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Based on zero curvature equations from semidirect sums of Lie algebras, we construct tri-integrable couplings of the Giachetti-
Johnson (GJ) hierarchy of soliton equations and establish Hamiltonian structures of the resulting tri-integrable couplings by the
variational identity.

1. Introduction

Soliton theory is a power tool in expanding and describing
the nonlinear phenomena in the fields of nonlinear optics,
plasma physics, magnetic fluid, and so on. Searching for new
integrable systems is an interesting and significant event and
the subject of the integrable coupling is a new and important
direction in soliton theory. Recently, various examples of
bi-integrable couplings and tri-integrable couplings were
introduced, which bring us inspiring thoughts and ideas to
classify integrable systems with multicomponents and can
generate even more diverse recursion operators in block
matrix form.

For a given integrable system of evolution type [1]:

𝑢
𝑡
= 𝐾 (𝑢) = 𝐾 (𝑥, 𝑡, 𝑢, 𝑢

𝑥
, 𝑢
𝑥𝑥
, . . .) , (1)

where 𝑢 is a column vector of dependent variables. It has an
integrable coupling as follows:

𝑢
𝑡
= [

𝑢
𝑡

V
𝑡

] = 𝐾 (𝑢) = [

𝐾 (𝑢)

𝑆 (𝑢, V)] , (2)

where 𝑢 and V denote two column vectors of additional
dependent variables. The earliest paper on integrable cou-
plings obtained by Lie algebras and the Tu scheme is the
[2], which gave a direct method for establishing integrable
couplings and the integrable couplings of TD hierarchy.
Many papers have been dedicated to this topic [3–10]. And

there are other ways to construct integrable couplings such
as by using perturbations [11], enlarging spectral problems
[12], and creating new loop algebras [13]. Professor Yu,
especially, shows that the Kronecker product is an important
and effective method to construct the discrete integrable
couplings in [14] and presents a scheme for constructing real
nonlinear integrable couplings of continuous soliton hierar-
chy in [15]. In 2012, we know that bi-integrable couplingswere
introduced and developed in [16]. Recently, bi-integrable
couplings were further extended to tri-integrable couplings.
The following enlarged triangular integrable system:

𝑢
𝑡
=

[

[

[

[

𝑢
𝑡

𝑢
1,𝑡

𝑢
2,𝑡

𝑢
3,𝑡

]

]

]

]

= 𝐾 (𝑢) =

[

[

[

[

𝐾 (𝑢)

𝑆
1
(𝑢, 𝑢
1
)

𝑆
2
(𝑢, 𝑢
1
, 𝑢
2
)

𝑆
3
(𝑢, 𝑢
1
, 𝑢
2
, 𝑢
3
)

]

]

]

]

, (3)

is called a tri-integrable coupling of the system (1) in [17, 18].
If at least one of 𝑆

1
(𝑢, 𝑢
1
), 𝑆
2
(𝑢, 𝑢
1
, 𝑢
2
), and 𝑆

3
(𝑢, 𝑢
1
, 𝑢
2
, 𝑢
3
)

is nonlinear with respect to any subvectors 𝑢
1
, 𝑢
2
, and 𝑢

3
of

new dependent variables, we call this system (3) a nonlinear
integrable coupling.

To construct tri-integrable couplings, we need a class
of triangular 4 × 4 block matrices 𝑀(𝐴

1
, 𝐴
2
, 𝐴
3
, 𝐴
4
) with

𝐴
𝑖
(𝑖 = 1, . . . , 4) being square matrices of the same order.

Therefore the Lie algebra 𝑔 has a semidirect sum decomposi-
tion:

𝑔 = 𝑔 ⊕ 𝑔
𝑐
, (4)
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in which 𝑔 = {𝑀(𝐴
1
, 0, 0, 0) | 𝐴

1
-arbitrary}, 𝑔

𝑐
= {𝑀(0,

𝐴
2
, 𝐴
3
, 𝐴
4
) | 𝐴

2
, 𝐴
3
, 𝐴
4
-arbitrary}. 𝑔 is non-semisimple

because of 𝑔
𝑐
being a nontrivial ideal of 𝑔. The block

𝐴
1
corresponds to the original integrable system, and the

other three blocks 𝐴
2
, 𝐴
3
, and 𝐴

4
are used to generate

the supplementary vector fields 𝑆
1
, 𝑆
2
, and 𝑆

3
in (3) that

we are looking for. Such presented Lie algebras establish
a basis for generating nonlinear Hamiltonian tri-integrable
couplings, while many other existing Lie algebras lead to
linear Hamiltonian integrable couplings [5, 19–22].

Four classes of block matrices were introduced in [17]
and the Hamiltonian tri-integrable couplings of the AKNS
hierarchy were constructed based on one of the four trian-
gular block matrices. While in this paper, we would like to
construct tri-integrable couplings of the Giachetti-Johnson
(GJ) hierarchy based on other triangular block matrices as
follows:

𝑀(𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
) =

[

[

[

[

𝐴
1
𝐴
2
𝐴
3

𝐴
4

0 𝐴
1
𝛼𝐴
2
𝛽𝐴
2
+ 𝜇𝐴
3

0 0 𝐴
1

𝜇𝐴
2

0 0 0 𝐴
1

]

]

]

]

, (5)

where 𝐴
𝑖
(𝑖 = 1, . . . , 4) are square matrices of the same order

and 𝛼, 𝛽, 𝜇 are arbitrary constants. Moreover, we also hope
to generate the Hamiltonian structure of the resulting tri-
integrable couplings.

The rest of the paper is organized as follows. In the next
section, we first recall the GJ soliton hierarchy; then we
construct a kind of tri-integrable couplings of the Giachetti-
Johnson (GJ) soliton hierarchy and furnish Hamiltonian
structures for the resulting tri-integrable couplings by the
corresponding variational identity. Moreover, we will show
that the resulting tri-integrable couplings have a recursion
relation. In the final section, conclusions will be given.

2. Tri-Integrable Couplings of the
Giachetti-Johnson (GJ) Hierarchy

2.1. The Giachetti-Johnson (GJ) Hierarchy. We first recall the
GJ soliton hierarchy as follows [23]:

𝜙
𝑥
= 𝑈𝜙, 𝑈 = 𝑈 (𝑢, 𝜆) = [

−𝜆 + 𝑠 𝑞

𝑟 𝜆 − 𝑠
] ,

𝑢 = (

𝑞

𝑟

𝑠

) ,

(6)

where 𝜆 is the spectral parameter, 𝑞, 𝑟, and 𝑠 are three
dependent variables. Upon setting

𝑊 = [

𝑎 𝑏

𝑐 −𝑎
] = ∑

𝑖≥0

𝑊
𝑖
𝜆
−𝑖
= ∑

𝑖≥0

(

𝑎
𝑖
𝑏
𝑖

𝑐
𝑖
−𝑎
𝑖

)𝜆
−𝑖
, (7)

and choosing the initial data 𝑎
0
= −1, 𝑏

0
= 𝑐
0
= 0, the

stationary zero curvature equation𝑊
𝑥
= [𝑈,𝑊] generates

𝑏
𝑖+1
= −

1

2

𝑏
𝑖,𝑥
+ 𝑠𝑏
𝑖
− 𝑞𝑎
𝑖
,

𝑐
𝑖+1
=

1

2

𝑐
𝑖,𝑥
+ 𝑠𝑐
𝑖
− 𝑟𝑎
𝑖
,

𝑎
𝑖+1,𝑥

= −𝑟𝑏
𝑖+1
+ 𝑞𝑐
𝑖+1
,

𝑖 ≥ 0.

(8)

Using the compatibility conditions

𝑈
𝑡
𝑚

− 𝑉
𝑥

[𝑚]
+ [𝑈,𝑉

[𝑚]
] = 0, 𝑚 ≥ 0, (9)

with

𝑉
[𝑚]
= (𝜆
𝑚
𝑊)
+
+ Δ
𝑚

= ∑

𝑖≥0

[

𝑎
𝑖
𝑏
𝑖

𝑐
𝑖
−𝑎
𝑖

] 𝜆
𝑚−𝑖
+ [

𝑎
𝑚+1

0

0 −𝑎
𝑚+1

] ,

(10)

we have the GJ hierarchy of soliton equations:

𝑢
𝑡
𝑚

= (

𝑞

𝑟

𝑠

)

𝑡
𝑚

= 𝐾
𝑚
(𝑢) = (

2𝑞𝑎
𝑚+1

− 2𝑏
𝑚+1

−2𝑟𝑎
𝑚+1

+ 2𝑐
𝑚+1

𝑎
𝑚+1,𝑥

)

= 𝐽

𝛿𝐻
𝑚

𝛿𝑢

= 𝐽𝐿
𝑚
(

𝑟

𝑞

0

) , 𝑚 ≥ 0.

(11)

The Hamiltonian operator 𝐽, the recursion operator 𝐿, and
the Hamiltonian functionals in (11) are given by

𝐽 = (

0 −2 𝑞

2 0 −𝑟

−𝑞 𝑟 𝜕

) , 𝜕 =

𝜕

𝜕𝑥

, (12)

𝐿 =(

1

2

𝜕 + 𝑠 0 −

1

2

𝑟

0 −

1

2

𝜕 + 𝑠 −

1

2

𝑞

𝜕
−1
𝑞𝜕 + 2𝜕

−1
𝑞𝑠 𝜕
−1
𝑟𝜕 − 2𝜕

−1
𝑟𝑠 0

), (13)

𝐻
𝑚
= ∫

2𝑎
𝑚+2

𝑚 + 1

𝑑𝑥, 𝑚 ≥ 0. (14)

Note 𝐽𝐿 is not antisymmetric; therefore, the system (11) does
not possess bi-Hamiltonian structures (the method of the
verification is the same as the Appendix A of [24]) and is not
Liouville integrable.

2.2. Tri-Integrable Couplings. Based on the special non-semi-
simple Lie algebra 𝑔, we choose the enlarged spectral matrix

𝑈 = 𝑈 (𝑢, 𝜆) = 𝑀(𝑈,𝑈
1
, 𝑈
2
, 𝑈
3
) ∈ 𝑔,

𝑢= (𝑢
𝑇
, 𝑢
𝑇

1
, 𝑢
𝑇

2
, 𝑢
𝑇

3
)

𝑇

,

(15)
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with 𝑈 being defined as in (6) and

𝑈
1
= [

V
1

V
2

V
3
−V
1

] , 𝑈
2
= [

V
4

V
5

V
6
−V
4

] ,

𝑈
3
= [

V
7

V
8

V
9
−V
7

] ,

𝑢
1
= (V
2
, V
3
, V
1
)
𝑇

, 𝑢
2
= (V
5
, V
6
, V
4
)
𝑇

,

𝑢
3
= (V
8
, V
9
, V
7
)
𝑇

,

(16)

where V
𝑖
, 1 ≤ 𝑖 ≤ 9 are new dependent variables.

To solve the enlarged stationary zero curvature equation

𝑊
𝑥
= [𝑈,𝑊] , (17)

we take a solution of the following type:

𝑊 = 𝑊(𝑢, 𝜆) = 𝑀(𝑊,𝑊
1
,𝑊
2
,𝑊
3
) ∈ 𝑔, (18)

where𝑊 is defined by (7), and

𝑊
1
= 𝑊
1
(𝑢, 𝑢
1
, 𝜆) = [

𝑒 𝑓

𝑔 −𝑒
] = ∑

𝑖≥0

𝑊
1,𝑖
𝜆
−𝑖
,

𝑊
2
= 𝑊
2
(𝑢, 𝑢
1
, 𝑢
2
, 𝜆) = [

𝑒
󸀠
𝑓
󸀠

𝑔
󸀠
−𝑒
󸀠] = ∑

𝑖≥0

𝑊
2,𝑖
𝜆
−𝑖
,

𝑊
3
= 𝑊
3
(𝑢, 𝑢
1
, 𝑢
2
, 𝑢
3
, 𝜆) = [

𝑒
󸀠󸀠
𝑓
󸀠󸀠

𝑔
󸀠󸀠
−𝑒
󸀠󸀠] = ∑

𝑖≥0

𝑊
3,𝑖
𝜆
−𝑖
.

(19)

Then, from (17), we immediately get

𝑊
𝑥
= [𝑈,𝑊] ,

𝑊
1𝑥
= [𝑈,𝑊

1
] + [𝑈

1
,𝑊] ,

𝑊
2𝑥
= [𝑈,𝑊

2
] + [𝑈

2
,𝑊] + 𝛼 [𝑈

1
,𝑊
1
] ,

𝑊
3𝑥
= [𝑈,𝑊

3
] + [𝑈

3
,𝑊] + 𝛽 [𝑈

1
,𝑊
1
]

+ 𝜇 [𝑈
1
,𝑊
2
] + 𝜇 [𝑈

2
,𝑊
1
] ,

(20)

with the help of Maple, which leads to

𝑏
𝑥
= −2 (𝜆 − 𝑠) 𝑏 − 2𝑞𝑎,

𝑐
𝑥
= 2 (𝜆 − 𝑠) 𝑐 + 2𝑟𝑎,

𝑎
𝑥
= −𝑟𝑏 + 𝑞𝑐,

𝑓
𝑥
= −2 (𝜆 − 𝑠) 𝑓 − 2𝑞𝑒 − 2V

2
𝑎 + 2V

1
𝑏,

𝑔
𝑥
= 2 (𝜆 − 𝑠) 𝑔 + 2𝑟𝑒 + 2V

3
𝑎 − 2V

1
𝑐,

𝑒
𝑥
= −𝑟𝑓 + 𝑞𝑔 − V

3
𝑏 + V
2
𝑐,

𝑓
󸀠

𝑥
= 2𝛼V

1
𝑓 − 2𝛼V

2
𝑒 − 2 (𝜆 − 𝑠) 𝑓

󸀠

− 2𝑞𝑒
󸀠
− 2V
5
𝑎 + 2V

4
𝑏,

𝑔
󸀠

𝑥
= −2𝛼V

1
𝑔 + 2𝛼V

3
𝑒 + 2 (𝜆 − 𝑠) 𝑔

󸀠

+ 2𝑟𝑒
󸀠
+ 2V
6
𝑎 − 2V

4
𝑐,

𝑒
󸀠

𝑥
= −𝛼V

3
𝑓 + 𝛼V

2
𝑔 − 𝑟𝑓

󸀠
+ 𝑞𝑔
󸀠
− V
6
𝑏 + V
5
𝑐,

𝑓
󸀠󸀠

𝑥
= 2 (𝛽V

1
+ 𝜇V
4
) 𝑓 − 2 (𝛽V

2
+ 𝜇V
5
) 𝑒 + 2𝜇V

1
𝑓
󸀠

− 2𝜇V
2
𝑒
󸀠
− 2 (𝜆 − 𝑠) 𝑓

󸀠󸀠
− 2𝑞𝑒
󸀠󸀠
− 2V
8
𝑎 + 2V

7
𝑏,

𝑔
󸀠󸀠

𝑥
= −2 (𝛽V

1
+ 𝜇V
4
) 𝑔 + 2 (𝛽V

3
+ 𝜇V
6
) 𝑒 − 2𝜇V

1
𝑔
󸀠

+ 2𝜇V
3
𝑒
󸀠
+ 2 (𝜆 − 𝑠) 𝑔

󸀠󸀠
+ 2𝑟𝑒
󸀠󸀠
+ 2V
9
𝑎 − 2V

7
𝑐,

𝑒
󸀠󸀠

𝑥
= − (𝛽V

3
+ 𝜇V
6
) 𝑓 + (𝛽V

2
+ 𝜇V
5
) 𝑔 − 𝜇V

3
𝑓
󸀠

+ 𝜇V
2
𝑔
󸀠
− 𝑟𝑓
󸀠󸀠
+ 𝑞𝑔
󸀠󸀠
− V
9
𝑏 + V
8
𝑐.

(21)

The corresponding recursion relations are

𝑓
𝑖,𝑥
= −2𝑓

𝑖+1
+ 2𝑠𝑓
𝑖
− 2𝑞𝑒
𝑖
− 2V
2
𝑎
𝑖
+ 2V
1
𝑏
𝑖
,

𝑔
𝑖,𝑥
= 2𝑔
𝑖+1
− 2𝑠𝑔
𝑖
+ 2𝑟𝑒
𝑖
+ 2V
3
𝑎
𝑖
− 2V
1
𝑐
𝑖
,

𝑒
𝑖,𝑥
= −𝑟𝑓

𝑖
+ 𝑞𝑔
𝑖
− V
3
𝑏
𝑖
+ V
2
𝑐
𝑖
;

𝑓
󸀠

𝑖,𝑥
= 2𝛼V

1
𝑓
𝑖
− 2𝛼V

2
𝑒
𝑖
− 2𝑓
󸀠

𝑖+1
+ 2𝑠𝑓
󸀠

𝑖
− 2𝑞𝑒
󸀠

𝑖

− 2V
5
𝑎
𝑖
+ 2V
4
𝑏
𝑖
,

𝑔
󸀠

𝑖,𝑥
= −2𝛼V

1
𝑔
𝑖
+ 2𝛼V

3
𝑒
𝑖
+ 2𝑔
󸀠

𝑖+1
− 2𝑠𝑔
󸀠

𝑖
+ 2𝑟𝑒
󸀠

𝑖

+ 2V
6
𝑎
𝑖
− 2V
4
𝑐
𝑖
,

𝑒
󸀠

𝑖,𝑥
= −𝛼V

3
𝑓
𝑖
+ 𝛼V
2
𝑔
𝑖
− 𝑟𝑓
󸀠

𝑖
+ 𝑞𝑔
󸀠

𝑖
− V
6
𝑏
𝑖
+ V
5
𝑐
𝑖
;

𝑓
󸀠󸀠

𝑖,𝑥
= 2 (𝛽V

1
+ 𝜇V
4
) 𝑓
𝑖
− 2 (𝛽V

2
+ 𝜇V
5
) 𝑒
𝑖
+ 2𝜇V

1
𝑓
󸀠

𝑖

− 2𝜇V
2
𝑒
󸀠

𝑖
− 2𝑓
󸀠󸀠

𝑖+1
+ 2𝑠𝑓
󸀠󸀠

𝑖
− 2𝑞𝑒
󸀠󸀠

𝑖
− 2V
8
𝑎
𝑖
+ 2V
7
𝑏
𝑖
,

𝑔
󸀠󸀠

𝑖,𝑥
= −2 (𝛽V

1
+ 𝜇V
4
) 𝑔
𝑖
+ 2 (𝛽V

3
+ 𝜇V
6
) 𝑒
𝑖
− 2𝜇V

1
𝑔
󸀠

𝑖

+ 2𝜇V
3
𝑒
󸀠

𝑖
+ 2𝑔
󸀠󸀠

𝑖+1
− 2𝑠𝑔
󸀠󸀠

𝑖
+ 2𝑟𝑒
󸀠󸀠

𝑖
+ 2V
9
𝑎
𝑖
− 2V
7
𝑐
𝑖
,

𝑒
󸀠

𝑖,𝑥
= − (𝛽V

3
+ 𝜇V
6
) 𝑓
𝑖
+ (𝛽V
2
+ 𝜇V
5
) 𝑔
𝑖
− 𝜇V
3
𝑓
󸀠

𝑖
+ 𝜇V
2
𝑔
󸀠

𝑖

− 𝑟𝑓
󸀠󸀠

𝑖
+ 𝑞𝑔
󸀠󸀠

𝑖
− V
9
𝑏
𝑖
+ V
8
𝑐
𝑖
,

(22)
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together with (8), where 𝑖 ≥ 0. We select the initial data to be

𝑒
0
= 𝑒
󸀠

0
= 𝑒
󸀠󸀠

0
= −1, 𝑓

0
= 𝑔
0
= 𝑓
󸀠

0
= 𝑔
󸀠

0
= 𝑓
󸀠󸀠

0
= 𝑔
󸀠󸀠

0
= 0.

(23)

Then the recursion relations (22) uniquely determine the
sequence of𝑓

𝑖
, 𝑔
𝑖
, 𝑒
𝑖
,𝑓󸀠
𝑖
, 𝑔󸀠
𝑖
, 𝑒󸀠
𝑖
,𝑓󸀠󸀠
𝑖
, 𝑔󸀠󸀠
𝑖
, 𝑒󸀠󸀠
𝑖
, 𝑖 ≥ 1, recursively. It

is direct to compute the first two sets of functions by Maple:

𝑏
1
= 𝑞, 𝑐

1
= 𝑟, 𝑎

1
= 0;

𝑏
2
= −

1

2

𝑞
𝑥
+ 𝑠𝑞, 𝑐

2
=

1

2

𝑟
𝑥
+ 𝑠𝑟, 𝑎

2
=

1

2

𝑞𝑟;

𝑓
1
= 𝑞 + V

2
, 𝑔

1
= 𝑟 + V

3
, 𝑒

1
= 0;

𝑓
2
= −

1

2

(𝑞 + V
2
)
𝑥
+ 𝑠 (𝑞 + V

3
) + V
1
𝑞,

𝑔
2
=

1

2

(𝑟 + V
3
)
𝑥
+ 𝑠 (𝑟 + V

3
) + V
1
𝑟,

𝑒
2
=

1

2

[(𝑟 + V
3
) 𝑞 + 𝑟V

2
] ;

𝑓
󸀠

1
= 𝑞 + 𝛼V

2
+ V
5
, 𝑔

󸀠

1
= 𝑟 + 𝛼V

3
+ V
6
, 𝑒

󸀠

1
= 0;

𝑓
󸀠

2
= −

1

2

(𝑞 + 𝛼V
2
+ V
5
)
𝑥
+ 𝛼V
1
(𝑞 + V

2
)

+ 𝑠 (𝑞 + 𝛼V
2
+ V
5
) + V
4
𝑞,

𝑔
󸀠

2
=

1

2

(𝑟 + 𝛼V
3
+ V
6
)
𝑥
+ 𝛼V
1
(𝑟 + V

3
)

+ 𝑠 (𝑟 + 𝛼V
3
+ V
6
) + V
4
𝑟,

𝑒
󸀠

2
=

1

2

[𝑟 (𝑞 + 𝛼V
2
+ V
5
) + (𝛼V

3
+ V
6
) 𝑞 + 𝛼V

2
V
3
] ;

𝑓
󸀠󸀠

1
= (𝛽 + 𝜇) V

2
+ 𝜇V
5
+ V
8
+ 𝑞,

𝑔
󸀠󸀠

1
= (𝛽 + 𝜇) V

3
+ 𝜇V
6
+ V
9
+ 𝑟, 𝑒

󸀠󸀠

1
= 0;

𝑓
󸀠󸀠

2
= −

1

2

[(𝛽 + 𝜇) V
2
+ 𝜇V
5
+ V
8
+ 𝑞]
𝑥

+ (𝛽V
1
+ 𝜇V
4
) (𝑞 + V

2
) + 𝜇V

1
(𝑞 + 𝛼V

2
+ V
5
)

+ 𝑠 [(𝛽 + 𝜇) V
2
+ 𝜇V
5
+ V
8
+ 𝑞] + V

7
𝑞,

𝑔
󸀠󸀠

2
=

1

2

[(𝛽 + 𝜇) V
3
+ 𝜇V
6
+ V
9
+ 𝑟]
𝑥

+ (𝛽V
1
+ 𝜇V
4
) (𝑟 + V

3
) + 𝜇V

1
(𝑟 + 𝛼V

3
+ V
6
)

+ 𝑠 [(𝛽 + 𝜇) V
3
+ 𝜇V
6
+ V
9
+ 𝑟] + V

7
𝑟,

𝑒
󸀠󸀠

2
=

1

2

{𝑞 [(𝛽 + 𝜇) V
3
+ 𝜇V
6
+ V
9
+ 𝑟]

+ 𝑟 [(𝛽 + 𝜇) V
2
+ 𝜇V
5
+ V
8
]

+ (𝛽 + 𝛼𝜇) V
2
V
3
+ 𝜇 (V

2
V
6
+ V
3
V
5
)} .

(24)

For each integer 𝑚 ≥ 0, let us further introduce the
enlarged Lax matrices:

𝑉

[𝑚]

= 𝑀(𝑉
[𝑚]
, 𝑉
[𝑚]

1
, 𝑉
[𝑚]

2
, 𝑉
[𝑚]

3
) ∈ 𝑔, (25)

with 𝑉[𝑚] being defined as in (10), and

𝑉
[𝑚]

𝑖
= (𝜆
𝑚
𝑊
𝑖
)
+
+ Δ
𝑚𝑖
, 𝑖 = 1, 2, 3, (26)

in which

Δ
𝑚1
= [

𝑒
𝑚+1

0

0 −𝑒
𝑚+1

] , Δ
𝑚2
= [

𝑒
󸀠

𝑚+1
0

0 −𝑒
󸀠

𝑚+1

] ,

Δ
𝑚3
= [

𝑒
󸀠󸀠

𝑚+1
0

0 −𝑒
󸀠󸀠

𝑚+1

] .

(27)

Then the enlarged zero curvature equation

𝑈
𝑡
𝑚

− 𝑉

[𝑚]

𝑥
+ [𝑈,𝑉

[𝑚]

] = 0, (28)

generates

𝑈
1,𝑡
𝑚

− 𝑉
[𝑚]

1,𝑥
+ [𝑈,𝑉

[𝑚]

1
] + [𝑈

1
, 𝑉
[𝑚]
] = 0,

𝑈
2,𝑡
𝑚

− 𝑉
[𝑚]

2,𝑥
+ [𝑈,𝑉

[𝑚]

2
] + [𝑈

2
, 𝑉
[𝑚]
] + 𝛼 [𝑈

1
, 𝑉
[𝑚]

1
] = 0,

𝑈
3,𝑡
𝑚

− 𝑉
[𝑚]

3,𝑥
+ [𝑈,𝑉

[𝑚]

3
] + [𝑈

3
, 𝑉
[𝑚]
] + 𝛽 [𝑈

1
, 𝑉
[𝑚]

1
]

+ 𝜇 [𝑈
1
, 𝑉
[𝑚]

2
] + 𝜇 [𝑈

2
, 𝑉
[𝑚]

1
] = 0,

(29)

together with (9). This presents the supplementary systems:

V
𝑡
𝑚

= 𝑆
𝑚
(𝑢) =

[

[

𝑆
1,𝑚
(𝑢, 𝑢
1
)

𝑆
2,𝑚
(𝑢, 𝑢
1
, 𝑢
2
)

𝑆
3,𝑚
(𝑢, 𝑢
1
, 𝑢
2
, 𝑢
3
)

]

]

,

V = (V
2
, V
3
, V
1
, V
5
, V
6
, V
4
, V
8
, V
9
, V
7
)
𝑇

, 𝑚 ≥ 0,

(30)

where

𝑆
1,𝑚
(𝑢, 𝑢
1
) =

[

[

[

[

[

−2𝑓
𝑚+1

+ 2𝑞𝑒
𝑚+1

+ 2V
2
𝑎
𝑚+1

2𝑔
𝑚+1

− 2𝑟𝑒
𝑚+1

− 2V
3
𝑎
𝑚+1

𝑒
𝑚+1,𝑥

]

]

]

]

]

, (31)

𝑆
2,𝑚
(𝑢, 𝑢
1
, 𝑢
2
)

=

[

[

[

[

[

[

−2𝑓
󸀠

𝑚+1
+ 2𝑞𝑒
󸀠

𝑚+1
+ 2𝛼V

2
𝑒
𝑚+1

+ 2V
5
𝑎
𝑚+1

2𝑔
󸀠

𝑚+1
− 2𝑟𝑒
󸀠

𝑚+1
− 2𝛼V

3
𝑒
𝑚+1

− 2V
6
𝑎
𝑚+1

𝑒
󸀠

𝑚+1,𝑥

]

]

]

]

]

]

,

(32)

𝑆
3,𝑚
(𝑢, 𝑢
1
, 𝑢
2
, 𝑢
3
)

=

[

[

[

[

[

[

[

[

[

[

−2𝑓
󸀠󸀠

𝑚+1
+ 2𝑞𝑒
󸀠󸀠

𝑚+1
+ 2𝜇V

2
𝑒
󸀠

𝑚+1

+2 (𝛽V
2
+ 𝜇V
5
) 𝑒
𝑚+1

+ 2V
8
𝑎
𝑚+1

2𝑔
󸀠󸀠

𝑚+1
− 2𝑟𝑒
󸀠󸀠

𝑚+1
− 2𝜇V

3
𝑒
󸀠

𝑚+1

−2 (𝛽V
3
+ 𝜇V
6
) 𝑒
𝑚+1

− 2V
9
𝑎
𝑚+1

𝑒
󸀠󸀠

𝑚+1,𝑥

]

]

]

]

]

]

]

]

]

]

.

(33)
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In this way, the hierarchy from enlarged zero curvature
equations can be written as

𝑢
𝑡
𝑚

= 𝐾
𝑚
(𝑢)

= (𝑞
𝑡
𝑚

, 𝑟
𝑡
𝑚

, 𝑠
𝑡
𝑚

, V
2,𝑡
𝑚

, V
3,𝑡
𝑚

, V
1,𝑡
𝑚

, V
5,𝑡
𝑚

, V
6,𝑡
𝑚

,

V
4,𝑡
𝑚

, V
8,𝑡
𝑚

, V
9,𝑡
𝑚

, V
7,𝑡
𝑚

)

𝑇

=

[

[

[

[

𝐾
𝑚
(𝑢)

𝑆
1,𝑚
(𝑢, 𝑢
1
)

𝑆
2,𝑚
(𝑢, 𝑢
1
, 𝑢
2
)

𝑆
3,𝑚
(𝑢, 𝑢
1
, 𝑢
2
, 𝑢
3
)

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

2𝑞𝑎
𝑚+1

− 2𝑏
𝑚+1

−2𝑟𝑎
𝑚+1

+ 2𝑐
𝑚+1

𝑎
𝑚+1,𝑥

−2𝑓
𝑚+1

+ 2𝑞𝑒
𝑚+1

+ 2V
2
𝑎
𝑚+1

2𝑔
𝑚+1

− 2𝑟𝑒
𝑚+1

− 2V
3
𝑎
𝑚+1

𝑒
𝑚+1,𝑥

−2𝑓
󸀠

𝑚+1
+ 2𝑞𝑒
󸀠

𝑚+1
+ 2𝛼V

2
𝑒
𝑚+1

+ 2V
5
𝑎
𝑚+1

2𝑔
󸀠

𝑚+1
− 2𝑟𝑒
󸀠

𝑚+1
− 2𝛼V

3
𝑒
𝑚+1

− 2V
6
𝑎
𝑚+1

𝑒
󸀠

𝑚+1,𝑥

−2𝑓
󸀠󸀠

𝑚+1
+ 2𝑞𝑒
󸀠󸀠

𝑚+1
+ 2𝜇V

2
𝑒
󸀠

𝑚+1

+2 (𝛽V
2
+ 𝜇V
5
) 𝑒
𝑚+1

+ 2V
8
𝑎
𝑚+1

2𝑔
󸀠󸀠

𝑚+1
− 2𝑟𝑒
󸀠󸀠

𝑚+1
− 2𝜇V

3
𝑒
󸀠

𝑚+1

−2 (𝛽V
3
+ 𝜇V
6
) 𝑒
𝑚+1

− 2V
9
𝑎
𝑚+1

𝑒
󸀠󸀠

𝑚+1,𝑥

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(34)

for the given hierarchy (11).
Obviously, taking V

𝑖
= 0 (𝑖 = 1, . . . , 9), the system (34)

reduces to the system (11). Therefore, the system (34) is a tri-
integrable coupling of the system (11).

2.3. Hamiltonian Structures. As we all know, when an inte-
grable system is generated, one of our primary tasks is to
construct Hamiltonian structures of the resulting integrable
system. In this subsection, we will generate Hamiltonian
structures for the tri-integrable couplings (34) by applying the
associated variational identity [25]:

𝛿

𝛿𝑢

∫⟨

𝜕𝑈

𝜕𝜆

,𝑊⟩𝑑𝑥 = 𝜆
−𝛾 𝜕

𝜕𝜆

𝜆
𝛾
⟨

𝜕𝑈

𝜕𝑢

,𝑊⟩ . (35)

For the sake of convenience, we transform the Lie algebra 𝑔
into a vector form by the mapping:

𝛿 : 𝑔 󳨀→ 𝑅
12
, 𝐴 󳨃󳨀→ (𝑎

1
, . . . , 𝑎

12
)
𝑇

,

𝐴 = 𝑀(𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
) ∈ 𝑔,

𝐴
𝑖
= [

𝑎
3𝑖−2

𝑎
3𝑖−1

𝑎
3𝑖
−𝑎
3𝑖−2

] , 1 ≤ 𝑖 ≤ 4.

(36)

The mapping 𝛿 induces a Lie algebraic structure and the
commutator [⋅, ⋅] on 𝑅12 reads

[𝑎, 𝑏]
𝑇
= 𝑎
𝑇
𝑅 (𝑏) , 𝑎 = (𝑎

1
, . . . , 𝑎

12
)
𝑇

,

𝑏 = (𝑏
1
, . . . , 𝑏

12
)
𝑇

∈ 𝑅
12
,

(37)

where
𝑅 (𝑏) = 𝑀(𝑅

1
, 𝑅
2
, 𝑅
3
, 𝑅
4
) ,

𝑅
𝑖
=
[

[

0 2𝑏
3𝑖−1

−2𝑏
3𝑖

𝑏
3𝑖

−2𝑏
3𝑖−2

0

−𝑏
3𝑖−1

0 2𝑏
3𝑖−2

]

]

, 1 ≤ 𝑖 ≤ 4.

(38)

A bilinear formon𝑅12 can be defined by ⟨𝑎, 𝑏⟩ = 𝑎𝑇𝐹𝑏, where
𝐹 is a constantmatrix.The symmetric property ⟨𝑎, 𝑏⟩ = ⟨𝑏, 𝑎⟩
and the Lie product ⟨𝑎, [𝑏, 𝑐]⟩ = ⟨[𝑎, 𝑏], 𝑐⟩mean that 𝐹𝑇 = 𝐹
and 𝐹(𝑅(𝑏))𝑇 = −𝑅(𝑏)𝐹 for all 𝑏 ∈ 𝑅12. This matrix equation
leads to a linear system of equations on the elements of 𝐹.
Solving the resulting system by Maple yields

𝐹 =

[

[

[

[

𝜂
1

𝜂
2

𝜂
3
𝜂
4

𝜂
2
𝛼𝜂
3
+ 𝛽𝜂
4
𝜇𝜂
4
0

𝜂
3

𝜇𝜂
4

0 0

𝜂
4

0 0 0

]

]

]

]

⊗
[

[

2 0 0

0 0 1

0 1 0

]

]

, (39)

where 𝜂
𝑖
, 1 ≤ 𝑖 ≤ 4, are arbitrary constants. Therefore, a

bilinear form on the semidirect sum 𝑔 of Lie algebras can be
determined by

⟨𝐴, 𝐵⟩
𝑔
= ⟨𝛿 (𝐴) , 𝛿 (𝐵)⟩

𝑅
12

= (𝑎
1
, 𝑎
2
, . . . , 𝑎

12
) 𝐹(𝑏
1
, 𝑏
2
, . . . , 𝑏

12
)
𝑇

,

(40)

with 𝐴, 𝐵 ∈ 𝑔. It is easy to compute det(𝐹) = 16𝜂
12

4
𝜇
6;

obviously, when 𝜂
4
and 𝜇 are nonzero constants, the bilinear

form (40) is nondegenerate. But 𝜂
1
, 𝜂
2
, 𝜂
3
can be arbitrary

constants. Simply, we take 𝜂
1
= 𝜂
2
= 𝜂
3
= 0; therefore, to

apply the variational identity (35), we compute that

⟨𝑊,

𝜕𝑈

𝜕𝜆

⟩ = −2𝑒
󸀠󸀠
𝜂
4
,

⟨𝑊,

𝜕𝑈

𝜕𝑢

⟩

= (𝑔
󸀠󸀠
𝜂
4
, 𝑓
󸀠󸀠
𝜂
4
, 2𝑒
󸀠󸀠
𝜂
4
, (𝛽𝑔 + 𝜇𝑔

󸀠
) 𝜂
4
, (𝛽𝑓 + 𝜇𝑓

󸀠
) 𝜂
4
,

2 (𝛽𝑒 + 𝜇𝑒
󸀠
) 𝜂
4
, 𝜇𝑔𝜂
4
, 𝜇𝑓𝜂
4
, 2𝜇𝑒𝜂

4
, 𝑐𝜂
4
, 𝑏𝜂
4
, 2𝑎𝜂
4
)

𝑇

,

𝛾 = −

𝜆

2

𝑑

𝑑𝜆

ln 󵄨󵄨󵄨󵄨
󵄨
⟨𝑊,𝑊⟩

󵄨
󵄨
󵄨
󵄨
󵄨
= 0.

(41)

Thus by (35), we obtain

𝛿

𝛿𝑢

∫

2𝑒
󸀠󸀠

𝑚+1
𝜂
4

𝑚

𝑑𝑥

= (𝑔
󸀠󸀠

𝑚
𝜂
4
, 𝑓
󸀠󸀠

𝑚
𝜂
4
, 2𝑒
󸀠󸀠

𝑚
𝜂
4
, (𝛽𝑔
𝑚
+ 𝜇𝑔
󸀠

𝑚
) 𝜂
4
, (𝛽𝑓
𝑚
+ 𝜇𝑓
󸀠

𝑚
) 𝜂
4
,

2 (𝛽𝑒
𝑚
+ 𝜇𝑒
󸀠

𝑚
) 𝜂
4
, 𝜇𝑔
𝑚
𝜂
4
, 𝜇𝑓
𝑚
𝜂
4
,

2𝜇𝑒
𝑚
𝜂
4
, 𝑐
𝑚
𝜂
4
, 𝑏
𝑚
𝜂
4
, 2𝑎
𝑚
𝜂
4
)
𝑇

.

(42)

Therefore, the tri-integrable couplings of the GJ hierarchy
in (34) possess the following Hamiltonian structures:

𝑢
𝑡
𝑚

= 𝐾
𝑚
(𝑢) = 𝐽

𝛿𝐻
𝑚

𝛿𝑢

, 𝑚 ≥ 0, (43)
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where the Hamiltonian operator 𝐽 is given by

𝐽 =

[

[

[

[

[

[

[

[

[

[

[

0 0 0 1

𝜂
4

𝐽

0 0 1

𝜇𝜂
4

𝐽 𝐽
1

0 1

𝜇𝜂
4

𝐽 𝐽
2

𝐽
3

1

𝜂
4

𝐽 𝐽
1

𝐽
3

𝐽
4

]

]

]

]

]

]

]

]

]

]

]

, (44)

with 𝐽 being the same as (12), and

𝐽
1
=

1

𝜂
4

[

[

0 0 V
2

0 0 −V
3

−V
2
V
3
0

]

]

,

𝐽
2
=

1

𝜇
2
𝜂
4

[

[

0 2𝛽 𝛼𝜇V
2
− 𝛽𝑞

−2𝛽 0 − (𝛼𝜇V
3
− 𝛽𝑟)

− (𝛼𝜇V
2
− 𝛽𝑞) 𝛼𝜇V

3
− 𝛽𝑟 −𝛽𝜕

]

]

,

𝐽
3
=

1

𝜂
4

[

[

0 0 V
5

0 0 −V
6

−V
5
V
6
0

]

]

,

𝐽
4
=

1

𝜂
4

[

[

0 0 V
8

0 0 −V
9

−V
8
V
9
0

]

]

,

(45)

and the Hamiltonian functionals are determined by

𝐻
𝑚
= ∫

2𝑒
󸀠󸀠

𝑚+2
𝜂
4

𝑚 + 1

𝑑
𝑥
, 𝑚 ≥ 0. (46)

The hierarchy (43) can be rewritten as

𝑢
𝑡
𝑚

= 𝐾
𝑚
= 𝐽

𝛿𝐻
𝑚

𝛿𝑢

= 𝐽 𝐿

𝛿𝐻
𝑚−1

𝛿𝑢

= 𝐽 𝐿

𝑚

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[(𝛽 + 𝜇) V
3
+ 𝜇V
6
+ V
9
+ 𝑟] 𝜂
4

[(𝛽 + 𝜇) V
2
+ 𝜇V
5
+ V
8
+ 𝑞] 𝜂

4

0

[𝛽 (𝑟 + V
3
) + 𝜇 (𝑟 + 𝛼V

3
+ V
6
)] 𝜂
4

[𝛽 (𝑞 + V
2
) + 𝜇 (𝑞 + 𝛼V

2
+ V
5
)] 𝜂
4

0

𝜇 (𝑟 + V
3
) 𝜂
4

𝜇 (𝑞 + V
2
) 𝜂
4

0

𝑟𝜂
4

𝑞𝜂
4

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, 𝑚 ≥ 1,

(47)

where the recursion operator 𝐿 is given by

𝐿 =

[

[

[

[

𝐿 𝐿
1
𝐿
2

𝐿
3

0 𝐿 𝛼𝐿
1
𝛽𝐿
1
+ 𝜇𝐿
2

0 0 𝐿 𝜇𝐿
1

0 0 0 𝐿

]

]

]

]

, (48)

with 𝐿 being the same as (13), and

𝐿
1
=

[

[

[

[

[

[

[

V
1

0 −

1

2

V
3

0 V
1

−

1

2

V
2

2𝜕
−1
(𝑞V
1
+ V
2
𝑠) + 𝜕

−1V
2
𝜕 −2𝜕

−1
(𝑠V
3
+ 𝑟V
1
) + 𝜕
−1V
3
𝜕 0

]

]

]

]

]

]

]

,

𝐿
2
=

[

[

[

[

[

[

[

V
4

0 −

1

2

V
6

0 V
4

−

1

2

V
5

2𝜕
−1
(𝛼V
1
V
2
+ 𝑞V
4
+ 𝑠V
5
) + 𝜕
−1V
5
𝜕 −2𝜕

−1
(𝛼V
1
V
3
+ 𝑟V
4
+ 𝑠V
6
) + 𝜕
−1V
6
𝜕 0

]

]

]

]

]

]

]

,

𝐿
3
=

[

[

[

[

[

[

V
7

0 −

1

2

V
9

0 V
7
−

1

2

V
8

𝐿
3,1
𝐿
3,2

0

]

]

]

]

]

]

,

(49)

with

𝐿
3,1
= 2𝜕
−1
[V
1
(𝛽V
2
+ 𝜇V
5
) + 𝜇V

2
V
4
+ 𝑞V
7
+ 𝑠V
8
] + 𝜕
−1V
8
𝜕,

𝐿
3,2
= −2𝜕

−1
[V
1
(𝛽V
3
+ 𝜇V
6
) + 𝜇V

3
V
4
+ 𝑟V
7
+ 𝑠V
9
] + 𝜕
−1V
9
𝜕.

(50)

Therefore, the hierarchy (34) possesses a recursion relation:
𝐾
𝑚+1

= Φ𝐾
𝑚
, 𝑚 ≥ 0, (51)

where Φ = 𝐽 𝐿 𝐽−1. But 𝐽 𝐿 is not antisymmetric; therefore,
the system (11) does not have bi-Hamiltonian structures
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(the way of the verification is the same as the Appendix A
in [24]) and is not Liouville integrable.

3. Conclusions

In this paper, tri-integrable couplings for the Giachetti-
Johnson hierarchy of continuous soliton equations were
generated by using semidirect sums of Lie algebras. More-
over, we established their Hamiltonian structures through
the variational identities. Clearly, mathematical structures
behind integrable couplings are indeed rich and interesting,
though complicated. It is worthy to mention that the method
proposed in this paper can also be applied to other soliton
hierarchy.

Note that we can generate more diverse tri-integrable
couplings because the enlarged spectral matrix 𝑈 has more
other forms. For instance, we can specify it in either one of
the following forms:

𝑈 =

[

[

[

[

𝑈 𝑈
1

𝑈
2

𝑈
3

0 𝑈 𝛼𝑈
1
+ 𝛽𝑈
3

0
0 0 𝑈 0
0 0 0 𝑈

]

]

]

]

,

𝑈 =

[

[

[

[

𝑈 𝑈
1
𝑈
2

𝑈
3

0 𝑈 0 𝛼𝑈
1
+ 𝛽𝑈
2

0 0 𝑈 𝜁𝑈
1
+ 𝜇𝑈
2

0 0 0 𝑈

]

]

]

]

,

(52)

which were introduced in [17].
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