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The transient response of the VLFS subjected to arbitrary external load is systematically investigated by a direct time domainmodal
expansion method, in which the BEM solutions based on time domain Kelvin sources are used for hydrodynamic forces. In the
analysis, the time domain free-surface Green functions with sufficient accuracy are rapidly evaluated in finite water depth by the
interpolation-tabulationmethod, and the boundary integral equation with a quarter VLFSmodel is established taking advantage of
symmetry of flow field and structure.The validity of the present method is verified by comparing with the time histories of vertical
displacements of the VLFS during a mass drop and airplane landing and takeoff in still water conditions, respectively. Then the
developed numerical scheme is used in wave conditions to study the combined action taking into account the mass drop/airplane
landing/takeoff loads as well as incident wave action. It is found that the elevation of structural waves due to mass drop load can
be significantly changed near the impact region, while the vertical motion of runway in wave conditions is dominant as compared
with that only generated by airplane.

1. Introduction

Very large floating structure (VLFS) is usually regarded as
an alternative option of utilizing ocean space because of the
scarcity of land to coastal regions, and it has been gradually
appearing in various applications such as floating airports, oil
storage vessels, floating artificial islands, and floating piers.
For a VLFS, the structural length to the vertical length ratio
as well as the structural length to wavelength ratio both is
larger than unity (see [1]). Thus the deformation will become
dominant over the rigid, and the fluid-structure interaction
problem should be considered. In the hydroelastic analysis
of a VLFS, there are two major methods. One way to tackle
this problem is to use an analytical approach [2–6]. If the
analytical approach is used, the computational time and
memory capacity for a VLFS are not an issue. However, the
solved drawback is only applied to simple geometries such as
a rectangular plate or a circular plate. Another way to solve
the hydroelastic problem of a VLFS is by using a numerical
approach.The boundary element method (BEM) (see [7–9]),

the finite-elementmethod (FEM) (see [10, 11]), and the hybrid
finite element-boundary element (FE-BE) method (see [12–
14]) have been presented in previous studies.

The element numbers of the wetted surfaces of the VLFS
require a large memory capacity, and the time domain model
contains the time parameter. Thus, dynamic response of the
VLFS is commonly performed in the frequency domain (see
[15–17]) when determining the hydroelastic response ampli-
tude operator of the floating body and pertinent response
parameters in a steady state condition. However, in real
situation, nonharmonic external loads such as a huge mass
impact on the structure and landing or taking off of an aircraft
can induce the transient behavior of the VLFS and may affect
the serviceability of the VLFS. Thus the transient response of
the VLFS must be studied by a reliable calculation.

Some numerical schemes for transient hydroelastic
responses have been treated to date. Watanabe et al. [18]
investigated a transient response analysis of a VLFS due
to impulsive landing of an airplane by FEM. They applied
the wave absorption filter to open boundaries; however, the
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response analysis was required for a few seconds. Kashiwagi
[19, 20] developed an indirect time domain method in which
the hydrodynamic effect is evaluated from good performance
in the computation of the memory-effect function. Lee and
Choi [21] proposed a FE-BE hybrid method to solve the
transient responses indirectly by using transient equations,
which are derived from the Fourier inverse transform of
harmonic equations of motion and the causality condition.
Endo [22] presented another time domain method based on
FEM to treat the structure and onWilson’s 𝜃method to solve
time-step procedure taking advantage of the memory-effect
function for hydrodynamic forces. Shin et al. [23] simulated
a transient behavior of a pontoon type VLFS subjected to
airplane landing and takeoff, the calculation method for
structural deflection is based on a FEM, and the fluid part is
based on the BEM. Maeda et al. [24] analyzed the time-series
responses without solving the equations ofmotion in the time
domain. Kim andWebster [25] derived the structural motion
using a two-dimensional analytical method and also solved
the added drag to the aircraft.

Though the above-mentioned studies provide enlighten-
ing contributions in the research activities related to external
loads on the VLFS, some difficulties in carrying out their
time domain simulation give restriction in the mathemat-
ical model. For example, the integration of memory-effect
function is still time-consuming for evaluating at some high-
frequency range, and the evaluation of hydrodynamic coef-
ficients such as added mass at infinite frequency commonly
neglect some cross-coupling terms in hydrodynamic effects.
The author would like to develop a direct time integration
method and the method that uses a superposition of modal
functions with time-dependent unknown modal amplitudes
and solves hydrodynamic diffraction and radiation problems
by applying the time domain free-surface Green functions.
In this direct time integration method, the present study
simulate the transient hydroelastic response of a pontoon
type VLFS under the combined action owing to external
loads including a huge mass impact on the structure and
landing or taking off of an aircraft as well as the incident
wave. Numerical results are further addressed, with the time
histories of vertical deflections at measured points, the spatial
profiles of the VLFS at different times, and the running
trajectory of the airplane. There is also a discussion of
generated phenomena and the relationship of the vertical
movement of the airplane and structural wave propagation.

Fast and accurate calculation is necessary for overcoming
this difficulty of large CPU time and memory size of com-
puter. Utsunomiya et al. [26] and Teng and Gou [27] have
developed the multipole expansion methods for hydroelastic
analysis of a VLFS. Kagemoto et al. [28] presented the
substructures method that accelerates computation without
an appreciable loss of accuracy. Dai [29] has extended the
precorrected-FFT method to hydroelastic analysis. However,
their calculation models are only valid for the frequency
domain studies for the wave-induced hydroelastic response.
Huang [30] has put forth a feasible technique to tackle the
time-free surface Green functions in infinite water depth;
however, the VLFS commonly is placed in finite water depth.
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Figure 1: The fluid-structure system and coordinate system.

This paper derives the expression of the time domain free-
surface Green functions and its spatial derivatives in finite
water depth, which with sufficient accuracy are rapidly eval-
uated by using the interpolation-tabulation method. The low
number of elements also is an important technique to reduce
the memory and CPU time when the pressure distribution is
obtained by BEM. According to the symmetry of the VLFS
structure and the fluid field (see [31, 32]), this paper is only
concerned with numerical simulations of boundary integral
equations with a quarter VLFS model.

2. Formulation

We consider the time domain transient problem for a
pontoon-type VLFS in finite water depth. Figure 1 shows
the fluid-structure problem andCartesian coordinate system.
The 𝑧-axis is pointing upwards, and the 𝑥-𝑦 plane is on the
mean position of the free surface, where ℎ is the water depth
and 𝐴 is the amplitude of the incident wave. The whole fluid
domain is defined at Ω which contains the bottom of the
VLFS 𝑆𝑏, side of the VLFS 𝑆𝑠, the free surface 𝑆𝑓, the seabed
𝑆𝑑, and the infinite cylindrical surface 𝑆∞. The VLFS has a
length𝐿, width𝐵, and height ℎV, and𝑑 is the draft of theVLFS
in 𝑧 direction.The problem at hand is to determine themodal
deflections under external loads combined action of incident
waves.

Assuming that the fluid is incompressible, inviscid, and
irrotational, a velocity potentialΦ(𝑥, 𝑦, 𝑧, 𝑡) exists and would
be given by

Φ(𝑥, 𝑦, 𝑧, 𝑡) = Φ𝐼 (𝑥, 𝑦, 𝑧, 𝑡) + Φ𝑆 (𝑥, 𝑦, 𝑧, 𝑡) in Ω, (1)

where Φ𝐼(𝑥, 𝑦, 𝑧, 𝑡) and Φ𝑆(𝑥, 𝑦, 𝑧, 𝑡) are the incident and
scattering potential, respectively.

The velocity potential must satisfy the following Laplace’s
equation and boundary conditions on the free surface 𝑆𝑓, on
the sea-bed 𝑆𝑑, the infinity 𝑆∞, and on the wetted surface
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of the floating body 𝑆𝑏 (the bottom surface) and 𝑆𝑠 (the side
surface):

∇
2
Φ𝑆 (𝑥, 𝑦, 𝑧, 𝑡) = 0, (2)

𝜕
2
Φ𝑆 (𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡2
+ 𝑔

𝜕Φ𝑆 (𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧
= 0 on 𝑆𝑓, 𝑡 > 0,

(3)

𝜕Φ𝐼 (𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑛
+

𝜕Φ𝑆 (𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑛
= 𝑉𝑛 on 𝑆𝑏 + 𝑆𝑠, 𝑡 > 0,

(4)

𝜕Φ𝑆 (𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑛
= 0 on 𝑆𝑑, 𝑡 > 0, (5)

Φ𝑆 (𝑥, 𝑦, 𝑧, 𝑡) , Φ𝑆𝑡 (𝑥, 𝑦, 𝑧, 𝑡) , ∇Φ𝑆 (𝑥, 𝑦, 𝑧, 𝑡)

󳨀→ 0 on 𝑆∞, 𝑡 > 0,

(6)

Φ𝑆 (𝑥, 𝑦, 𝑧, 𝑡) = Φ𝑆𝑡 (𝑥, 𝑦, 𝑧, 𝑡) = 0 on 𝑆𝑓, 𝑡 = 0, (7)

where 𝑔 is the gravitational acceleration, 𝑉𝑛 is the normal
velocity of the structure, 𝑛 is a unit normal vector (the positive
direction points out of the fluid domain), and Φ𝑆𝑡(𝑥, 𝑦, 𝑧, 𝑡)

represent the time derivative of the scattering potential.
It is now widely accepted that VLFS response in terms of

the vertical deflection can be captured well by modeling the
whole VLFS as an elastic plate. In this formulation, assuming
the VLFS as an elastic, isotropic, thin plate, the motion of
the floating body is governed by the equation of a thin plate
resting on a uniform elastic foundation:

𝐷∇
4
𝑊(𝑥, 𝑦, 𝑧, 𝑡) = −𝑚𝑠𝑊̈ + 𝑃 (𝑥, 𝑦, 𝑧, 𝑡) − 𝜌𝑔𝑊 − 𝑃𝐸, (8)

where 𝐷 = 𝐸𝐼 is the bending rigidity, 𝐸 is modulus of
elasticity, 𝐼 is the cross sectional moment of inertia, 𝑚𝑠

denotes the mass per unit area, 𝜌 denotes density of fluid,
𝑃𝐸 denotes the external time-dependent loads acting on the
VLFS due to a huge mass fall off or an airplane landing or
take off, and the dynamic pressure 𝑃(𝑥, 𝑦, −𝑑, 𝑡) relates to the
velocity potential on the bottom surface of the VLFS from the
linearized Bernoulli’s equation

𝑃 (𝑥, 𝑦, −𝑑, 𝑡) = −𝜌
𝜕Φ (𝑥, 𝑦, −𝑑, 𝑡)

𝜕𝑡
. (9)

In the present case, the VLFS is not constrained in the vertical
elastic displacement along its edges; the following boundary
conditions for a free edge must be satisfied:

𝜕
2
𝑊

𝜕𝑛2
+ V

𝜕
2
𝑊

𝜕𝑠2
= 0,

𝜕
3
𝑊

𝜕𝑛3
+ (2 − V)

𝜕
2
𝑊

𝜕𝑛𝜕𝑠2
= 0, (10)

where V is Poisson’s ratio and 𝑛 and 𝑠 denote the normal and
tangential directions, respectively.

3. Method of Solution

3.1. Modal Functions. The vertical elasticity displacement
𝑊(𝑥, 𝑦, 𝑧, 𝑡) of the VLFS is the sum of various modes as
follows:

𝑊(𝑥, 𝑦, 𝑡) =

𝑁

∑

𝑗=1

𝜁𝑗 (𝑡) 𝑓𝑗 (𝑥, 𝑦)

=

𝑀

∑

𝑚=0

𝑁

∑

𝑐=0

𝜁𝑚𝑐 (𝑡) 𝑓𝑥𝑚 (𝑥) 𝑓𝑦𝑐 (𝑦) ,

(11)

where 𝜁𝑗(𝑡) is the vibration amplitude of the 𝑗 mode and
𝑓𝑗(𝑥, 𝑦) is modal function of the 𝑗mode.Themodal function
𝑓𝑗(𝑥, 𝑦) of the VLFS can be expressed by the product of
modal functions at 𝑥 and 𝑦 directions. Here, a case study
of the natural modes 𝑓𝑥𝑚(𝑥) and 𝑓𝑦𝑐(𝑦) of a beam with
free end is discussed as follows. The procedures mentioned
above are mathematically valid for arbitrarily chosen modal
function. However, in order to guarantee the convergence of
the solutions, the appropriate choice of the modal functions
is essential. In this paper, we employ the following modal
functions (dry-modal functions) combining the rigid body
motions and the elastic motions because they satisfy the free-
end condition of the beam and their convergence has already
been proved by Newman [33]:

𝑓𝑥2𝑚 (𝑥)

=

{{{{{{

{{{{{{

{

1

2
for 𝑚 = 0

1

2
[
cosh (𝜇

𝑆

𝑚
𝑥/ (𝐿/2))

cosh (𝜇𝑆
𝑚
)

+
cos (𝜇𝑆

𝑚
𝑥/ (𝐿/2))

cos (𝜇𝑆
𝑚
)

]

for 𝑚 = 1, 2, . . . ,

𝑓𝑥2𝑚+1 (𝑥)

=

{{{{{{

{{{{{{

{

√3

2

𝑥

𝐿/2
for 𝑚 = 0

1

2
[
sinh (𝜇

𝐴

𝑚
𝑥/ (𝐿/2))

sinh (𝜇𝐴
𝑚
)

+
sin (𝜇

𝐴

𝑚
𝑥/ (𝐿/2))

sin (𝜇𝐴
𝑚
)

]

for 𝑚 = 1, 2, . . . ,

(12)

where 𝑓𝑥2𝑚(𝑥) and 𝑓𝑥2𝑚+1(𝑥) are the symmetric and anti-
symmetric modes about 𝑥 = 0, respectively, and 𝜇

𝑆

𝑚
and 𝜇

𝐴

𝑚

are the positive real roots of equations

tan𝜇
𝑆

𝑚
+ tanh𝜇

𝑆

𝑚
= 0,

tan𝜇
𝑆

𝑚
− tanh𝜇

𝑆

𝑚
= 0

(13)

and 𝑓𝑦𝑐(𝑦) may be written in the same form, with 𝐿/2

replaced 𝐵/2 by on the right-hand sides of (12).
The modal functions expressed in (11) are orthogonal to

each other in the (−𝐿/2, 𝐿/2)with the following orthogonality
relation:

∬
𝑆𝑏

𝑓𝑖 (𝑥, 𝑦) 𝑓𝑗 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 =
𝐿

4
⋅
𝐵

4
𝛿𝑖𝑗, (14)
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where 𝛿𝑖𝑗 is Kroenecker’s delta, which is equal to 1 when 𝑖 = 𝑗

and 0 otherwise.

3.2. Fluid Part. The boundary value problems given by (2)–
(7) can be solved by using Green’s functions. If free-surface
Green’s function satisfying the boundary conditions given
by (3), (5), (6), and (7) is considered, the boundary integral
equation for the scattering potential can be derived as follows:

𝛼Φ𝑆 (𝑄, 𝑡) + ∬
𝑆𝑏(𝑡)+𝑆𝑠(𝑡)

Φ𝑆 (𝑃, 𝑡)
𝜕𝐺

0
(𝑃, 𝑄)

𝜕𝑛𝑝

𝑑𝑆𝑝

= ∬
𝑆𝑏(𝑡)+𝑆𝑠(𝑡)

𝐺
0
(𝑃, 𝑄)

𝜕Φ𝑆 (𝑃, 𝑡)

𝜕𝑛𝑝

𝑑𝑆𝑝

+ ∫

𝑡

0

𝑑𝜏∬
𝑆𝑏(𝜏)+𝑆𝑠(𝜏)

[Φ𝑆 (𝑃, 𝜏)

×
𝜕𝐺

𝑓

𝜏
(𝑃 (𝜏) , 𝑄 (𝑡) , 𝑡 − 𝜏)

𝜕𝑛𝑝

− 𝐺
𝑓

𝜏
(𝑃 (𝜏) , 𝑄 (𝑡) , 𝑡 − 𝜏)

×
𝜕Φ𝑆 (𝑃, 𝜏)

𝜕𝑛𝑝

]𝑑𝑆𝑝

+
1

𝑔
∫

𝑡

0

𝑑𝜏∬
𝐶𝑏(𝜏)

[Φ𝑆 (𝑃, 𝜏) 𝐺
𝑓

𝜏𝜏
(𝑃 (𝜏) , 𝑄 (𝑡) , 𝑡 − 𝜏)

− 𝐺
𝑓

𝜏
(𝑃 (𝜏) , 𝑄 (𝑡) , 𝑡 − 𝜏)

×
𝜕Φ𝑆 (𝑃, 𝜏)

𝜕𝑛𝑝

]

⋅ 𝑉𝑛 (𝑃, 𝜏) 𝑑𝑆𝑝,

(15)

where𝛼 represents the solid angle,𝑄(𝑥0, 𝑦0, 𝑧0) and𝑃(𝑥, 𝑦, 𝑧)

represent the source and field point, respectively, and 𝐶𝑏(𝑡)

represents the instantaneous waterline of the intersection
between the body and the free surface. For Green’s function
𝐺(𝑃, 𝑡, 𝑄, 𝜏), it can be expressed by the superposition of
instantaneous term 𝐺

0 and memory term 𝐺
𝑓 in finite water

depth ℎ [34]:

𝐺 (𝑃, 𝑡, 𝑄, 𝜏)

= 𝐺
0
(𝑃, 𝑄) + 𝐺

𝑓
(𝑃, 𝑡, 𝑄, 𝜏)

=
1

𝑟
+

1

𝑟2

− 2∫

∞

0

𝑒
−𝑘ℎ cosh 𝑘 (𝑧0 + ℎ)

cosh 𝑘ℎ

× cosh 𝑘 (𝑧 + ℎ) 𝐽0 (𝑘𝑅) 𝑑𝑘

+ 2∫

∞

0

cosh 𝑘 (𝑧 + ℎ)

cosh 𝑘ℎ sinh 𝑘ℎ
cosh 𝑘 (𝑧0 + ℎ)

× {1 − cos [(𝑡 − 𝜏)√𝑔𝑘 tanh 𝑘ℎ]} 𝐽0 (𝑘𝑅) 𝑑𝑘,

(16)

where the instantaneous term 𝐺
0 and memory term 𝐺

𝑓 are
given in the form, respectively,

𝐺
0
=

1

𝑟
+

1

𝑟2

− 2∫

∞

0

𝑒
−𝑘ℎ cosh 𝑘 (𝑧0 + ℎ)

cosh 𝑘ℎ

× cosh 𝑘 (𝑧 + ℎ) 𝐽0 (𝑘𝑅) 𝑑𝑘,

(17)

𝐺
𝑓

= 2∫

∞

0

cosh 𝑘 (𝑧 + ℎ)

cosh 𝑘ℎ sinh 𝑘ℎ
cosh 𝑘 (𝑧0 + ℎ)

× {1 − cos [(𝑡 − 𝜏)√𝑔𝑘 tanh 𝑘ℎ]} 𝐽0 (𝑘𝑅) 𝑑𝑘,

(18)

where 𝐽0 is the Bessel function of the first kind, order zero,
𝑅 denotes the horizontal distance between field and source
point, 𝑟 denotes the distance between field and source point,
and 𝑟2 denotes the distance between field and the mirror
image of the source field about water surface. In terms of the
following nondimensional space and time parameters

𝑋 =
𝑅

ℎ
, 𝑌 =

−𝑧0

ℎ
, 𝑍 =

−𝑧

ℎ
, 𝑇 = (𝑡 − 𝜏) (

𝑔

ℎ
)

1/2

, (19)

(17) may be written in the form

𝐺
0
=

1

ℎ
[𝐹0 (𝑋, 𝑌 − 𝑍) + 𝐹0 (𝑋, 2 − 𝑌 − 𝑍)] , (20)

where the auxiliary function 𝐹0(𝑋, 𝑉) is defined by

𝐹0 (𝑋, 𝑉) =
1

√𝑋2 + 𝑉2

− ∫

∞

0

𝑒
−𝑢sec ℎ𝑢 cosh (𝑢𝑉) 𝐽0 (𝑢𝑋) 𝑑𝑢.

(21)

The first order time derivative 𝐺
𝑓

𝜏
is expressed in the form

𝐺
𝑓

𝜏
= −𝑔

1/2
ℎ
−3/2

[𝐹 (𝑋, 𝑌 − 𝑍, 𝑇) + 𝐹 (𝑋, 2 − 𝑌 − 𝑍, 𝑇)] ,

(22)

where

𝐹 (𝑋,𝑉, 𝑇) = ∫

∞

0

√𝑘 tanh 𝑘

cosh 𝑘 sinh 𝑘
sin (𝑇√𝑘 tanh 𝑘)

× cosh (𝑘𝑉) 𝐽0 (𝑘𝑋) 𝑑𝑘

= 2∫

∞

0

√𝑘 tanh 𝑘 sin (𝑇√𝑘 tanh 𝑘)

×
𝑒
𝑘(𝑉−2)

+ 𝑒
−𝑘(𝑉+2)

1 − 𝑒−4𝑘
𝐽0 (𝑘𝑋) 𝑑𝑘.

(23)
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Thus the rate of convergence of (21) depends primarily
on 𝑋. Wehausen and Laitone [34] developed the following
expression:

𝐹0 (𝑋, 𝑉)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

2

∞

∑

𝑚=0

cos [(𝑚 +
1

2
)𝜋𝑉]𝐾0 [(𝑚 +

1

2
)𝜋𝑋]

𝑋 > 1

1

√𝑋2 + 𝑉2
−

1

√𝑋2 + (𝑉 + 2)
2

−
1

√𝑋2 + (𝑉 − 2)
2

+1 − log 2 − ∑

𝑚,𝑛

𝑎𝑚𝑛𝑋
2𝑚

𝑉
2𝑛

0 ≤ 𝑋 ≤ 1,

(24)

where 𝐾0 is the modified Bessel function of the second kind
and the coefficients 𝑎𝑚𝑛 are defined by Newman [35].

The rate of convergence of the integral in (23) can
be accelerated by adding and subtracting the appropriate
function 𝐹∞ which may be given in the form

𝐹∞ (𝑋, 𝑉, 𝑇) = lim
𝑘→∞

𝐹 (𝑋,𝑉, 𝑇)

= 2∫

∞

0

√𝑘 sin (𝑇√𝑘) 𝑒
𝑘(𝑉−2)

𝐽0 (𝑘𝑋) 𝑑𝑘,

(25)

where the vertical coordinate 𝑉 is restricted to the fluid
domain (−1, 2).

If the spherical coordinate is adopted, the nondimen-
sional parameters on 𝑟 are defined by

𝑟 = [𝑋
2
+ (𝑉 − 2)

2
]
1/2

, 𝜏 =
𝑇

𝑟1/2
, 𝑘 = 𝑘𝑟,

𝑉 − 2 = 𝑟 cos 𝜃, 𝑋 = 𝑟 sin 𝜃,

(26)

where 𝜏 and 𝜃 lie in the interval (0,∞) and (0, 2𝜋). Thus, we
will reduce three arguments to two arguments by substituting
(26) into (25). The function 𝐹∞ and its partial derivatives are
obtained:

𝐹∞ = 2𝑟
−3/2 Im{∫

∞

0

√𝑘𝑒
−𝑘 cos 𝜃

𝑒
𝑖𝜏√𝑘

𝐽0 (𝑘 sin 𝜃) 𝑑𝑘} ,

𝐹∞𝑋 = −2𝑟
−5/2 Im

{

{

{

∫

∞

0

𝑘

3

2 𝑒
−𝑘 cos 𝜃

𝑒
𝑖𝜏√𝑘

𝐽1 (𝑘 sin 𝜃) 𝑑𝑘
}

}

}

,

𝐹∞𝑉 = 2𝑟
−5/2 Im{∫

∞

0

𝑘
3/2

𝑒
−𝑘 cos 𝜃

𝑒
𝑖𝜏√𝑘

𝐽0 (𝑘 sin 𝜃) 𝑑𝑘} ,

𝐹∞𝑇 = 2𝑟
−2 Re{∫

∞

0

𝑘𝑒
−𝑘 cos 𝜃

𝑒
𝑖𝜏√𝑘

𝐽0 (𝑘 sin 𝜃) 𝑑𝑘} .

(27)

Since the integrands in (27) exhibit slow convergence
and high oscillatory, the 𝐹∞ and its spatial derivatives can
be approximated in terms of the values of parameter 𝜏 (see
[30, 35]). The function 𝐹 − 𝐹∞ may be solved directly in a

straightforward manner due to the oscillatory elimination,
and thus 𝐹(𝑋,𝑉, 𝑇) is obtained:

𝐹 (𝑋,𝑉, 𝑇) = 𝐹∞ + 𝐹 − 𝐹∞. (28)

Then the boundary surface of (15) is discretized into a
number of elements using a standard procedure known as
the BEM. Within the boundary elements, physical variables
are interpolated by the shape functions, which represent the
geometry of each element. In the integration process, the
scheme using trapezoidal approximation is applied to the
convolution integral. Once (15) is solved, the time history of
dynamic pressure (9) can be obtained at any position.

3.3. Structure Part. We substitute the fluid pressure and
vertical deflection (9) and (11) into (8); we have
𝑀

∑

𝑚=1

𝑁

∑

𝑐=1

𝑚𝑠𝑓𝑥𝑚 (𝑥) 𝑓𝑦𝑐 (𝑦) ̈𝜁𝑚𝑐 (𝑡)

+ (𝐷∇
4
𝑓𝑥𝑚 (𝑥) 𝑓𝑦𝑐 (𝑦) + 𝜌𝑔𝑓𝑥𝑚 (𝑥) 𝑓𝑦𝑐 (𝑦)) 𝜁𝑚𝑐 (𝑡)

= −𝜌
𝜕 (Φ𝐼 + Φ𝑆)

𝜕𝑡
− 𝑃𝐸,

(29)

where 𝑚, 𝑐 are the modal numbers in 𝑥 and 𝑦 direction,
respectively. Applying Galerkin’s method, we multiply both
sides of the above equation by𝑓𝑥𝑖(𝑥)⋅𝑓𝑦𝑗(𝑦) and integrate over
the bottom of the VLFS. Finally, we can obtain a conventional
set of equations given by

𝑀

∑

𝑚=1

𝑁

∑

𝑐=1

𝑀𝑚𝑐,𝑖𝑗
̈𝜁𝑚𝑐 (𝑡) +

𝑀

∑

𝑚=1

𝑁

∑

𝑐=1

𝐾𝑚𝑐,𝑖𝑗𝜁𝑚𝑐 (𝑡)

= 𝐹𝑖𝑗 (𝑡) + 𝐸𝑖𝑗 (𝑡) , 𝑖 = 1, . . . ,𝑀, 𝑗 = 1, . . . , 𝑁,

(30)

where

𝑀𝑚𝑐,𝑖𝑗 = ∬
𝑆𝑏

𝑚𝑠𝑓𝑥𝑚 (𝑥) 𝑓𝑦𝑐 (𝑦) 𝑓𝑥𝑖 (𝑥) 𝑓𝑦𝑗 (𝑦) 𝑑𝑠, (31)

𝐾𝑚𝑐,𝑖𝑗

= 𝐷∬
𝑆𝑏

∇
2
𝑓𝑥𝑚 (𝑥) 𝑓𝑦𝑐 (𝑦) ∇

2
𝑓𝑥𝑖 (𝑥) 𝑓𝑦𝑗 (𝑦) 𝑑𝑠

− 𝐷 (1 − V)

× ∬
𝑆𝑏

{
𝜕
2
𝑓𝑥𝑚 (𝑥) 𝑓𝑦𝑐 (𝑦)

𝜕𝑥2

𝜕
2
𝑓𝑥𝑖 (𝑥) 𝑓𝑦𝑗 (𝑦)

𝜕𝑦2

+
𝜕
2
𝑓𝑥𝑚 (𝑥) 𝑓𝑦𝑐 (𝑦)

𝜕𝑦2

𝜕
2
𝑓𝑥𝑖 (𝑥) 𝑓𝑦𝑗 (𝑦)

𝜕𝑥2

−2
𝜕
2
𝑓𝑥𝑚 (𝑥) 𝑓𝑦𝑐 (𝑦)

𝜕𝑥𝜕𝑦

𝜕
2
𝑓𝑥𝑖 (𝑥) 𝑓𝑦𝑗 (𝑦)

𝜕𝑥𝜕𝑦
}𝑑𝑠

+ ∬
𝑆𝑏

𝜌𝑔𝑓𝑥𝑚 (𝑥) 𝑓𝑦𝑐 (𝑦) 𝑓𝑥𝑖 (𝑥) 𝑓𝑦𝑗 (𝑦) 𝑑𝑠,

(32)
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𝐹𝑖𝑗 = ∬
𝑆𝑏

− 𝜌
𝜕 (Φ𝐼 + Φ𝑆)

𝜕𝑡
𝑓𝑥𝑖 (𝑥) 𝑓𝑦𝑗 (𝑦) 𝑑𝑠, (33)

𝐸𝑖𝑗 (𝑡) = −∬
𝑆𝑏

𝑃𝐸 (𝑥, 𝑦, 𝑡) 𝑓𝑥𝑖 (𝑥) 𝑓𝑦𝑗 (𝑦) 𝑑𝑠. (34)

It should be noted that 𝑀𝑚𝑐,𝑖𝑗, 𝐾𝑚𝑐,𝑖𝑗, 𝐹𝑖𝑗, and 𝐸𝑖𝑗 are the gen-
eralized mass, generalized stiffness, generalized wave force,
and generalized external load force, respectively. And the
generalized stiffness 𝐾𝑚𝑐,𝑖𝑗 shown by (32) has been obtained
by taking account of the free-edge boundary conditions, (10),
referring to the paper by Kashiwagi [19].

In order to solve the deflection of the VLFS, (30) is solved
by using the fourth order Runge-Kutta method.

4. External Loads

Themotion equation (30) can be applied to any time domain
transient problem, where the generalized external load force
𝐸𝑖𝑗(𝑡) is solved. Here, a huge mass fall off and an airplane
landing and takeoff will be considered, for which the external
pressure distribution 𝑃𝐸 in (34) must be discussed as follows.

4.1. The Weight Drop Test. In a weight drop test, a weight
𝑊 was dropped from a height onto the “hit point.” The
acceleration of the weight during the impact was 𝑎.Therefore,
the impact load 𝐹im(𝑡) can be obtained:

𝐹im (𝑡) = 𝑊 ⋅ 𝑎, (35)

and the external pressure distribution 𝑃𝐸, appearing in (34)
can be expressed as

𝑃𝐸 (𝑥, 𝑦, 𝑡) = 𝐹im (𝑡) ⋅ 𝛿 (𝑥 − 𝑥𝑝) ⋅ 𝛿 (𝑦 − 𝑦𝑝) , (36)

where (𝑥𝑝, 𝑦𝑝) is the coordinate of the hit point.
Substituting (36) into (34), the generalized external force

𝐸𝑖𝑗(𝑡) can be computed as

𝐸𝑖𝑗 (𝑡) = −∬
𝑆𝑏

𝐹im (𝑡) 𝛿 (𝑥 − 𝑥𝑝) 𝛿 (𝑦 − 𝑦𝑝) 𝑓𝑥𝑖 (𝑥) 𝑓𝑦𝑗 (𝑦) 𝑑𝑠

= −𝐹im (𝑡) 𝑓𝑥𝑖 (𝑥𝑝) 𝑓𝑦𝑗 (𝑦𝑝) .

(37)

The numerical parameters for simulation in this paper
are given in Table 1 by referring to Endo et al. [36], and
the vertical displacements at points Z1–Z9 shown in Figure 2
were measured.

4.2. The Airplane Landing and Takeoff. A realistic situation is
simulated where an airplane landing or takeoff on a VLFS.
Here, the time-varying load is assumed to move with a
constant initial acceleration 𝛼0, and the position 𝜉(𝑡) of the
airplane and its velocity 𝑉(𝑡) are given by

𝜉 (𝑡) = 𝜉0 + 𝑉0𝑡 +
1

2
𝛼0𝑡

2
, 𝑉 (𝑡) = 𝑉0 + 𝛼0𝑡, (38)

where 𝜉0 and 𝑉0 are the initial position and velocity, respec-
tively. For simplicity, the load distribution is assumed to be

Drop point

Z1Z2Z3Z4Z5Z6Z7Z8Z9

3.80625m

Figure 2: The position of the measured points in the drop test.

axisymmetric about the center of themoving load (𝜉(𝑡), 0). In
the terms of the relationship between the moving Cartesian
coordinate system 𝑜 − 𝑥𝑦𝑧 and the polar coordinate system
𝑜−𝑟𝜃𝑧, the external pressure distribution𝑃𝐸 can be expressed
as

𝑃𝐸 (𝑥, 𝑦, 𝑡) = 𝐹ai (𝑡) ⋅ 𝑓 (𝑟) = 𝐹ai (𝑡) ⋅
1

𝑅2

𝐸

𝑒
−𝜋(𝑟/𝑅𝐸)

2

, (39)

where 𝑟 = √𝑥
2
+ 𝑦2, 𝑥 = 𝑥−𝜉(𝑡) and𝑅𝐸 denotes the effective

radius of the loading.
The total force 𝐹ai(𝑡) exerted by the landing or takeoff on

the VLFS can be given by the difference between the weight
𝑊 of the airplane and the lift force 𝐹𝐿(𝑡):

𝐹ai (𝑡) = 𝑊 − 𝐹𝐿 (𝑡) , (40)

𝐹𝐿 (𝑡) =
1

2
𝜌𝑎𝑉

2
(𝑡) 𝐴𝑊𝑎𝐿𝑒

𝑏𝐿𝑡, (41)

where the parameters 𝑎𝐿 and 𝑏𝐿 are given as constants, 𝜌𝑎 is
the density of air, and 𝐴𝑊 is the effective wing area of the
airplane.

Substituting (39) into (34), the generalized external force
𝐸𝑖𝑗(𝑡) can be computed as

𝐸𝑖𝑗 (𝑡) = −∬
𝑆𝑏

𝐹ai (𝑡)

𝑅2

𝐸

𝑒
−𝜋(𝑟/𝑅𝐸)

2

𝑓𝑥𝑖 (𝑥) 𝑓𝑦𝑗 (𝑦) 𝑑𝑠

= −
𝐹ai (𝑡)

𝑅2

𝐸

∫

3𝑅𝐸

−3𝑅𝐸

𝑒
−𝜋(𝑥/𝑅𝐸)

2

𝑓𝑥𝑖 (𝑥 + 𝜉 (𝑡)) 𝑑𝑠

× ∫

3𝑅𝐸

−3𝑅𝐸

𝑒
−𝜋(𝑦/𝑅𝐸)

2

𝑓𝑦𝑗 (𝑦) 𝑑𝑠.

(42)

The numerical data for simulation in this paper is pre-
pared as listed in Table 2 by referring to Kashiwagi [20].
The touch-down position in landing and leave-up position in
takeoff are shown in Figure 3, together with measured points
(Z1–Z9) for the vertical displacements. It is assumed to land
or take off in the following wave direction from the fore-end
of the runway.

5. Fast Algorithm

5.1. Interpolation-TabulationMethod. Accurate and fact com-
putation of the Green function and its derivations is impor-
tant for saving the CPU time and memory of the computer.
The interpolation-tabulation method is applied to the solu-
tions of 𝐹∞ and 𝐹 − 𝐹∞ in (28) as follows.
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Table 1: Main parameters of weight drop test.

Total length (m) Total width (m) Thickness (m) Bending rigidity (Nm) Poisson’s ratio Weight (N) Dropping height (m)
9.75 1.95 0.0163 8985.62 0.3 196 0.12

Table 2: Main parameters of landing/takeoff run.

Floating airport Airplane
Length (L) 5000m Weight (𝑊) 3867.08 kN
Width (B) 1000m Effective wing area (𝐴𝑊) 511.0m2

Draft (d) 5.0m Effective radius (𝑅𝐸) 10.0m
Bending rigidity (EI/B) 1.764 × 1011 Nm Initial position (𝜉0) −1000m

Initial speed (𝑉0)
Landing 69.35ms−1

Takeoff 0.0ms−1

Acceleration (𝛼0)
Landing −1.263ms−2

Takeoff 1.026ms−2

𝑎𝐿 in landing 2.61
𝑎𝐿 in takeoff 1.64 × 10−3

𝑏𝐿 in landing −0.212
𝑏𝐿 in takeoff 0.125

Starting point during 
landing run

Fore BackZ1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9

1000m

Figure 3: The plan view of VLFS during landing or takeoff.

The three variables 𝑋, 𝑉, 𝑇 of the function 𝐹∞ are
changed to two arguments 𝜏 and cos 𝜃, which are divided into
800 and 200 parts, respectively. The solutions for cos 𝜃 < 0.7

which are efficient in the context of Section 3.2 are described
by Beck and Liapis [37]; else the Filon integral scheme is
determined to calculate directly. During solving (15), the
bilinear interpolation scheme was applied to the effective
approximation of 𝐹∞ and its derivation.

However, the 𝐹 − 𝐹∞ function has three arguments 𝑉,
𝑋, and 𝑇. Here, the space nondimensional parameters 𝑉

and 𝑋 are restricted to the region (−1, 2) and (0, 20), and
the time nondimensional parameters 𝑇 lies in the interval
(0, 20). First seven 𝑋-𝑇 planes are adopted in 𝑉 direction.
Next, every 𝑋-𝑇 plane is divided into 40 parts in the 𝑋

and 𝑇 direction, respectively. The slowly varying function
𝐹−𝐹∞ and its derivations can be calculated by usingGaussian
integration; then the trilinear interpolation scheme is applied
to the effective approximation in (15).

5.2. Symmetry of Structure. With the discretization of the
constant boundary elements, (15) may be expressed as a form
of the linear equations

[𝐴] {Φ𝑆} = {𝐵} . (43)

Considering symmetry of the VLFS about 𝑥-𝑧 plane and
𝑦-𝑧 plane shown in Figure 4, the matrix [𝐴], vector {Φ𝑆} and
{𝐵}, may be divided as follows:

[𝐴] =
[
[
[

[

𝐴11 𝐴12 𝐴13 𝐴14

𝐴21 𝐴22 𝐴23 𝐴24

𝐴31 𝐴32 𝐴33 𝐴34

𝐴41 𝐴42 𝐴43 𝐴44

]
]
]

]

,

{{{{{{{{

{{{{{{{{

{

Φ
1

𝑆

Φ
2

𝑆

Φ
3

𝑆

Φ
4

𝑆

}}}}}}}}

}}}}}}}}

}

,

{{{

{{{

{

𝐵1
𝐵2
𝐵3
𝐵4

}}}

}}}

}

. (44)

The symmetric relationships for the matrix [𝐴] may be
formulated as

𝐴11 = 𝐴22 = 𝐴33 = 𝐴44,

𝐴12 = 𝐴21 = 𝐴34 = 𝐴43,

𝐴13 = 𝐴31 = 𝐴24 = 𝐴42,

𝐴14 = 𝐴41 = 𝐴23 = 𝐴32.

(45)

In order to reduce the dimensions of the matrix, the conver-
sions is obtained by taking

{Φ̂𝑆} = [𝐸] {Φ𝑆} , {𝐵} = [𝐸] {𝐵} , [𝐼] =
1

𝛽
[𝐸]

2
,

(46)

where the constant coefficient 𝛽 = 4 for two planes of
symmetry; the transition matrix [𝐸] is given by

[𝐸] =
[
[
[

[

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

]
]
]

]

. (47)
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Thus (43) can be simplified by substituting (46)

[𝐴] {Φ̂𝑆} = {𝐵} , (48)

where [𝐴] = (1/4)[𝐸][𝐴][𝐸] and the matrix [𝐴] is a
block-diagonal matrix whose only nonzero elements occur
in the square blocks centered about the principal diagonal,
according to the features of the matrices [𝐸] and [𝐴]. So the
linear equations in region 1 will be

[𝐴
(1)

] {Φ̂
(1)

𝑆
} = {𝐵

(1)
} ,

[𝐴
(1)

] = [𝐴11 + 𝐴12 + 𝐴13 + 𝐴14] ,

{Φ̂
(1)

𝑆
} = {Φ

1

𝑆
+ Φ

2

𝑆
+ Φ

3

𝑆
+ Φ

4

𝑆
} ,

{𝐵
(1)

} = {𝐵1 + 𝐵2 + 𝐵3 + 𝐵4} .

(49)

In region 2, we have

[𝐴
(2)

] {Φ̂
(2)

𝑆
} = {𝐵

(2)
} ,

[𝐴
(2)

] = [𝐴11 − 𝐴12 + 𝐴13 − 𝐴14] ,

{Φ̂
(2)

𝑆
} = {Φ

1

𝑆
− Φ

2

𝑆
+ Φ

3

𝑆
− Φ

4

𝑆
} ,

{𝐵
(2)

} = {𝐵1 − 𝐵2 + 𝐵3 − 𝐵4} .

(50)

In region 3, we have

[𝐴
(3)

] {Φ̂
(3)

𝑆
} = {𝐵

(3)
} ,

[𝐴
(3)

] = [𝐴11 + 𝐴12 − 𝐴13 − 𝐴14] ,

{Φ̂
(3)

𝑆
} = {Φ

1

𝑆
+ Φ

2

𝑆
− Φ

3

𝑆
− Φ

4

𝑆
} ,

{𝐵
(3)

} = {𝐵1 + 𝐵2 − 𝐵3 − 𝐵4} .

(51)

In region 4, we have

[𝐴
(4)

] {Φ̂
(4)

𝑆
} = {𝐵

(4)
} ,

[𝐴
(4)

] = [𝐴11 − 𝐴12 − 𝐴13 + 𝐴14] ,

{Φ̂
(4)

𝑆
} = {Φ

1

𝑆
− Φ

2

𝑆
− Φ

3

𝑆
+ Φ

4

𝑆
} ,

{𝐵
(4)

} = {𝐵1 − 𝐵2 − 𝐵3 + 𝐵4} .

(52)

6. Results and Discussion

6.1. Accuracy in the Interpolation-Tabulation Method. Before
starting numerical simulations, it is necessary to confirm
good performance in the computation of the time domain
free-surface Green functions and its spatial derivatives in
finite water depth.

In order to examine the validity of the interpolation-
tabulation method, computations of the nondimensional
functions 𝐹∞, 𝐹 − 𝐹∞, and their spatial derivatives are

Incident wave

y

x

Φ
4

S

Φ
3

S
Φ

2

S

Φ
1

S

Figure 4: Sketch of the district of symmetry.

performed for 𝑇 = 10, 𝑉 = 2 and are compared with
corresponding results obtained from Newman. The values
are shown in Figures 5 and 6. Obviously, the interpolation-
tabulation method can give reliable evaluations which are
smooth and in good agreement with Newman’s values.

6.2. Drop Test in Still Water. The numerical simulation of
the weight drop test is implemented, corresponding to the
experiments conducted by Endo et al. [36] and the numerical
results solved by Kashiwagi [19]. The pertinent information
for the test model is prepared as listed in Section 4.1.

Good convergence is considered for the numbers of
modes in the 𝑥-direction and 𝑦-direction, after referring to
the results of Kashiwagi [19], the number of modes in the 𝑥-
direction 𝑀 = 8 and in the 𝑦-direction 𝑁 = 3 is adopted in
this case.

The comparisons of the vertical deflection time series
at measured points are indicated in Figure 2 among the
present results; the indirect time domain solutions solved by
Kashiwagi [19] and experimental tests obtained by Endo et
al. [36] are given in Figure 7. It can be seen from this figure
that the degree of agreement for these methods is favorable.
And the deflections by the present method near the impact
point, such as Z1 and Z2, are closer to the measurements
than the numerical results solved by Kashiwagi [19].Thismay
be attributed to the difference in fluid pressure computation
between the direct domain method by considering free-
surface Green function and the indirect domain method by
using the convolution integral of frequency impulse function.

The deformed profiles of the VLFS during the mass drop
are shown in Figure 8. It is seen that the structural wave is
transmitted at the longitudinal centerline of the plate, and
the shape of the deformation is close to the current static
equilibrium configuration at 𝑡 = 1.85 s. The magnitude of
the vertical displacements is less than 1.0 cm. The vertical
displacements of the plate are very small when 𝑥 coordinate
value is less than 0 but the transient phenomena at the right
edge of the VLFS can be obviously seen at times 𝑡 = 0.21 s to
0.80 s.

6.3. Drop Test in Regular Wave. In the simulation of the time
step procedure, the load force at the right hand side of (30)
is divided into two stages. The regular wave comes first from
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Figure 5: Comparison of 𝐹∞, 𝐹∞𝑋, and 𝐹∞𝑉 by the interpolation-tabulation method with Newman.

the left side of the VLFS and then the weight drops later by
three cycles of the wave period.Thewave length is 1.0m, wave
period is 0.8 seconds, wave height is 1 cm, and incident angle
is 0 degrees.

The deformed profiles of the VLFS during the weight
drop are shown in Figure 9, where Figure 9(a) shows the
deflections in the regular wave condition without the mass
impact for 𝑡 = 0 s and the deflections in the early stage of
the drop test for 𝑡 = 0.21 and 0.41 s. The figure tells us that
the absolute values of vertical displacement at the fore-end
of the VLFS in regular wave are about 10 times the ones only
generated by the mass drop; however, the magnitudes at the
back-end are almost equivalent to the results induced by the
mass drop. This means the mass impact load should not be
overlooked as compared with the wave load. In other words,

the structural wave shape of the VLFS in wave condition is
changed when a huge mass falls off on the platform of the
VLFS.

6.4. Landing in the Still Water. As mentioned in Section 4.2,
the airplane lands at point Z3 and completes the landing run
in 54.9 s. The time histories of the vertical displacements at
measurement points Z1, Z4, Z5, Z7, Z8, and Z9 obtained from
the present method (direct time domain method) and the
indirect time domain method used by Kashiwagi [20] are
comparatively shown in Figure 10. The correlation between
the two numerical solutions is reasonable. It can be seen
that the magnitude of the deflections at measured points is
less than about 1.0 cm and is very small as compared with
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the length value of the runway though the airplane weight
is approximately up to 3900 kN. Then the time histories
of the vertical displacement are much smoother than the
results duringweight drop (see Figure 7) and no higher-order
deflections are found in time histories of the deflection for
the landing on the platform of the VLFS. It is primarily due
to the smooth increase of the landing loads (see (40) and
(41)). It is also interesting that the vertical displacement of
measured points Z7, Z8, and Z9 is not so large at 𝑡 = 55 s to
60 s but increases again after 𝑡 = 60 s.This can be attributed to
the radiation of structure waves which impinge the stopped
airplane.

Figure 11 shows the snapshots of the deflection along the
longitudinal centerline of the runway at different times, and
the corresponding positions of the airplane are expressed by

circles. It is found that the structural waves run after the
airplane at time less than 42 s, and then the waves catch up to
the airplane at about time 53 s because of the decrease of the
airplane speed. After overtaking, structural waves meet the
stopped airplane, partial waves are diffracted, and remainder
is transmitted.Thus, it is interesting to find that the deformed
profiles of the runway at time 𝑡 = 66 s are larger than those
of the time 𝑡 = 53 s (see Figure 10). Note that the airplane
seems to stay always at the bottom of sunken deflections of
the runway during the landing run.

6.5. Landing in Regular Wave. The interaction of incident
wave with the runway during landing is divided into two
stages. The regular wave comes first from the fore-end of
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the VLFS; after three cycles of the wave period, the airplane
touches down the runway in the following incident wave
direction. The wavelength is 650m (0.13 times of the runway
length), period 23.6 s, height 2.0m, and incident angle is 0
degrees.

The spatial profiles of the runway during the running are
shown together with the positions of the airplane in Figure 12.
It can be seen that the airplane runs faster than the structural
waves induced by the regular incident wave in the early stage
(at least up 30 s) and then the structure waves overtake the

airplane at the final stage of the run (after 𝑡 = 30 s). The
maximumvertical displacement in regularwave is 150 cmand
is about 150 times the one induced in the still water condition.
Thismeans that thewave load is dominant comparedwith the
landing load in the hydroelastic analysis of VLFS.

Looking at the history of the vertical displacement of
locations in Figure 13(a) and the corresponding path during
landing in Figure 13(b), it can be seen that the propagating
velocity of the structural wave generated by incident wave is
slower than the landing speed of airplane in the early stage (at
least up to 30 s); however, when the airplane slows down, the
deflections of the runway change suddenly in theirmagnitude
and length (20 s–40 s as shown in Figure 13(a)). At the final
stage of landing, speed of the airplane decreases to zero and
gets left behind by structural waves. During the landing of
airplane, the airplane meets two crests within 54.9 s. And
thus the vertical motion of the airplane depends mainly on
the relative velocity between the structural waves and the
airplane.

6.6. Takeoff in the Still Water. As the initial conditions for
takeoff, the velocity and acceleration of the airplane are set
to zero and constant, respectively. Before starting run, the
position of the airplane is assumed to be at the starting point
Z3 (−1000m).Then the airplane suddenly runs from the rest;
when time 𝑡 = 60.7 s, it completes the takeoff at position
𝑥 = 890m. Comparisons between the present method and
indirect time domain method used by Kashiwagi [20] are
given in Figure 14 for the time histories of vertical deflections
at measured points Z2, Z3, Z4, Z5, Z7, and Z9.The figure tells
us that the Z3 position has an initial deflection 0.49 cm,which
can be attributed to the static weight of the airplane. The two
independent solutions of the direct time domainmethod and
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Figure 9: Spatial profiles of the VLFS during the mass drop in regular wave conditions.

2.0

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

W
(c

m
) Z4

Z1

Z7

Z1: present numerical results
Z1: Kashiwagi’s numerical results
Z4: present numerical results
Z4: Kashiwagi’s numerical results
Z7: present numerical results
Z7: Kashiwagi’s numerical results

0 10 20 30 40 50 7060

t (s)

(a)

2.0

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

W
(c

m
)

Z5: present numerical results
Z5: Kashiwagi’s numerical results
Z8: present numerical results
Z8: Kashiwagi’s numerical results
Z9: present numerical results
Z9: Kashiwagi’s numerical results

0 10 20 30 40 50 7060

Z5 Z9

Z8

t (s)

(b)

Figure 10: Time histories of the vertical displacement subjected to landing of airplane.

the indirect time domain method correlate well with each
other.

The spatial profiles of the runway and the position
indicated with circles during the airplane running are shown
in Figure 15.The static displacement of the runway by solving
(30) can be seen at time 𝑡 = 0 s. Similar to the dynamic behav-
ior of the landing, the position of the airplane stay always the
bottom of sunken deflections of the runway, and the airplane

always runs faster than the structural waves generated during
the takeoff run.When theweight of airplane is equal to the lift
force in (41), the airplane completes this takeoff which runs
the distance from trough of static deflections to first peak. It
can be seen from these deformed profiles that the deflections
of the runway have small disturbance in early stage owing to
slowly moving of the airplane. As time elapses, the velocity of
the airplane and the perturbation of the runway also increase.
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Figure 11: Snapshots of the deflection subjected to landing of airplane.
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Figure 12: Spatial profiles of the deflection subjected to landing of airplane in regular wave conditions.

After completing its takeoff, the structural waves are close to
a steady equilibrium configuration, and move to the right at
a certain speed. The amplitude of the deflections appears at
time 𝑡 = 51 s and after time 𝑡 = 60.7 s for troughs and peaks,
respectively, and they both stay within 0.9 cm.

6.7. Takeoff in Regular Wave. Similar to the simulation of the
landing run, the regular wave comes first then the takeoff load
arrives later by three cycles of the wave period. The airplane
is assumed to takeoff in the following incident direction, and
thewave conditions are the same asmentioned in Section 6.5.

The spatial profiles of the runway during the takeoff and
the locations of the airplane along the longitudinal centerline
at different times are shown in Figure 16. In the takeoff, just
like the landing, the interaction of incident wave with the
runway is more dominant as compared with the takeoff load.
The figure tells us that themagnitude of the deflections which
are nearly the same as the elevation of the structural waves is
approximately 150 cm and is about 150 times the one induced
in the still water condition. At the beginning stage of the run,
the propagation velocity of structural waves is faster than the
speed of the airplane (at least up 29 s), and then the airplane
advances over a crest after 𝑡 = 52 s.
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Figure 13: (a) The vertical displacement of locations of airplane. (b) The path of the landing run.
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Figure 14: Time histories of the vertical displacement subjected to takeoff of airplane.

Figures 17(a)-17(b) shows the history of the vertical
displacement of position during run and the corresponding
path of airplane. Since it takes a considerable amount of time
for the airplane to move in the early stage, the fluctuation
of the deflections is almost the same as the beginning of the
structural wave induced by incident wave; however, when the
airplane gains speed, the deflections of the runway change
suddenly in their magnitude and length (20 s–60 s as shown
in Figure 17(a)). After the speed of the airplane is close to
and beyond the velocity of the structural wave, the airplane
moves together with the structural wave and then overtakes

the second crest at 𝑡 = 43 s. During the takeoff run of airplane,
the airplane meets two crests within 60.7 s, and the vertical
motion of the airplane dependsmainly on the relative velocity
between the structural waves and the airplane.

7. Conclusions

A powerful direct time domain modal expansion method
is applied to compute the transient behavior of a VLFS
subjected simultaneously to incident wave and external loads
including a huge mass drop and landing or takeoff load of
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Figure 15: Spatial profiles of the runway subjected to takeoff run.
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Figure 16: Spatial profiles of the deflection subjected to takeoff of airplane in regular wave conditions.

an aircraft.Thedeveloped time-domain-Kelvin-source-based
BEM solutions are carried out for the scatter wave problems,
in which the free surface Green functions and its partial
derivatives are rapidly and accurately evaluated by using the
bilinear and trilinear interpolation-tabulation scheme. The
assessed results of the auxiliary functions are generally in
good agreement with the rigorous solutions.

The computed results of the drop test show that, near the
impact region, the displacement histories by the presented
method are more consistent with measurements compared
with the ones by indirect domain method. For regular wave

conditions, the deformed profiles of the VLFS are changed
when the mass falls on the VLFS, especially referring to near
impact region. In the case of landing, the airplane runs faster
than the structural waves in the early stage; as the airplane
gradually stops moving, the generated waves catch up the
airplane and partial waves are transmitted because of the
presence of airplane. For the takeoff case, the runway has
an initial deflection due to the static weight of the airplane.
After the airplane leaves the runway, the generated waves
are simple due to no disturbance on the VLFS. In the still
water conditions, no higher order motion exists in the time
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Figure 17: (a) The vertical displacement of locations of airplane. (b) The path of the landing run.

histories of the vertical displacement and the locations of
the airplane stay always at the bottom of sunken deflections
of the runway during landing or takeoff run. However, in
the following wave conditions, the displacement magnitude
of the runway is greater than that only induced by airplane
though the airplane weight reaches about 3900 kN, and the
deflections of the runway due to the presence of airplane can
be ignored. The airplane can surf on a series of progressive
waves when the speed of airplane is closer to the one of
structural waves.
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