑓
. Let

𝑢 (𝑡) =

𝑑
𝑓

∑

𝑗=1

𝑐
𝑗
𝜙
𝑗
(𝑡) , 𝑡 ∈ [𝑎, 𝑏] , (11)

be the approximate solutionwe are looking forwhere𝜙
𝑗
(𝑡) are

the basis functions (hat functions and bubble functions) and
𝑐
𝑗
(𝑡) are the coefficients to be calculated for 𝑗 = 1, 2, . . . , 𝑑

𝑓
.

Substituting (10) in the residual function of the Galerkin
method [42], we obtain the following equality:

𝑟 (𝑡) =

𝑑
𝑓

∑

𝑗=1

𝑐
𝑗
{𝜆𝜙
𝑗
(𝑡) − ∫

𝐷

𝐾 (𝑡, 𝑠) 𝜙
𝑗
(𝑡) 𝑑𝑠} − 𝑦 (𝑡) , 𝑡 ∈ 𝐷.

(12)

The residual function is required to satisfy the following
equalities:

⟨𝑟, 𝜙
𝑖
⟩ = 0, 𝑖 = 1, . . . , 𝑑

𝑓
. (13)

Rearranging (13), for all 𝑖 ∈ {1, . . . , 𝑑
𝑓
}

𝑑
𝑓

∑

𝑗=1

𝑐
𝑗
[𝜆∫

𝑏

𝑎

𝜙
𝑗
(𝑡) 𝜙
𝑖
(𝑡) 𝑑𝑡 − ∫

𝑏

𝑎

∫

𝑏

𝑎

𝐾 (𝑡, 𝑠) 𝜙
𝑗
(𝑠) 𝜙
𝑖
(𝑡) 𝑑𝑠 𝑑𝑡]

= ∫

𝑏

𝑎

𝑓 (𝑡) 𝜙
𝑖
(𝑡) 𝑑𝑡,

(14)

is obtained which is a system of equations and this system
can be represented in the matrix form by using the matrices
defined as follows:
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𝐸 =

[
[
[
[
[

[

𝐸
11

⋅ ⋅ ⋅ 𝐸
𝑑
𝑓
1

𝐸
21

⋅ ⋅ ⋅ 𝐸
𝑑
𝑓
2

.

.

.
.
.
.

.

.

.

𝐸
𝑑
𝑓
1
⋅ ⋅ ⋅ 𝐸
𝑑
𝑓
𝑑
𝑓

]
]
]
]
]

]

, 𝐸
𝑖𝑗
= 𝜆∫

𝑏

𝑎

𝜙
𝑗
(𝑡) 𝜙
𝑖
(𝑡) 𝑑𝑡,

𝐾 =

[
[
[
[
[

[

𝐾
11

⋅ ⋅ ⋅ 𝐾
𝑑
𝑓
1

𝐾
21

⋅ ⋅ ⋅ 𝐾
𝑑
𝑓
2

.

.

.
.
.
.

.

.

.

𝐾
𝑑
𝑓
1
⋅ ⋅ ⋅ 𝐾

𝑑
𝑓
𝑑
𝑓

]
]
]
]
]

]

, 𝐾
𝑖𝑗
= ∫

𝑏

𝑎

∫

𝑏

𝑎

𝐾 (𝑡, 𝑠) 𝜙
𝑗
(𝑠) 𝜙
𝑖
(𝑡) 𝑑𝑠 𝑑𝑡,

𝐹 = [∫

𝑏

𝑎

𝑓(𝑡)𝜙
1
(𝑡)𝑑𝑡 ∫

𝑏

𝑎

𝑓(𝑡)𝜙
2
(𝑡)𝑑𝑡 ⋅ ⋅ ⋅ ∫

𝑏

𝑎

𝑓(𝑡)𝜙
𝑑
𝑓

(𝑡)𝑑𝑡]

𝑇

,

𝐶 = [𝑐1 𝑐2 ⋅ ⋅ ⋅ 𝑐𝑑
𝑓
]
𝑇

.

(15)

The system (14) can be expressed as

(𝐸 − 𝐾) ⋅ 𝐶 = 𝐹. (16)

Hence the coefficient matrix 𝐶 is found as follows:

𝐶 = (𝐸 − 𝐾)
−1
⋅ 𝐹. (17)

By substituting these coefficients to the lefthand side of equal-
ity (11), the desired approximate solution of the Galerkin
method is obtained.

3.2. Adaptive Refinement by Using Demkowicz’s Optimiza-
tion for Galerkin Method Solution on the Fine Mesh 𝐿𝑓.
As explained in the abstract, for adaptive refinement we
solve an optimization problem which was originally used
by Demkowicz [19] with Sobolev spaces for solving one-
and two-dimensional elliptic and Maxwell problems. In this
study instead of Sobolev norm, 𝐿2-norm is used and naturally
inner products are 𝐿2-inner product. Under this choice our
optimization problem turns into

󵄩󵄩󵄩󵄩󵄩
𝑢 − Π

ℎ𝑝
𝑢
󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩󵄩
𝑢 − Π

ℎ𝑝opt
𝑢
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑁
ℎ𝑝opt

− 𝑁
ℎ𝑝

󳨀→ min . (18)

For determining optimal mesh (18) is solved on each element
of the fine mesh. For simplicity we solve the problem on
element of the form 𝐼 = [𝑎, 𝑏] as a representative element
for all elements of the coarse mesh which were in the form
𝐼
𝑖
= [𝑡
𝑖
, 𝑡
𝑖+1
] (𝑖 = 1, 2, . . . , 𝑛 − 1). In other words we

will start with a mesh consisting of just one element which
is the interval itself. Let 𝐷𝑐 = [𝑝] be the list of element
local polynomial order of approximation of the element 𝐼𝑐.
Refining this element in both ℎ and 𝑝we get a fine mesh with
the following new list of node points:

𝐿
𝑓
= [𝑎

𝑎 + 𝑏

2
𝑏] , 𝐷

𝑓
= [𝑝 + 1 𝑝 + 1] . (19)

There are also other possible refinements (just in ℎ or 𝑝 or
in both but with different choice of refinements in 𝑝) which
produce the following four possible optimal mesh choices:

𝐿
opt
= [𝑎 𝑏] , 𝐷

opt
= [𝑝 + 1] , (20)

or 𝐿
opt
= [𝑎

𝑎 + 𝑏

2
𝑏] , 𝐷

opt
= [𝑝 𝑝] , (21)

or 𝐿
opt
= [𝑎

𝑎 + 𝑏

2
𝑏] , 𝐷

opt
= [𝑝 𝑝 + 1] , (22)

or 𝐿
opt
= [𝑎

𝑎 + 𝑏

2
𝑏] , 𝐷

opt
= [𝑝 + 1 𝑝] . (23)

Consider the fine mesh solution 𝑢 given with (11). Firstly 𝐿2-
projections of 𝑢 on the coarse meshΠ

ℎ𝑝
𝑢 and on the optimal

meshes Π
ℎ𝑝opt
𝑢 are calculated. During these calculations we

introduced some matrices and notations that we need. Let
𝑑
𝑐
and 𝑑opt be the total number of basis functions and let 𝜉𝑐

𝑗
,

(𝑗 = 1, 2, . . . , 𝑑
𝑐
) and 𝜉opt

𝑗
, (𝑗 = 1, 2, . . . , 𝑑opt) be the basis

functions of the coarse and optimal mesh cases, respectively:

Π
ℎ𝑝
𝑢 =

𝑑
𝑐

∑

𝑗=1

𝜉
𝑐

𝑗
𝜙
𝑐

𝑗
, (24)

Π
ℎ𝑝opt
𝑢 =

𝑑opt

∑

𝑗=1

𝜉
opt
𝑗
𝜙
opt
𝑗
. (25)

Let 𝜉𝑐 = [𝜉
𝑐

1
𝜉
𝑐

2
⋅ ⋅ ⋅ 𝜉
𝑐

𝑑
𝑐

]
𝑇, 𝜉opt = [𝜉

opt
1

𝜉
opt
2

⋅ ⋅ ⋅ 𝜉
opt
𝑑opt
]
𝑇

be the coefficient matrices corresponding to (24) and (25),
respectively. We calculated 𝐿2-projections of the Galerkin
method solution (11) as Larson and Bengzon explained
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in [43]. For calculatingΠ
ℎ𝑝
𝑢 given with (24) above, we define

two matrices 𝑍𝑐 and𝑀𝑐 that we need as follows:

𝑍
𝑐
=

[
[
[
[
[

[

𝑍
𝑐

11
⋅ ⋅ ⋅ 𝑍

𝑐

1𝑑
𝑓

𝑍
𝑐

21
⋅ ⋅ ⋅ 𝑍

𝑐

2𝑑
𝑓

.

.

.
.
.
.

.

.

.

𝑍
𝑐

𝑑
𝑐
1
⋅ ⋅ ⋅ 𝑍

𝑐

𝑑
𝑐
𝑑
𝑓

]
]
]
]
]

]

, 𝑍
𝑐

𝑖𝑗
= ∫

𝑏

𝑎

𝜙
𝑐

𝑖
(𝑠) 𝜙
𝑓

𝑗
(𝑠) 𝑑𝑠,

𝑀
𝑐
=

[
[
[
[

[

𝑀
𝑐

11
⋅ ⋅ ⋅ 𝑀

𝑐

1𝑑
𝑐

𝑀
𝑐

21
⋅ ⋅ ⋅ 𝑀

𝑐

2𝑑
𝑐

.

.

.
.
.
.

.

.

.

𝑀
𝑐

𝑑
𝑐
1
⋅ ⋅ ⋅ 𝑀

𝑐

𝑑
𝑐
𝑑
𝑐

]
]
]
]

]

, 𝑀
𝑐

𝑖𝑗
= ∫

𝑏

𝑎

𝜙
𝑐

𝑖
(𝑠) 𝜙
𝑐

𝑗
(𝑠) 𝑑𝑠.

(26)

We obtain the coefficient matrix 𝜉𝑐 as follows:

𝜉
𝑐
= (𝑀
𝑐
)
−1

⋅ 𝑍
𝑐
⋅ 𝐶. (27)

Substituting these coefficients in (24) we obtain the 𝐿2-
projection function Π

ℎ𝑝
𝑢. For calculating Π

ℎ𝑝opt
𝑢 given with

(25), we need two new matrices 𝑍opt and 𝑀opt defined as
follows:

𝑍
opt
=

[
[
[
[
[
[

[

𝑍
opt
11

⋅ ⋅ ⋅ 𝑍
opt
1𝑑
𝑓

𝑍
opt
21

⋅ ⋅ ⋅ 𝑍
opt
2𝑑
𝑓

.

.

.
.
.
.

.

.

.

𝑍
opt
𝑑opt1

⋅ ⋅ ⋅ 𝑍
opt
𝑑opt𝑑𝑓

]
]
]
]
]
]

]

, 𝑍
opt
𝑖𝑗
= ∫

𝑏

𝑎

𝜙
opt
𝑖
(𝑠) 𝜙
𝑓

𝑗
(𝑠) 𝑑𝑠,

𝑀
opt
=

[
[
[
[
[
[

[

𝑀
opt
11

⋅ ⋅ ⋅ 𝑀
opt
1𝑑opt

𝑀
opt
21

⋅ ⋅ ⋅ 𝑀
opt
2𝑑opt

.

.

.
.
.
.

.

.

.

𝑀
opt
𝑑opt1

⋅ ⋅ ⋅ 𝑀
opt
𝑑opt𝑑opt

]
]
]
]
]
]

]

, 𝑀
opt
𝑖𝑗
=∫

𝑏

𝑎

𝜙
opt
𝑖
(𝑠) 𝜙
𝑐

𝑗
(𝑠) 𝑑𝑠.

(28)

We obtain the coefficient matrix 𝜉opt as follows:

𝜉
opt
= (𝑀

opt
)
−1

⋅ 𝑍
opt
⋅ 𝐶. (29)

Substituting these coefficients in (25) we obtain the 𝐿2-pro-
jection function Π

ℎ𝑝opt
𝑢.

We reformulate the right hand side of the optimization
problem (18) in terms of the matrices we introduced before
by using (27) and (29) as follows:

(𝐶
𝑇
⋅ [(𝑍

opt
)
𝑇

⋅ ((𝑀
opt
)
−1

)

𝑇

⋅ 𝑍
opt
− (𝑍
𝑐
)
𝑇

⋅ ((𝑀
𝑐
)
−1

)
𝑇

⋅ 𝑍
𝑐
] ⋅ 𝐶)

× (𝑑
opt
− 𝑑
𝑐
)
−1

.

(30)

The value (30) is calculated for each of the four possible
optimal mesh refinements of the coarse mesh element.

The case giving the minimum value is replaced with that
element of the coarse mesh. Starting from the first element
of the coarse mesh we repeat this procedure for each coarse
mesh element, respectively. Joining all these replaced ele-
ments at node points of the coarsemesh, we obtain adaptively
refined new mesh which is the optimal mesh we are trying to
achieve. During this process to guarantee the continuity of
the approximate solution at node points of the coarse mesh,
the boundary conditions at node points of the coarse mesh
have to be fixed. In other words, the values of the fine mesh
solution 𝑢 and its 𝐿

2
-projections is forced to take the same

value at the node points of the coarse mesh.
We start with the 𝐿2-projection function Π

ℎ𝑝
𝑢. If we

equalize the coefficients of the 𝐿2-projection function Π
ℎ𝑝
𝑢

with finemesh solution 𝑢 at node points 𝑎 and 𝑏 of the sample
element 𝐼𝑐 = [𝑎, 𝑏] we get the following results:

Π
ℎ𝑝
𝑢 (𝑎) = 𝑢 (𝑎)

󳨐⇒ 𝜉
𝑐

1
⋅ 𝜙
𝑐

1
(𝑎) + 0 = 𝑐

1
⋅ 𝜙
𝑓

1
(𝑎) + 0

󳨐⇒ 𝜉
𝑐

1
= 𝑐
1
,

Π
ℎ𝑝
𝑢 (𝑏) = 𝑢 (𝑏)

󳨐⇒ 𝜉
𝑐

2
⋅ 𝜙
𝑐

2
(𝑏) + 0 = 𝑐

3
⋅ 𝜙
𝑓

3
(𝑏) + 0

󳨐⇒ 𝜉
𝑐

2
= 𝑐
3
.

(31)

In this case calculating the coefficients in the coefficient
matrix 𝜉𝑐 except 𝜉𝑐

1
and 𝜉𝑐

2
will be sufficient. Removing the

first two columns of the matrices given with (26) and the
first two elements of the matrix 𝜉𝑐 and solving the remaining
system brings the desired coefficients. Since the structure of
the optimal element given with (20) is similar to the coarse
mesh, the calculation for this case is similar with the one done
for obtaining the coefficient matrix 𝜉𝑐. For this optimal case,
𝜉
opt
1

= 𝑐
1
and 𝜉opt

2
= 𝑐
3
. Deleting the first two columns of

the matrices given with (28) and the first two elements of
the matrix 𝜉opt and solving the remaining system brings the
remaining coefficients of the projection function Π

ℎ𝑝opt
.

For the remaining three optimal cases given with (20),
(21), and (22) we follow the same way:

Π
ℎ𝑝opt
𝑢 (𝑎) = 𝑢 (𝑎)

󳨐⇒ 𝜉
opt
1
⋅ 𝜙

opt
1
(𝑎) + 0 = 𝑐

1
⋅ 𝜙
𝑓

1
(𝑎) + 0

󳨐⇒ 𝜉
opt
1
= 𝑐
1
,

Π
ℎ𝑝opt
𝑢 (𝑏) = 𝑢 (𝑏)

󳨐⇒ 𝜉
opt
3
⋅ 𝜙

opt
3
(𝑏) + 0 = 𝑐

3
⋅ 𝜙
𝑓

3
(𝑏) + 0

󳨐⇒ 𝜉
opt
3
= 𝑐
3
.

(32)
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For these cases of optimal meshes, the first and the third
columns of matrices (28) and the first and the third elements
(𝜉

opt
1

and 𝜉opt
3
) of the matrix 𝜉opt are deleted and the remain-

ing system is solved in order to get the remaining coefficients
of the projection Π

ℎ𝑝opt
.

4. Sloan Iteration Solution and
Adaptive Refinement by Using
Demkowicz’s Optimization

TheFredholm integral equation of the second kind givenwith
formula (10) can be reformulated as

𝑥 =
1

𝜆
(𝑓 + 𝑧) , (33)

where 𝑧 = K𝑥 = ∫
𝑏

𝑎
𝐾(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏]. Atkinson [44]

defined iterated projection solution 𝑥
𝑛
for a given projected

method solution 𝑥
𝑛
as

𝑥
𝑛
=
1

𝜆
(𝑓 +K𝑥

𝑛
) , (34)

and beside this he mentioned that although such iterations
are found in the literature in many places, Sloan [45] first
recognized the importance of doing one such iteration and
in his honor 𝑥

𝑛
is often called the Sloan iterate. We express

(34) in a more clear and general way as follows:

𝑥 (𝑡) =
1

𝜆
[∫

𝑏

𝑎

𝐾 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 + 𝑓 (𝑡)] , 𝑡 ∈ [𝑎, 𝑏] . (35)

Substituting the Galerkin method solution on the fine mesh
given with formula (11) to the right hand side of formula (35),
the iterated solution on the fine mesh is obtained as follows:

𝑥 (𝑡) =
1

𝜆

[

[

𝑓 (𝑡) +

𝑑

∑

𝑗=1

𝑐
𝑗
∫

𝑏

𝑎

𝐾 (𝑡, 𝑠) 𝜙
𝑗
(𝑠) 𝑑𝑠]

]

, 𝑡 ∈ [𝑎, 𝑏] .

(36)

We solve the optimization problemgivenwith (18) for iterated
solution as it was solved for Galerkinmethod solution. In this
case𝑢 in (18) is taken as the iterated solution𝑥 givenwith (36).

We define two matrices 𝑍𝑐 and 𝑀
𝑐 needed in the

calculation of Π
ℎ𝑝
𝑢 given with (24) as follows:

𝑍
𝑐
=

[
[
[
[
[

[

𝑍
𝑐

11
⋅ ⋅ ⋅ 𝑍

𝑐

𝑑
𝑓
1

𝑍
𝑐

12
⋅ ⋅ ⋅ 𝑍

𝑐

𝑑
𝑓
2

.

.

.
.
.
.

.

.

.

𝑍
𝑐

1𝑑
𝑐

⋅ ⋅ ⋅ 𝑍
𝑐

𝑑
𝑓
𝑑
𝑐

]
]
]
]
]

]

, 𝑍
𝑐
= ∫

𝑏

𝑎

∫

𝑏

𝑎

𝐾 (𝑡, 𝑠) 𝜙
𝑓

𝑗
(𝑠) 𝜙
𝑐

𝑖
(𝑡) 𝑑𝑠 𝑑𝑡,

𝐹
𝑐
= [∫

𝑏

𝑎

𝑓 (𝑡) 𝜙
𝑐

1
(𝑡) 𝑑𝑡 ∫

𝑏

𝑎

𝑓 (𝑡) 𝜙
𝑐

2
(𝑡) 𝑑𝑡 ⋅ ⋅ ⋅ ∫

𝑏

𝑎

𝑓 (𝑡) 𝜙
𝑐

𝑑
𝑐

(𝑡) 𝑑𝑡]

𝑇

.

(37)

We obtain the coefficient matrix 𝜉𝑐 as

𝜉
𝑐
=
1

𝜆
(𝑀
𝑐
)
−1

⋅ (𝐹
𝑐
+ 𝑍
𝑐
⋅ 𝐶) . (38)

Substituting these coefficients in (24) we obtain the 𝐿2-pro-
jection function Π

ℎ𝑝
𝑢 for the iterated solution. We need two

new matrices 𝑍opt and 𝑀opt in the calculation of Π
ℎ𝑝opt
𝑢

which are given as follows:

𝑍
opt
=

[
[
[
[
[
[
[
[

[

𝑍
opt
11

⋅ ⋅ ⋅ 𝑍
opt
𝑑
𝑓
1

𝑍
opt
12

⋅ ⋅ ⋅ 𝑍
opt
𝑑
𝑓
2

.

.

.
.
.
.

.

.

.

𝑍
opt
1𝑑opt

⋅ ⋅ ⋅ 𝑍
opt
𝑑
𝑓
𝑑opt

]
]
]
]
]
]
]
]

]

, 𝑍
opt
𝑖𝑗
= ∫

𝑏

𝑎

∫

𝑏

𝑎

𝐾 (𝑡, 𝑠) 𝜙
𝑓

𝑗
(𝑠) 𝜙

opt
𝑖
(𝑡) 𝑑𝑠 𝑑𝑡,

𝐹
opt
= [∫

𝑏

𝑎

𝑓 (𝑡) 𝜙
opt
1
(𝑡) 𝑑𝑡 ∫

𝑏

𝑎

𝑓 (𝑡) 𝜙
opt
2
(𝑡) 𝑑𝑡 ⋅ ⋅ ⋅ ∫

𝑏

𝑎

𝑓 (𝑡) 𝜙
opt
𝑑opt
(𝑡) 𝑑𝑡]

𝑇

.

(39)

We obtain the coefficient matrix 𝜉opt as follows:

𝜉
opt
=
1

𝜆
(𝑀

opt
)
−1

⋅ (𝐹
opt
+ 𝑍

opt
⋅ 𝐶) . (40)

Substituting these coefficients in (25) we obtain the 𝐿2-pro-
jection function Π

ℎ𝑝opt
𝑢 for the iterated solution.

As the right hand side of the optimization problem
(18) was reformulated in matrix form for Galerkin method
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Table 1: Error values of (42) in Example 1.

𝑛 𝐺
𝐿
2 𝐺max 𝑆

𝐿
2 𝑆max

I 3.807778247544568𝑒 + 00 3.962758499440351𝑒 + 00 6.142245995845852𝑒 − 02 2.691129516577462𝑒 − 02

II 3.681501530476621𝑒 − 01 4.734800657784639𝑒 − 01 1.436655818926428𝑒 − 05 5.651797188477303𝑒 − 06

III 3.980571071622163𝑒 − 02 7.073630464941472𝑒 − 02 1.437092335784317𝑒 − 05 5.601928975806914𝑒 − 06

IV 1.231396356019893𝑒 − 03 2.530443837131857𝑒 − 03 5.107562613500647𝑒 − 06 2.459469289561866𝑒 − 06

V 1.705913430341418𝑒 − 03 3.875831522837103𝑒 − 03 2.009899309359689𝑒 − 07 6.851382039485543𝑒 − 08

Table 2: Error values of (42) in Example 1.

𝑁,𝑝 𝐺
𝐿
2 𝐺max 𝑆

𝐿
2 𝑆max

20, 3 1.919678771148673𝑒 − 05 3.143456151022406𝑒 − 05 2.861019689160329𝑒 − 11 1.624300693947589𝑒 − 11

30, 3 8.285910426569432𝑒 − 06 1.378103734439584𝑒 − 05 8.932393923247606𝑒 − 14 5.240252676230739𝑒 − 14

40, 3 4.568972671388127𝑒 − 06 7.635657150117936𝑒 − 06 9.976748626959734𝑒 − 14 6.927791673660977𝑒 − 14

50, 3 2.892986173063029𝑒 − 06 4.818969607356394𝑒 − 06 9.852985133624295𝑒 − 14 6.750155989720952𝑒 − 14

solution, the same will be done for the iterated solution. We
reformulate the right hand side of the optimization problem
(18) in terms of the matrices we introduced before by using
(38) and (40) as follows:

1

𝜆2
(((𝐹

opt
)
𝑇

+ 𝐶
𝑇
⋅ (𝑍

opt
)
𝑇

) ⋅ ((𝑀
opt
)
−1

)

𝑇

⋅ (𝐹
opt
+ 𝑍

opt
⋅ 𝐶) − ((𝐹

𝑐
)
𝑇

+ 𝐶
𝑇
⋅ (𝑍
𝑐
)
𝑇

)

⋅ ((𝑀
𝑐
)
−1

)
𝑇

⋅ (𝐹
𝑐
+ 𝑍
𝑐
⋅ 𝐶)) .

(41)

As explained for Galerkin method solution at the end of
Section 3.2, on each element of the coarse mesh expression
(41) should be calculated for each of four possible optimal
mesh refinement cases and the case giving the minimum
value is replaced with that element of the coarse mesh. For
the continuity of the approximate solution at node points of
the coarse mesh, the boundary conditions at node points of
the coarse mesh are fixed during the calculations in the same
way as it was done for the Galerkin method solution.

5. Some Applications

Both methods are applied to some problems in [46] on Fred-
holm integral equations of the second kind with smooth
kernel and discontinuous kernel and results are stated. For
each example we have presented error values in two different
kinds of tables. In the first kind, we give the error values of the
consecutive solutions where 𝑛 denotes the repeating order.
Here resulting refinedmesh is used as the coarse mesh for the
later turn. In the second kind, we give the error values when
we use𝑁 number of equidistant node points on coarse mesh
and 𝑝 as element local polynomial order of approximation
at each element of the coarse mesh. In both tables while
𝐺
𝐿
2 and 𝑆

𝐿
2 denote the 𝐿2-errors, 𝐺max and 𝑆max denote the

maximum absolute error at node points of the fine mesh
(obtained from coarsemesh) of theGalerkinmethod solution
and the iterated solution, respectively.

In this study our main and final goal is to reach better
approximations by applying adaptive refinement together
with Sloan iteration to Galerkin method solutions and to
examine them. For this reason in all examples presented,
we give two kinds of graphs with relative errors on log-log
scale: one with relative error in 𝐿2-norm and onewith relative
error in maximum norm on 𝑦-axis and both with number of
degrees of freedoms on the 𝑥-axis via Sloan iteration results.
Graphs clearly show the decrease in relative error while
number of degrees of freedoms are increasing. For simplicity
log of number of degrees of freedoms is represented by
“log(#dofs)” on the 𝑥-axis.

In order to illustrate the refinement process better we
provide more details for the first example than for the latter
ones: besides the error plots for the Sloan iteration we also
add the corresponding graphs for the Galerkin method and
show the mesh refinement for the five consecutive runs.

Example 1. The exact solution of the problem,

𝑥 (𝑠) +
1

𝜋
∫

𝜋

−𝜋

0.3

1 − 0.64cos2 ((𝑠 + 𝑡) /2)
𝑥 (𝑡) 𝑑𝑡

= 25 − 16 sin (𝑠2) , −𝜋 ≤ 𝑠 ≤ 𝜋,

(42)

is given with 𝑥(𝑡) = 17/2 + (128/7) cos(2𝑡). Let the coarse
mesh be given with the lists 𝐿 = [−𝜋 𝜋], 𝐷 = [2]. The
problem is solved five times consecutively.

As we see in each row of Table 1 Sloan iteration cause a
decrease in both𝐺

𝐿
2 and𝐺max error values for each run. Also

we see a general decrease in all error types, especially this is
muchmore clear for errors via Sloan iteration given in the last
two columns of the table.

When we look to the relative error graphs given with
Figures 1 and 2, we see that relative errors via Sloan iteration
get smaller values rather than the ones via Galerkin method.

In Table 2 we give the error for the computations starting
from four different initial coarse meshes with 20, 30, 40, and
50 equidistant node points on the interval [−𝜋, 𝜋] and with
initial element local polynomial order of 𝑝 = 2. From this
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Figure 1: Convergence graphs of relative error in 𝐿2-norm and maximum norm via Galerkin method for (42) in Example 1.
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Figure 2: Convergence graphs of relative error in 𝐿2-norm and maximum norm via Sloan iteration for (42) in Example 1.

table we see that, at just one run of the procedure, we can
reach much more smaller error values with lower element
local polynomial order of approximation by just increasing
the number of nodes. In [46] the error at nodes obtained by
using Nyström method was given with the value 1.1𝑒 − 8.
Just for this example as a sample we give a graph including
a diagram which shows us the mesh refinement step by step
for the five consecutive runs via Galerkin method results and
the lists of the obtained optimal mesh at the end of the five
consecutive runs for both methods.

In Figure 3 we see the optimal mesh selections chosen by
the optimization problem (18). In the first run it chose just to
do 𝑝 refinement and increase the element local polynomial
order of approximation from 2 to 3 which corresponds to
choice (20). In the second run it chose to make both ℎ and 𝑝
refinements together by choosing case (22). In the third run
it chose to refine the first element as in (23) and the second
one as in (20). On the fourth run while it chose to refine the
first and third elements of level III by (22), it chose to refine
the middle element by (20). Finally in the fifth run refining
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Table 3: Error values of (45) in Example 2.

𝑛 𝐺
𝐿
2 𝐺max 𝑆

𝐿
2 𝑆max

I 1.154995991009992𝑒 − 05 4.800924769501891𝑒 − 05 9.079011385069973𝑒 − 06 2.077330804106659𝑒 − 05

II 1.144321554963263𝑒 − 05 7.856882758505712𝑒 − 05 4.481278123307043𝑒 − 06 1.430730253160206𝑒 − 06

III 2.260073176335741𝑒 − 05 7.192862655699961𝑒 − 05 3.073165554649129𝑒 − 07 3.282068198745547𝑒 − 07

IV 2.373416815667144𝑒 − 05 7.277671609520753𝑒 − 05 1.846336864089446𝑒 − 08 4.620430288371225𝑒 − 08

[−𝜋, 𝜋], p = 3

[−𝜋, 0], p = 3 [0, 𝜋], p = 4

[−𝜋, −𝜋/4], p = 4 [−𝜋/4, 0], p = 3 [0, 𝜋], p = 5

[−𝜋, −𝜋/4], p = 4 [−𝜋/4, −𝜋/2], p = 5 [−𝜋/2, 0], p = 4 [0, 𝜋/2], p = 5 [𝜋/2, 𝜋], p = 6

[−𝜋, −7𝜋/8], p = 5 [−7𝜋/8, −3𝜋/4], p = 4 [−3𝜋/4, −𝜋/2], p = 6 [−𝜋/2, −𝜋/4], p = 4

[−𝜋/4, 0], p = 5 [0, 𝜋/2], p = 6 [𝜋/2, 𝜋], p = 7

I. Refinement

II. Refinement

III. Refinement

IV. Refinement

V. Refinement

Figure 3: Representation of mesh refinement via Galerkin method for (42) in Example 1.

the first element of level IV by (23), the second, fourth, and
fifth elements of level IV by (20), and the third element of level
IV by (22), the optimal mesh at the end of five consecutive
runs given below for the Galerkin method is obtained.

For Galerkin method solution,

𝐿 = [−3.1416𝑒 + 00 −2.7489𝑒 + 00 −2.3562𝑒 + 00

−1.5708𝑒 + 00 −7.8540𝑒 − 01 0

1.5708𝑒 + 00 3.1416𝑒 + 00 ] ,

𝐷 = [5 4 6 4 5 6 7] .

(43)

For iterated solution we obtain the final optimal mesh as

𝐿 = [−3.1416𝑒 + 00 −1.5708𝑒 + 00 −7.8540𝑒 − 01

0 1.5708𝑒 + 00 2.3562𝑒 + 00 3.1416𝑒 + 00 ] ,

𝐷 = [5 5 4 5 5 4] .

(44)

Example 2. The exact solution of the problem

−
𝑥 (𝑠)

2
− ∫

1

0

0.1

0.01 + (𝑠 − 𝑡)
2
𝑥 (𝑡) 𝑑𝑡 = 𝑓 (𝑠) , 0 ≤ 𝑠 ≤ 1,

(45)

is 𝑥(𝑡) = 0.06 − 0.8𝑡 + 𝑡2. Let the coarse mesh be given with
lists 𝐿 = [0 1] and𝐷 = [2]. The problem is solved four times
consecutively.

We observe from the rows of Table 3 that Sloan iteration
decreases the 𝐺

𝐿
2 and 𝐺max errors as we saw in Example 1.

Besides while the error values obtained by the consecutive
runs via Galerkin method do not show much difference,
the ones obtained by Sloan iteration are decreasing faster.
The graphs given by Figure 4 for Example 2 clearly show the
decrease in the relative errors in 𝐿2 and maximum norms as
expected.

Likewise we did in our first example, we used three dif-
ferent initial coarse meshes, having 30, 40, and 50 equidistant
node points on the interval [0, 1] and 𝑝 = 2 as initial element
local polynomial order of approximation at each element of
these coarse mesh elements for all three situations. As in
Example 1, we again see in Table 4 that we reach much more
smaller error values with lower element local polynomial
order of approximation by just increasing the number of
nodes. In [46] the error at nodes obtained by using Nyström
method was given with the value 6.6𝑒 − 6.

Example 3. The solution of the equation

𝑥 (𝑠) − ∫

1

0

𝑘 (𝑡, 𝑠) 𝑥 (𝑡) 𝑑𝑡 = (1 −
1

𝜋2
) sin (𝜋𝑠) , 0 ≤ 𝑠 ≤ 1,

(46)

with

𝑘 (𝑡, 𝑠) = {
𝑠 (1 − 𝑡) , 𝑠 ≤ 𝑡

𝑡 (1 − 𝑠) , 𝑡 ≤ 𝑠,
(47)

is 𝑥(𝑡) = sin(𝜋𝑡). Let the coarse mesh be given with the lists
𝐿 = [0 1] and 𝐷 = [2]. The problem is solved seven times
consecutively.
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Figure 4: Convergence graphs of relative error in 𝐿2-norm and maximum norm via Sloan iteration for (45) in Example 2.

Table 4: Error values of (45) in Example 2.

𝑁,𝑝 𝐺
𝐿
2 𝐺max 𝑆

𝐿
2 𝑆max

30, 2 3.827463454759924𝑒 − 13 2.371158824843178𝑒 − 12 3.827929692581457𝑒 − 13 2.367273044256990𝑒 − 12

40, 2 6.337936926296469𝑒 − 14 3.875233467454109𝑒 − 13 6.344645499378824𝑒 − 14 3.914091273315989𝑒 − 13

50, 2 1.595065414892088𝑒 − 14 1.005862060310392𝑒 − 13 1.598617548424624𝑒 − 14 9.842127113302013𝑒 − 14

Table 5: Error values of (46) in Example 3.

𝑛 𝐺
𝐿
2 𝐺max 𝑆

𝐿
2 𝑆max

I 2.323175934794088𝑒 − 03 4.178803217825712𝑒 − 03 3.043325952187653𝑒 − 03 2.499839591130204𝑒 − 04

II 2.240147347334236𝑒 − 03 1.853030198079919𝑒 − 03 7.768764444034127𝑒 − 04 6.367704404164343𝑒 − 05

III 6.486006996900690𝑒 − 04 1.540804529766398𝑒 − 03 2.275583867630013𝑒 − 04 2.260998286551796𝑒 − 05

IV 2.737884048950595𝑒 − 04 7.494545635317040𝑒 − 04 1.076817056502688𝑒 − 04 1.022158821584185𝑒 − 05

V 4.309359697687976𝑒 − 04 2.445614088301018𝑒 − 03 8.482708369079025𝑒 − 05 6.301343734582687𝑒 − 06

VI 5.397336277740180𝑒 − 04 3.256397951289958𝑒 − 03 8.303708583183078𝑒 − 05 5.990667999111743𝑒 − 06

VII 6.252849507196142𝑒 − 04 4.555052326156391𝑒 − 03 4.721973545142185𝑒 − 05 4.470476808404733𝑒 − 06

Table 6: Error values of (46) in Example 3.

𝑁,𝑝 𝐺
𝐿
2 𝐺max 𝑆

𝐿
2 𝑆max

30, 2 1.248229331783191𝑒 − 05 2.667447083548602𝑒 − 06 1.110735027318169𝑒 − 05 1.362431358398197𝑒 − 06

40, 2 7.197918189051699𝑒 − 06 6.660698562699352𝑒 − 06 7.498309701859696𝑒 − 06 8.492780161351021𝑒 − 07

50, 2 4.754457518136059𝑒 − 06 6.130650015201411𝑒 − 06 5.508659819578954𝑒 − 06 5.732876173780710𝑒 − 07

Table 5 shows that Sloan iteration causes a decrease in
the error values obtained via Galerkin method and they are
getting smaller in each seven consecutive runs. Graphs given
by Figure 5 clearly show the decrease in both relative errors
in 𝐿2 and maximum norms as in the previous examples.

By using the same three different coarse meshes used in
Example 2, finally we see from Table 6 that we can obtain
smaller errors with lower element local polynomial order of

approximation by just increasing the number of nodes. In
[46] the error at nodes obtained by using Nyström method
was given with the value 1.7𝑒 − 7.

6. Conclusions

The two methods presented aimed to find and improve
approximate solutions for Fredholm integral equations of
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Figure 5: Convergence graphs of relative error in 𝐿2-norm and maximum norm via Sloan iteration for (46) in Example 3.

the second kind and to observe the effect of adaptive refine-
ment on these solutions for both methods. Using polynomial
type functions in the approximation of solutions for many
kinds of problems in mathematics is one of the most usual
methods. Generally in the whole solution interval, polyno-
mials having the same degree are used.Themain idea behind
why we preferred to use adaptive refinement in our study
is observing the changes in the results when we change this
general approach. When we use adaptively refined meshes,
this gives us a chance to use polynomials of different degree
in different subintervals of the solution interval, which might
cause obtaining better approximations. When comparing the
maximum absolute error values at nodes of Examples 1 and 2
with the results in [46], we saw that our methods are able to
reach much smaller error values by increasing the number of
node points even by using polynomials having lowdegrees for
these examples, which have smooth kernels. For Example 3
when the absolute error values at nodes are compared with
the ones in [46] we see that they are getting closer to
each other as we used more node points again by using
polynomials of low degrees. In our study we also see that
with Sloan iteration we obtain better approximations rather
thanGalerkinmethod as seen from the examples.The relative
error graphs show us that Sloan iteration brings the expected
decrease in relative error values of 𝐿2-error and maximum
absolute error at node points of the fine mesh. The results
showed that generally error values are better when we use
polynomials of degree between 2 and 6, which is an advantage
for decreasing the time we spend to solve the problems.
Another advantage of our methods is that approximate
solutions are found easily by using computer code written in
Matlab. It is also observed that using polynomials with higher
degrees can cause oscillations in the errors. The methods can

be improved not only to get better results, but also to solve
other problem models by some modifications.
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[27] E. Rank, I. Babuška, O. C. Zienkiewicz, J. Gago, and E. R.
Oliveira, “Adaptivity and accuracy estimation for finite element
and boundary integral elementmethods,” inAccuracy Estimates

and Adaptive Refinements in Finite Element Computations, pp.
79–94, John Wiley & Sons, New York, NY, USA, 1986.

[28] D. H. Yu, “A posteriori error estimates and adaptive approaches
for some boundary element methods,” in Boundary Element
Methods, C. A. Brebbia, W. L. Wendland, and G. Kuhn, Eds.,
pp. 241–256, Springer, Berlin, Germany, 1987.

[29] M. J. Berger and P. Colella, “Local adaptive mesh refinement for
shock hydrodynamics,” Journal of Computational Physics, vol.
82, no. 1, pp. 64–84, 1989.

[30] J. E. Schiermeier and B. A. Szabó, “Interactive design based on
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