
Research Article
Reverses of the Jensen-Type Inequalities for Signed Measures

Rozarija JakšiT, Josip PeIariT, and Mirna RodiT LipanoviT

Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
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In this paper we derive refinements of the Jensen type inequalities in the case of real Stieltjes measure 𝑑𝜆, not necessarily positive,
which are generalizations of Jensen’s inequality and its reverses for positive measures. Furthermore, we investigate the exponential
and logarithmic convexity of the difference between the left-hand and the right-hand side of these inequalities and give several
examples of the families of functions for which the obtained results can be applied. The outcome is a new class of Cauchy-type
means.

1. Introduction

The authors in [1] gave some conditions on the real Stieltjes
measure 𝑑𝜆, not necessarily positive, under which the Jensen
inequality and the converse of the Jensen inequality hold for
continuous convex function 𝜑. These results are derived by
using the Green function 𝐺 defined on [𝛼, 𝛽] × [𝛼, 𝛽] by

𝐺 (𝑡, 𝑠) =

{{{{

{{{{

{

(𝑡 − 𝛽) (𝑠 − 𝛼)

𝛽 − 𝛼
for 𝛼 ≤ 𝑠 ≤ 𝑡,

(𝑠 − 𝛽) (𝑡 − 𝛼)

𝛽 − 𝛼
for 𝑡 ≤ 𝑠 ≤ 𝛽.

(1)

The function𝐺 is convex and continuous with respect to both
𝑠 and 𝑡.

Several interesting results concerning the Jensen type
inequalities have been derived by means of the function
𝐺. The first one, which is stated in the following theorem,
gives the conditions on the real Stieltjes measure 𝑑𝜆, not
necessarily positive, under which the Jensen inequality holds
for continuous convex function 𝜑.

Theorem 1 (see [1]). Let 𝑔 : [𝑎, 𝑏] → R be continuous
function and [𝛼, 𝛽] interval such that the image of 𝑔 is a
subset of [𝛼, 𝛽]. Let 𝜆 : [𝑎, 𝑏] → R be continuous function
or the function of bounded variation such that 𝜆(𝑎) ̸= 𝜆(𝑏)

and ∫
𝑏

𝑎
𝑔(𝑥)𝑑𝜆(𝑥)/ ∫

𝑏

𝑎
𝑑𝜆(𝑥) ∈ [𝛼, 𝛽]. Then the following two

statements are equivalent.

(1) For every continuous convex function 𝜑 : [𝛼, 𝛽] → R

𝜑(
∫
𝑏

𝑎
𝑔 (𝑥) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

) ≤
∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

(2)

holds.
(2) For all 𝑠 ∈ [𝛼, 𝛽]

𝐺(
∫
𝑏

𝑎
𝑔 (𝑥) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

, 𝑠) ≤
∫
𝑏

𝑎
𝐺 (𝑔 (𝑥) , 𝑠) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

(3)

holds, where the function 𝐺 : [𝛼, 𝛽] × [𝛼, 𝛽] → R is
defined in (1).

Furthermore, the statements (1) and (2) are also equivalent if
we change the sign of inequality in both (2) and (3). Also note
that for every continuous concave function 𝜑 : [𝛼, 𝛽] → R the
inequality (2) is reversed.

Remark 2. Note that in the case of positive measure 𝑑𝜆 we
get some well known results. If the function 𝜆 is increasing
and bounded with 𝜆(𝑎) ̸= 𝜆(𝑏), then inequality (2) becomes
Jensen’s integral inequality. On the other hand, if the function
𝑔 is continuous andmonotonic, and 𝜆 is either continuous or
of bounded variation, satisfying

𝜆 (𝑎) ≤ 𝜆 (𝑥) ≤ 𝜆 (𝑏) , ∀𝑥 ∈ [𝑎, 𝑏] , 𝜆 (𝑎) < 𝜆 (𝑏) , (4)
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then inequality (2) becomes the Jensen-Steffensen inequality
given by Boas in [2] (see also [3], page 59). Several other
theorems concerning the inequality (2) or its reverse can be
found in [3].

Similar results have also been derived for the converse of
the Jensen inequality. The following theorem from [1] gives
the conditions on the real Stieltjesmeasure𝑑𝜆, not necessarily
positive such that 𝜆(𝑎) ̸= 𝜆(𝑏), under which the converse of
the Jensen inequality holds for continuous convex function𝜑.

Theorem 3 (see [1]). Let 𝑔 : [𝑎, 𝑏] → R be continuous
function and [𝛼, 𝛽] be an interval such that the image of 𝑔 is
a subset of [𝛼, 𝛽]. Let 𝑚,𝑀 ∈ [𝛼, 𝛽] (𝑚 ̸= 𝑀) be such that
𝑚 ≤ 𝑔(𝑡) ≤ 𝑀 for all 𝑡 ∈ [𝑎, 𝑏]. Let 𝜆 : [𝑎, 𝑏] → R be
continuous function or the function of bounded variation, and
𝜆(𝑎) ̸= 𝜆(𝑏). Then the following two statements are equivalent.

(1) For every continuous convex function 𝜑 : [𝛼, 𝛽] → R

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

≤
𝑀 − 𝑔

𝑀 − 𝑚
𝜑 (𝑚) +

𝑔 − 𝑚

𝑀 − 𝑚
𝜑 (𝑀) (5)

holds, where 𝑔 = ∫
𝑏

𝑎
𝑔(𝑥)𝑑𝜆(𝑥)/ ∫

𝑏

𝑎
𝑑𝜆(𝑥).

(2) For all 𝑠 ∈ [𝛼, 𝛽]

∫
𝑏

𝑎
𝐺 (𝑔 (𝑥) , 𝑠) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

≤
𝑀 − 𝑔

𝑀 − 𝑚
𝐺 (𝑚, 𝑠) +

𝑔 − 𝑚

𝑀 − 𝑚
𝐺 (𝑀, 𝑠)

(6)

holds, where the function 𝐺 : [𝛼, 𝛽] × [𝛼, 𝛽] → R is
defined in (1).

Furthermore, the statements (1) and (2) are also equivalent if
we change the sign of inequality in both (5) and (6).

Remark 4. If we set in Theorem 3 𝑚 = 𝛼 and 𝑀 = 𝛽, the
inequality (6) transforms into (see also [1])

∫
𝑏

𝑎
𝐺 (𝑔 (𝑥) , 𝑠) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

≤ 0. (7)

In his papers [4, 5], Dragomir gave some inequalities
concerning reverses of the Jensen inequality for positive
measure. In this paperwe give a generalization of those results
and derive similar Jensen-type inequalities in the case of
real Stieltjes measure 𝑑𝜆 which is not necessarily positive.
Furthermore, we investigate the exponential and logarithmic
convexity of the differences between the left-hand and the
right-hand side of the obtained inequalities and give several
examples of the families of functions for which those results
can be applied.

2. Main Results

Throughout this paper we will use the notation

𝑔 =
∫
𝑏

𝑎
𝑔 (𝑥) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

. (8)

The following result holds.

Theorem 5. Let 𝑔 : [𝑎, 𝑏] → R be a continuous function and
[𝛼, 𝛽] an interval. Let 𝑚,𝑀 ∈ ⟨𝛼, 𝛽⟩ be such that 𝑚 ̸= 𝑀

and 𝑚 ≤ 𝑔(𝑡) ≤ 𝑀 for all 𝑡 ∈ [𝑎, 𝑏]. Let 𝜆 : [𝑎, 𝑏] → R

be a continuous function or a function of bounded variation
such that 𝜆(𝑎) ̸= 𝜆(𝑏), and let 𝑔 ∈ [𝑚,𝑀]. If (6) holds, for all
𝑠 ∈ [𝛼, 𝛽], then

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

− 𝜑 (𝑔)

≤
(𝑀 − 𝑔) (𝑔 − 𝑚)

𝑀 − 𝑚
(𝜑
󸀠

−
(𝑀) − 𝜑

󸀠

+
(𝑚))

≤
1

4
(𝑀 − 𝑚) (𝜑

󸀠

−
(𝑀) − 𝜑

󸀠

+
(𝑚))

(9)

holds for every continuous convex function 𝜑 : [𝛼, 𝛽] → R.

Proof. Let (6) hold for all 𝑠 ∈ [𝛼, 𝛽]. Then from Theorem 3
it follows that for every continuous convex function 𝜑 :

[𝛼, 𝛽] → R we have

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

− 𝜑 (𝑔)

≤
𝑀 − 𝑔

𝑀 − 𝑚
𝜑 (𝑚) +

𝑔 − 𝑚

𝑀 − 𝑚
𝜑 (𝑀) − 𝜑 (𝑔) .

(10)

By the convexity of 𝜑 (as in [4]), we have the gradient
inequality

𝜑 (𝑡) − 𝜑 (𝑀) ≥ 𝜑
󸀠

−
(𝑀) (𝑡 − 𝑀) , (11)

for any 𝑡 ∈ [𝑚,𝑀]. If we multiply this inequality with 𝑡 −𝑚 ≥

0, we get

(𝑡 − 𝑚) 𝜑 (𝑡) − (𝑡 − 𝑚) 𝜑 (𝑀) ≥ 𝜑
󸀠

−
(𝑀) (𝑡 − 𝑀) (𝑡 − 𝑚) ,

𝑡 ∈ [𝑚,𝑀] .

(12)

Analogously, we get

(𝑀 − 𝑡) 𝜑 (𝑡) − (𝑀 − 𝑡) 𝜑 (𝑚) ≥ 𝜑
󸀠

+
(𝑚) (𝑡 − 𝑚) (𝑀 − 𝑡) ,

𝑡 ∈ [𝑚,𝑀] .

(13)
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Adding (12) to (13) and dividing by𝑀 − 𝑚, we get that

(𝑡 − 𝑚) 𝜑 (𝑀) + (𝑀 − 𝑡) 𝜑 (𝑚)

𝑀 − 𝑚
− 𝜑 (𝑡)

≤
(𝑀 − 𝑡) (𝑡 − 𝑚)

𝑀 − 𝑚
(𝜑
󸀠

−
(𝑀) − 𝜑

󸀠

+
(𝑚))

(14)

holds for any 𝑡 ∈ [𝑚,𝑀]. Substituting 𝑡 with 𝑔 ∈ [𝑚,𝑀], we
obtain the first inequality in (9).

To prove the second inequality in (9), it is enough to
notice that the function ℎ(𝑡) = (𝑀 − 𝑡)(𝑡 − 𝑚)/(𝑀 − 𝑚)

is concave on [𝑚,𝑀], so for every 𝑡 ∈ [𝑚,𝑀] inequality
ℎ(𝑡) ≤ (1/4)(𝑀 − 𝑚) is valid. That completes the proof of
(9).

If we set that 𝑚 = 𝛼 and 𝑀 = 𝛽, we get the following
result.

Corollary 6. Let 𝑔 : [𝑎, 𝑏] → R be continuous function and
[𝛼, 𝛽] (where 𝛼 ̸= 𝛽) an interval such that the image of 𝑔 is a
subset of [𝛼, 𝛽]. Let 𝜆 : [𝑎, 𝑏] → R be a continuous function
or a function of bounded variation such that 𝜆(𝑎) ̸= 𝜆(𝑏), and
let 𝑔 ∈ [𝛼, 𝛽]. If (7) holds for all 𝑠 ∈ [𝛼, 𝛽], then for every
continuous convex function 𝜑 : [𝛼, 𝛽] → R,

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

− 𝜑 (𝑔)

≤
(𝛽 − 𝑔) (𝑔 − 𝛼)

𝛽 − 𝛼
(𝜑
󸀠

−
(𝛽) − 𝜑

󸀠

+
(𝛼))

≤
1

4
(𝛽 − 𝛼) (𝜑

󸀠

−
(𝛽) − 𝜑

󸀠

+
(𝛼)) ,

(15)

provided that 𝜑󸀠
+
(𝛼) and 𝜑

󸀠

−
(𝛽) are finite.

Theorem 7. Let 𝑔 : [𝑎, 𝑏] → R be a continuous function
and [𝛼, 𝛽] an interval. Let 𝑚,𝑀 ∈ ⟨𝛼, 𝛽⟩ (𝑚 ̸= 𝑀) be such
that 𝑚 ≤ 𝑔(𝑡) ≤ 𝑀 for all 𝑡 ∈ [𝑎, 𝑏]. Let 𝜆 : [𝑎, 𝑏] → R

be a continuous function or a function of bounded variation
such that 𝜆(𝑎) ̸= 𝜆(𝑏), and let 𝑔 ∈ [𝑚,𝑀]. If (6) holds for
all 𝑠 ∈ [𝛼, 𝛽], then for every continuous convex function 𝜑 :

[𝛼, 𝛽] → R we have

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

− 𝜑 (𝑔)

≤
(𝑀 − 𝑔) (𝑔 − 𝑚)

𝑀 − 𝑚
⋅ sup
𝑡∈(𝑚,𝑀)

Ψ𝜑 (𝑡; 𝑚,𝑀)

≤
(𝑀 − 𝑔) (𝑔 − 𝑚)

𝑀 − 𝑚
(𝜑
󸀠

−
(𝑀) − 𝜑

󸀠

+
(𝑚))

≤
1

4
(𝑀 − 𝑚) (𝜑

󸀠

−
(𝑀) − 𝜑

󸀠

+
(𝑚)) ,

(16)

where Ψ𝜑(⋅; 𝑚,𝑀) : ⟨𝑚,𝑀⟩ → R is defined by

Ψ𝜑 (𝑡; 𝑚,𝑀) =
𝜑 (𝑀) − 𝜑 (𝑡)

𝑀 − 𝑡
−

𝜑 (𝑡) − 𝜑 (𝑚)

𝑡 − 𝑚
. (17)

If 𝑔 ∈ ⟨𝑚,𝑀⟩, then we also have

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

− 𝜑 (𝑔)

≤
1

4
(𝑀 − 𝑚)Ψ𝜑 (𝑔;𝑚,𝑀)

≤
1

4
(𝑀 − 𝑚) (𝜑

󸀠

−
(𝑀) − 𝜑

󸀠

+
(𝑚)) .

(18)

Proof. Let (6) hold for all 𝑠 ∈ [𝛼, 𝛽]. Then fromTheorem 3 it
follows that

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

− 𝜑 (𝑔)

≤
𝑀 − 𝑔

𝑀 − 𝑚
𝜑 (𝑚) +

𝑔 − 𝑚

𝑀 − 𝑚
𝜑 (𝑀) − 𝜑 (𝑔)

(19)

holds for every continuous convex function 𝜑 : [𝛼, 𝛽] → R.
If 𝑔 ∈ ⟨𝑚,𝑀⟩, it is easy to verify that the term on the right
side of (19) is equal to

(𝑀 − 𝑔) (𝑔 − 𝑚)

𝑀 − 𝑚
[
𝜑 (𝑀) − 𝜑 (𝑔)

𝑀 − 𝑔
−

𝜑 (𝑔) − 𝜑 (𝑚)

𝑔 − 𝑚
] ,

(20)

and the term in the square brackets in (20) is equal to
Ψ𝜑(𝑔;𝑚,𝑀), where the function Ψ𝜑(⋅; 𝑚,𝑀) is defined in
(24). As in [5], it follows that

Ψ𝜑 (𝑔;𝑚,𝑀) ≤ sup
𝑡∈(𝑚,𝑀)

Ψ𝜑 (𝑡; 𝑚,𝑀)

= sup
𝑡∈(𝑚,𝑀)

[
𝜑 (𝑀) − 𝜑 (𝑡)

𝑀 − 𝑡
−

𝜑 (𝑡) − 𝜑 (𝑚)

𝑡 − 𝑚
]

≤ sup
𝑡∈(𝑚,𝑀)

[
𝜑 (𝑀) − 𝜑 (𝑡)

𝑀 − 𝑡
]

+ sup
𝑡∈(𝑚,𝑀)

[−
𝜑 (𝑡) − 𝜑 (𝑚)

𝑡 − 𝑚
]

= sup
𝑡∈(𝑚,𝑀)

[
𝜑 (𝑀) − 𝜑 (𝑡)

𝑀 − 𝑡
]

− inf
𝑡∈(𝑚,𝑀)

[
𝜑 (𝑡) − 𝜑 (𝑚)

𝑡 − 𝑚
]

= 𝜑
󸀠

−
(𝑀) − 𝜑

󸀠

+
(𝑚) ,

(21)

and since

(𝑀 − 𝑔) (𝑔 − 𝑚)

𝑀 − 𝑚
≤

1

4
(𝑀 − 𝑚) , (22)

the inequality (16) follows. For 𝑔 = 𝑚 or 𝑔 = 𝑀, the
inequality (16) is obvious. The inequality in (18) follows
directly from the proof of inequality (16).
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If we set that 𝑚 = 𝛼 and 𝑀 = 𝛽, we get the following
result.

Corollary 8. Let𝑔 : [𝑎, 𝑏] → R be a continuous function and
[𝛼, 𝛽] (where 𝛼 ̸= 𝛽) an interval such that the image of 𝑔 is a
subset of [𝛼, 𝛽]. Let 𝜆 : [𝑎, 𝑏] → R be a continuous function
or a function of bounded variation such that 𝜆(𝑎) ̸= 𝜆(𝑏), and
let 𝑔 ∈ [𝛼, 𝛽]. If (7) holds for all 𝑠 ∈ [𝛼, 𝛽], then

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

− 𝜑 (𝑔)

≤
(𝛽 − 𝑔) (𝑔 − 𝛼)

𝛽 − 𝛼
⋅ sup
𝑡∈(𝛼,𝛽)

Ψ𝜑 (𝑡; 𝛼, 𝛽)

≤
(𝛽 − 𝑔) (𝑔 − 𝛼)

𝛽 − 𝛼
(𝜑
󸀠

−
(𝛽) − 𝜑

󸀠

+
(𝛼))

≤
1

4
(𝛽 − 𝛼) (𝜑

󸀠

−
(𝛽) − 𝜑

󸀠

+
(𝛼)) ,

(23)

where Ψ𝜑(⋅; 𝛼, 𝛽) : ⟨𝛼, 𝛽⟩ → R is defined by

Ψ𝜑 (𝑡; 𝛼, 𝛽) =
𝜑 (𝛽) − 𝜑 (𝑡)

𝛽 − 𝑡
−

𝜑 (𝑡) − 𝜑 (𝛼)

𝑡 − 𝛼
, (24)

holds for every continuous convex function 𝜑 : [𝛼, 𝛽] → R,
provided that 𝜑󸀠

+
(𝛼) and 𝜑

󸀠

−
(𝛽) are finite. If 𝑔 ∈ ⟨𝛼, 𝛽⟩, then

we also have

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

− 𝜑 (𝑔)

≤
1

4
(𝛽 − 𝛼)Ψ𝜑 (𝑔; 𝛼, 𝛽)

≤
1

4
(𝛽 − 𝛼) (𝜑

󸀠

−
(𝛽) − 𝜑

󸀠

+
(𝛼)) .

(25)

Theorem 9. Let 𝑔 : [𝑎, 𝑏] → R be a continuous function
and [𝛼, 𝛽] an interval. Let 𝑚,𝑀 ∈ ⟨𝛼, 𝛽⟩ (𝑚 ̸= 𝑀) be such
that 𝑚 ≤ 𝑔(𝑡) ≤ 𝑀 for all 𝑡 ∈ [𝑎, 𝑏]. Let 𝜆 : [𝑎, 𝑏] → R

be a continuous function or a function of bounded variation
such that 𝜆(𝑎) ̸= 𝜆(𝑏), and let 𝑔 ∈ [𝑚,𝑀]. If (6) holds for
all 𝑠 ∈ [𝛼, 𝛽], then for every continuous convex function 𝜑 :

[𝛼, 𝛽] → R we have

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

− 𝜑 (𝑔)

≤ max{
𝑀 − 𝑔

𝑀 − 𝑚
,
𝑔 − 𝑚

𝑀 − 𝑚
}

⋅ [𝜑 (𝑚) + 𝜑 (𝑀) − 2𝜑 (
𝑚 + 𝑀

2
)]

= {
1

2
+

1

𝑀 − 𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚 + 𝑀

2
− 𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}

⋅ [𝜑 (𝑚) + 𝜑 (𝑀) − 2𝜑 (
𝑚 + 𝑀

2
)]

≤
1

2
max {𝑀 − 𝑔, 𝑔 − 𝑚} {𝜑

󸀠

−
(𝑀) − 𝜑

󸀠

+
(𝑚)} .

(26)

In order to prove the theorem, we need the following
lemma, which is a special case of [6, page 717, Theorem 1] for
𝑛 = 2.

Lemma 10. Let 𝜑 be a convex function on 𝐷𝜑, 𝑥, 𝑦 ∈ 𝐷𝜑 and
𝑝, 𝑞 ∈ [0, 1] such that 𝑝 + 𝑞 = 1. Then

min {𝑝, 𝑞} [𝜑 (𝑥) + 𝜑 (𝑦) − 2𝜑 (
𝑥 + 𝑦

2
)]

≤ 𝑝𝜑 (𝑥) + 𝑞𝜑 (𝑦) − 𝜑 (𝑝𝑥 + 𝑞𝑦)

≤ max {𝑝, 𝑞} [𝜑 (𝑥) + 𝜑 (𝑦) − 2𝜑 (
𝑥 + 𝑦

2
)] .

(27)

Proof of Theorem 9. Let (6) hold for all 𝑠 ∈ [𝛼, 𝛽]. Then from
Theorem 3 it follows that

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

≤
𝑀 − 𝑔

𝑀 − 𝑚
𝜑 (𝑚) +

𝑔 − 𝑚

𝑀 − 𝑚
𝜑 (𝑀) (28)

holds for every continuous convex function 𝜑 : [𝛼, 𝛽] → R.
Denote 𝑝 = (𝑀 − 𝑔)/(𝑀 − 𝑚); so we have 𝑝 ∈ [0, 1] and
𝑔 = 𝑝 ⋅ 𝑚 + (1 − 𝑝)𝑀. As in [7], by Lemma 10 we get the
following:

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

− 𝜑 (𝑔) ≤
𝑀 − 𝑔

𝑀 − 𝑚
𝜑 (𝑚) +

𝑔 − 𝑚

𝑀 − 𝑚
𝜑 (𝑀) − 𝜑 (𝑔)

= 𝑝𝜑 (𝑚) + (1 − 𝑝) 𝜑 (𝑀) − 𝜑 (𝑝 ⋅ 𝑚 + (1 − 𝑝)𝑀)

≤ max {𝑝, 1 − 𝑝} ⋅ [𝜑 (𝑚) + 𝜑 (𝑀) − 2𝜑 (
𝑚 + 𝑀

2
)]

= max{
𝑀 − 𝑔

𝑀 − 𝑚
,
𝑔 − 𝑚

𝑀 − 𝑚
}

⋅ [𝜑 (𝑚) + 𝜑 (𝑀) − 2𝜑 (
𝑚 + 𝑀

2
)]

= {
1

2
+

1

𝑀 − 𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚 + 𝑀

2
− 𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}

⋅ [𝜑 (𝑚) + 𝜑 (𝑀) − 2𝜑 (
𝑚 + 𝑀

2
)] .

(29)
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In order to prove the second inequality, it is easy to verify
that

𝜑 (𝑚) + 𝜑 (𝑀) − 2𝜑 ((𝑚 + 𝑀) /2)

𝑀 − 𝑚

=
1

2
[
𝜑 (𝑀) − 𝜑 ((𝑚 + 𝑀) /2)

𝑀 − ((𝑚 + 𝑀) /2)
−

𝜑 ((𝑚 + 𝑀) /2) − 𝜑 (𝑚)

((𝑚 + 𝑀) /2) − 𝑚
] .

(30)

Since 𝜑 is a convex function on [𝛼, 𝛽], by the gradient
inequality we have (as in [5])

𝜑 (𝑀) − 𝜑 ((𝑚 + 𝑀) /2)

𝑀 − ((𝑚 + 𝑀) /2)
≤ 𝜑
󸀠

−
(𝑀) ,

𝜑 ((𝑚 + 𝑀) /2) − 𝜑 (𝑚)

((𝑚 + 𝑀) /2) − 𝑚
≥ 𝜑
󸀠

+
(𝑚) ,

(31)

and we finally obtain

𝜑 (𝑚) + 𝜑 (𝑀) − 2𝜑 ((𝑚 + 𝑀) /2)

𝑀 − 𝑚
≤

1

2
[𝜑
󸀠

−
(𝑀) − 𝜑

󸀠

+
(𝑚)] ,

(32)

so the second inequality in (26) follows.

If we set that 𝑚 = 𝛼 and 𝑀 = 𝛽, we get the following
result.

Corollary 11. Let 𝑔 : [𝑎, 𝑏] → R be a continuous function
and [𝛼, 𝛽] (where 𝛼 ̸= 𝛽) an interval such that the image of 𝑔 is
a subset of [𝛼, 𝛽]. Let 𝜆 : [𝑎, 𝑏] → R be a continuous function
or a function of bounded variation such that 𝜆(𝑎) ̸= 𝜆(𝑏), and
let 𝑔 ∈ [𝛼, 𝛽]. If (7) holds for all 𝑠 ∈ [𝛼, 𝛽], then for every
continuous convex function 𝜑 : [𝛼, 𝛽] → R we have

∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

− 𝜑 (𝑔)

≤ max{
𝛽 − 𝑔

𝛽 − 𝛼
,
𝑔 − 𝛼

𝛽 − 𝛼
}

⋅ [𝜑 (𝛼) + 𝜑 (𝛽) − 2𝜑(
𝛼 + 𝛽

2
)]

= {
1

2
+

1

𝛽 − 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼 + 𝛽

2
− 𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}

⋅ [𝜑 (𝛼) + 𝜑 (𝛽) − 2𝜑(
𝛼 + 𝛽

2
)]

≤
1

2
max {𝛽 − 𝑔, 𝑔 − 𝛼} {𝜑

󸀠

−
(𝛽) − 𝜑

󸀠

+
(𝛼)}

(33)

provided that 𝜑󸀠
+
(𝛼) and 𝜑

󸀠

−
(𝛽) are finite.

Remark 12. If in Theorem 5, Corollary 6, Theorem 7,
Corollary 8,Theorem 9, and Corollary 11 we also request that

(3) holds for all 𝑠 ∈ [𝛼, 𝛽], then by applying Theorem 1 we
will get that

0 ≤
∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

− 𝜑 (𝑔) (34)

also holds for every continuous convex function 𝜑 : [𝛼, 𝛽] →

R.

Remark 13. Result given in Theorem 5 together with
Remark 12 represents a generalization of [4, Theorem 2],
result given inTheorem 7 together with Remark 12 represents
a generalization of [5, Theorem 2], and result given in
Theorem 9 with Remark 12 represents a generalization of [5,
Theorem 3].

3. Mean-Value Theorems

As in the previous section, let 𝑔 : [𝑎, 𝑏] → R be a continuous
function and [𝛼, 𝛽] an interval. Let 𝑚,𝑀 ∈ ⟨𝛼, 𝛽⟩ (𝑚 ̸=

𝑀) be such that 𝑚 ≤ 𝑔(𝑡) ≤ 𝑀 for all 𝑡 ∈ [𝑎, 𝑏]. Let
𝜆 : [𝑎, 𝑏] → R be a continuous function or a function of
bounded variation such that 𝜆(𝑎) ̸= 𝜆(𝑏), and let 𝑔 ∈ [𝑚,𝑀].

Motivated by the inequalities (9) and (26) for continuous
convex function 𝜑 : [𝛼, 𝛽] → R, we define functionals
Φ1(𝑔, 𝜆, 𝜑) andΦ2(𝑔, 𝜆, 𝜑) by

Φ1 (𝑔, 𝜆, 𝜑) =
(𝑀 − 𝑔) (𝑔 − 𝑚)

𝑀 − 𝑚
(𝜑
󸀠

−
(𝑀) − 𝜑

󸀠

+
(𝑚))

−
∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

+ 𝜑 (𝑔) ,

(35)

Φ2 (𝑔, 𝜆, 𝜑) = {
1

2
+

1

𝑀 − 𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚 + 𝑀

2
− 𝑔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}

⋅ [𝜑 (𝑚) + 𝜑 (𝑀) − 2𝜑 (
𝑚 + 𝑀

2
)]

−
∫
𝑏

𝑎
𝜑 (𝑔 (𝑥)) 𝑑𝜆 (𝑥)

∫
𝑏

𝑎
𝑑𝜆 (𝑥)

+ 𝜑 (𝑔) .

(36)

If (6) holds for all 𝑠 ∈ [𝛼, 𝛽], then from Theorems 5 and
9 it follows that Φ𝑖(𝑔, 𝜆, 𝜑) ≥ 0 (𝑖 = 1, 2). If the function 𝜑 is
concave, that is, if (6) holds with reversed inequality sign for
all 𝑠 ∈ [𝛼, 𝛽], then we have Φ𝑖(𝑔, 𝜆, 𝜑) ≤ 0 (𝑖 = 1, 2).

Now we give two mean-value theorems for the function-
als Φ𝑖(𝑔, 𝜆, 𝜑) (𝑖 = 1, 2). In the following, 𝜑0 will denote the
function defined by 𝜑0(𝑡) = 𝑡

2 on whatever domain we need.

Theorem 14. Let 𝑔 : [𝑎, 𝑏] → R be a continuous function
and [𝛼, 𝛽] an interval. Let 𝑚,𝑀 ∈ ⟨𝛼, 𝛽⟩ (𝑚 ̸= 𝑀) be such
that 𝑚 ≤ 𝑔(𝑡) ≤ 𝑀 for all 𝑡 ∈ [𝑎, 𝑏]. Let 𝜑 : [𝛼, 𝛽] → R,
𝜑 ∈ 𝐶

2
([𝛼, 𝛽]). Let 𝜆 : [𝑎, 𝑏] → R be a continuous function

or a function of bounded variation such that 𝜆(𝑎) ̸= 𝜆(𝑏) and
𝑔 ∈ [𝑚,𝑀], and let Φ1 and Φ2 be functionals defined in (35)
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and (36), respectively. Then there exist 𝜉1, 𝜉2 ∈ [𝛼, 𝛽] such that
the following equalities hold:

Φ𝑖 (𝑔, 𝜆, 𝜑) =
𝜑
󸀠󸀠
(𝜉𝑖)

2
Φ𝑖 (𝑔, 𝜆, 𝜑0) , 𝑖 = 1, 2. (37)

Proof. We only give the proof for the functional Φ1, since
both proofs have the same concept. Since 𝜑 ∈ 𝐶

2
([𝛼, 𝛽]),

there exist𝑚1 = min𝑡∈[𝛼,𝛽]𝜑
󸀠󸀠
(𝑡) and𝑀1 = max𝑡∈[𝛼,𝛽]𝜑

󸀠󸀠
(𝑡). It

is easy to verify that the functions 𝜑1, 𝜑2 defined by

𝜑1 (𝑡) =
𝑀1

2
𝑡
2
− 𝜑 (𝑡) ,

𝜑2 (𝑡) = 𝜑 (𝑡) −
𝑚1

2
𝑡
2

(38)

are continuous and convex, and therefore Φ1(𝑔, 𝜆, 𝜑1) ≥ 0,
Φ1(𝑔, 𝜆, 𝜑2) ≥ 0. This implies that

𝑚1

2
Φ1 (𝑔, 𝜆, 𝜑0) ≤ Φ1 (𝑔, 𝜆, 𝜑) ≤

𝑀1

2
Φ1 (𝑔, 𝜆, 𝜑0) . (39)

Hence, as the function 𝜑
󸀠󸀠 is continuous, there exists 𝜉1 ∈

[𝛼, 𝛽] such that

Φ1 (𝑔, 𝜆, 𝜑) =
𝜑
󸀠󸀠
(𝜉1)

2
Φ1 (𝑔, 𝜆, 𝜑0) .

(40)

The proof for the functionalΦ2 is analogous.

Theorem 15. Let 𝑔 : [𝑎, 𝑏] → R be a continuous function
and [𝛼, 𝛽] an interval. Let 𝑚,𝑀 ∈ ⟨𝛼, 𝛽⟩ (𝑚 ̸= 𝑀) be such
that 𝑚 ≤ 𝑔(𝑡) ≤ 𝑀 for all 𝑡 ∈ [𝑎, 𝑏]. Let 𝜑, 𝜓 : [𝛼, 𝛽] → R,
𝜑, 𝜓 ∈ 𝐶

2
([𝛼, 𝛽]). Let 𝜆 : [𝑎, 𝑏] → R be a continuous function

or a function of bounded variation such that 𝜆(𝑎) ̸= 𝜆(𝑏) and
𝑔 ∈ [𝑚,𝑀], and let Φ1 and Φ2 be functionals defined in (35)
and (36), respectively. Then there exist 𝜉1, 𝜉2 ∈ [𝛼, 𝛽] such that
the following equalities hold

Φ𝑖 (𝑔, 𝜆, 𝜑)

Φ𝑖 (𝑔, 𝜆, 𝜓)
=

𝜑
󸀠󸀠
(𝜉𝑖)

𝜓󸀠󸀠 (𝜉𝑖)
, 𝑖 = 1, 2, (41)

provided that the denominators are nonzero.

Proof. We give the proof for the functional Φ1. Define the
function 𝜒 as a linear combination of functions 𝜑 and 𝜓

𝜒 = 𝑐1 ⋅ 𝜑 − 𝑐2 ⋅ 𝜓, where 𝑐1 = Φ1 (𝑔, 𝜆, 𝜓) ,

𝑐2 = Φ1 (𝑔, 𝜆, 𝜑) .

(42)

Now, applying previous theoremon our function𝜒, we obtain
that there exists 𝜉1 ∈ [𝛼, 𝛽] such that

(𝑐1

𝜑
󸀠󸀠
(𝜉1)

2
− 𝑐2

𝜓
󸀠󸀠
(𝜉1)

2
)Φ1 (𝑔, 𝜆, 𝜑0) = 0. (43)

SinceΦ1(𝑔, 𝜆, 𝜑0) ̸= 0 (otherwise we would have a contradic-
tion with Φ1(𝑔, 𝜆, 𝜓) ̸= 0), we get

Φ1 (𝑔, 𝜆, 𝜑)

Φ1 (𝑔, 𝜆, 𝜓)
=

𝜑
󸀠󸀠
(𝜉1)

𝜓󸀠󸀠 (𝜉1)
. (44)

The proof for the functionalΦ2 is analogous.

Remark 16. If the inverse of the function 𝜑
󸀠󸀠
/𝜓
󸀠󸀠 exists, then

(41) gives

𝜉𝑖 = (
𝜑
󸀠󸀠

𝜓󸀠󸀠
)

−1

(
Φ𝑖 (𝑔, 𝜆, 𝜑)

Φ𝑖 (𝑔, 𝜆, 𝜓)
) ∈ [𝛼, 𝛽] , 𝑖 = 1, 2. (45)

Remark 17. Theorems 14 and 15 also hold if we set𝑚 = 𝛼 and
𝑀 = 𝛽; that is, if we extend the image of the function 𝑔 to the
entire interval [𝛼, 𝛽], provided that 𝜑󸀠

+
(𝛼), 𝜑󸀠

−
(𝛽), 𝜓󸀠

+
(𝛼), and

𝜓
󸀠

+
(𝛼) are finite.

4. 𝑛-Exponential Convexity

At the beginning of this section, let us recall some definitions
and facts about exponentially convex functions (for instance,
see [8] or [9]).

Definition 18. A function 𝑓 : 𝐼 → R is 𝑛-exponentially
convex in the Jensen sense on 𝐼 if

𝑛

∑

𝑖,𝑗=1

𝑝𝑖𝑝𝑗𝑓(
𝑥𝑖 + 𝑥𝑗

2
) ≥ 0 (46)

holds for all 𝑝𝑖 ∈ R and 𝑥𝑖 ∈ 𝐼, 𝑖 = 1, . . . , 𝑛.
A function 𝑓 : 𝐼 → R is 𝑛-exponentially convex if it is 𝑛-

exponentially convex in the Jensen sense and continuous on
𝐼.

Remark 19. We can see from the definition that 1-
exponentially convex functions in the Jensen sense are
in fact nonnegative functions. Also, 𝑛-exponentially convex
functions in the Jensen sense are 𝑘-exponentially convex in
the Jensen sense for every 𝑘 ∈ N, 𝑘 ≤ 𝑛.

By definition of the positive semidefinite matrices and
some basic linear algebra, we have the following result.

Lemma 20. If 𝑓 is an 𝑛-exponentially convex function in
the Jensen sense, then the matrix [𝑓((𝑥𝑖 + 𝑥𝑗)/2)]

𝑘

𝑖,𝑗=1
is

positive semidefinite for all 𝑘 ∈ N, 𝑘 ≤ 𝑛. Particularly,
det [𝑓((𝑥𝑖 + 𝑥𝑗)/2)]

𝑘

𝑖,𝑗=1
≥ 0 for all 𝑘 ∈ N, 𝑘 ≤ 𝑛.

Definition 21. A function 𝑓 : 𝐼 → R is exponentially convex
in the Jensen sense on 𝐼, if it is 𝑛-exponentially convex in the
Jensen sense for all 𝑛 ∈ N.

A function 𝑓 : 𝐼 → R is exponentially convex if it is
exponentially convex in the Jensen sense and continuous.

Remark 22. Some examples of exponentially convex func-
tions are as follows (see [10]):

(i) 𝑓 : 𝐼 → R defined by 𝑓(𝑥) = 𝑐𝑒
𝑘𝑥, where 𝑐 ≥ 0 and

𝑘 ∈ R,

(ii) 𝑓 : R+ → R defined by 𝑓(𝑥) = 𝑥
−𝑘, where 𝑘 > 0,

(iii) 𝑓 : R+ → R+ defined by 𝑓(𝑥) = 𝑒
−𝑘√𝑥, where 𝑘 > 0.



Abstract and Applied Analysis 7

Remark 23. It is known that a function 𝑓 : 𝐼 → R+ is log-
convex in the Jensen sense on 𝐼 if and only if the relation

𝛼
2
𝑓 (𝑥) + 2𝛼𝛽𝑓(

𝑥 + 𝑦

2
) + 𝛽
2
𝑓 (𝑦) ≥ 0 (47)

holds for every 𝛼, 𝛽 ∈ R and 𝑥, 𝑦 ∈ 𝐼. It follows that a positive
function is log-convex in the Jensen sense if and only if it is
2-exponentially convex in the Jensen sense. Also, using basic
theory of convex functions, it follows that a positive function
is log-convex if and only if it is 2-exponentially convex.

The following lemma is equivalent to the definition of
convex function (see [3], page 2).

Lemma 24. If 𝑥1, 𝑥2, 𝑥3 ∈ 𝐼 are such that 𝑥1 < 𝑥2 < 𝑥3, then
the function 𝑓 : 𝐼 → R is convex if and only if the following
inequality holds:

(𝑥3 − 𝑥2) 𝑓 (𝑥1) + (𝑥1 − 𝑥3) 𝑓 (𝑥2) + (𝑥2 − 𝑥1) 𝑓 (𝑥3) ≥ 0.

(48)

We will also need the following result (see [3], page 2).

Lemma 25. If 𝑓 : 𝐼 → R is a convex function and
𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝐼 are such that 𝑥1 ≤ 𝑦1, 𝑥2 ≤ 𝑦2, 𝑥1 ̸= 𝑥2,
and 𝑦1 ̸= 𝑦2, then the following inequality is valid:

𝑓 (𝑥2) − 𝑓 (𝑥1)

𝑥2 − 𝑥1

≤
𝑓 (𝑦2) − 𝑓 (𝑦1)

𝑦2 − 𝑦1

. (49)

If the function 𝑓 is concave, then the reverse inequality in (49)
holds.

When dealing with functions with different degrees of
smoothness, divided differences are found to be very useful.

Definition 26. The second order divided difference of a
function𝑓 : 𝐼 → R at mutually different points 𝑦0, 𝑦1, 𝑦2 ∈ 𝐼

is defined recursively by

[𝑦𝑖] 𝑓 = 𝑓 (𝑦𝑖) , 𝑖 = 0, 1, 2,

[𝑦𝑖, 𝑦𝑖+1] 𝑓 =
𝑓 (𝑦𝑖+1) − 𝑓 (𝑦𝑖)

𝑦𝑖+1 − 𝑦𝑖

, 𝑖 = 0, 1,

[𝑦0, 𝑦1, 𝑦2] 𝑓 =
[𝑦1, 𝑦2] 𝑓 − [𝑦0, 𝑦1] 𝑓

𝑦2 − 𝑦0

.

(50)

Remark 27. The value [𝑦0, 𝑦1, 𝑦2]𝑓 is independent of the
order of the points 𝑦0, 𝑦1, and 𝑦2. This definition may be
extended to include the case inwhich some or all of the points
coincide (see [3], page 16). Taking the limit 𝑦1 → 𝑦0 in (50),
we get

lim
𝑦
1
→𝑦
0

[𝑦0, 𝑦1, 𝑦2] 𝑓

= [𝑦0, 𝑦0, 𝑦2] 𝑓

=
𝑓 (𝑦2) − 𝑓 (𝑦0) − 𝑓

󸀠
(𝑦0) (𝑦2 − 𝑦0)

(𝑦2 − 𝑦0)
2

, 𝑦2 ̸= 𝑦0,

(51)

provided that 𝑓󸀠 exists. Furthermore, taking the limits 𝑦𝑖 →
𝑦0, 𝑖 = 1, 2 in (50), we get

lim
𝑦
2
→𝑦
0

lim
𝑦
1
→𝑦
0

[𝑦0, 𝑦1, 𝑦2] 𝑓 = [𝑦0, 𝑦0, 𝑦0] 𝑓 =
𝑓
󸀠󸀠
(𝑦0)

2
, (52)

provided that 𝑓󸀠󸀠 exists.
A function 𝑓 : 𝐼 → R is convex if and only if for

every choice of three mutually different points 𝑦0, 𝑦1, 𝑦2 ∈

𝐼 [𝑦0, 𝑦1, 𝑦2]𝑓 ≥ 0 holds.

Now, we use an idea from [10] to give an elegant method
of producing 𝑛-exponentially convex functions and exponen-
tially convex functions by applying functionals Φ𝑖 (𝑖 = 1, 2)

to a given family of functions with the same property.
For the rest of this section we assume that (6) holds, so

from Theorems 5 and 9 it follows that Φ𝑖(𝑔, 𝜆, 𝜑) ≥ 0 (𝑖 =

1, 2) under the appropriate assumptions on functions 𝑔, 𝜆,
and 𝜑.

Theorem 28. Let 𝑔 : [𝑎, 𝑏] → R be a continuous function
and [𝛼, 𝛽] an interval. Let 𝑚,𝑀 ∈ ⟨𝛼, 𝛽⟩ (𝑚 ̸= 𝑀) be such
that 𝑚 ≤ 𝑔(𝑡) ≤ 𝑀 for all 𝑡 ∈ [𝑎, 𝑏]. Let Ω = {𝜑𝑝 : 𝑝 ∈ 𝐽}

(where 𝐽 is an interval in R) be a family of functions 𝜑𝑝 :

[𝛼, 𝛽] → R, 𝜑𝑝 ∈ 𝐶([𝛼, 𝛽]), such that the function 𝑝 󳨃→

[𝑦0, 𝑦1, 𝑦2]𝜑𝑝 is 𝑛-exponentially convex in the Jensen sense on
𝐽 for every three mutually different points 𝑦0, 𝑦1, 𝑦2 ∈ [𝛼, 𝛽].
Let 𝜆 : [𝑎, 𝑏] → R be a continuous function or a function of
bounded variation such that 𝜆(𝑎) ̸= 𝜆(𝑏), let 𝑔 ∈ [𝑚,𝑀], and
let Φ1 and Φ2 be linear functionals defined in (35) and (36),
respectively. Then the function 𝑝 󳨃→ Φ𝑖(𝑔, 𝜆, 𝜑𝑝) (𝑖 = 1, 2) is
𝑛-exponentially convex in the Jensen sense on 𝐽. If the function
𝑝 󳨃→ Φ𝑖(𝑔, 𝜆, 𝜑𝑝) is continuous on 𝐽, then it is 𝑛-exponentially
convex on 𝐽.

Proof. For 𝑞𝑗 ∈ R (𝑗 = 1, . . . , 𝑛) we define the function

ℎ (𝑥) =

𝑛

∑

𝑗,𝑘=1

𝑞𝑗𝑞𝑘𝜑(𝑝
𝑗
+𝑝
𝑘
)/2 (𝑥) , (53)

where 𝑝𝑗, 𝑝𝑘 ∈ 𝐽, 1 ≤ 𝑗, 𝑘 ≤ 𝑛, and 𝜑(𝑝
𝑗
+𝑝
𝑘
)/2 ∈ Ω. Since

𝑝 → [𝑦0, 𝑦1, 𝑦2]𝜑𝑝 is 𝑛-exponentially convex in the Jensen
sense by assumption, for every threemutually different points
𝑦0, 𝑦1, 𝑦2 ∈ [𝛼, 𝛽], we have

[𝑦0, 𝑦1, 𝑦2] ℎ =

𝑛

∑

𝑗,𝑘=1

𝑞𝑗𝑞𝑘 [𝑦0, 𝑦1, 𝑦2] 𝜑(𝑝
𝑗
+𝑝
𝑘
)/2 ≥ 0. (54)

It follows thatℎ is convex (and continuous) function on [𝛼, 𝛽],
so

Φ𝑖 (𝑔, 𝜆, ℎ) ≥ 0, (55)

and hence
𝑛

∑

𝑗,𝑘=1

𝑞𝑗𝑞𝑘Φ𝑖 (𝑔, 𝜆, 𝜑(𝑝
𝑗
+𝑝
𝑘
)/2) ≥ 0. (56)

We conclude that the function 𝑝 󳨃→ Φ𝑖(𝑔, 𝜆, 𝜑𝑝) is 𝑛-
exponentially convex on 𝐽 in the Jensen sense.

If the function 𝑝 󳨃→ Φ𝑖(𝑔, 𝜆, 𝜑𝑝) is also continuous on 𝐽,
then it is 𝑛-exponentially convex by definition.
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The following corollary is an immediate consequence of
the above theorem.

Corollary 29. Let 𝑔 : [𝑎, 𝑏] → R be a continuous function
and [𝛼, 𝛽] an interval. Let 𝑚,𝑀 ∈ ⟨𝛼, 𝛽⟩ (𝑚 ̸= 𝑀) be such
that 𝑚 ≤ 𝑔(𝑡) ≤ 𝑀 for all 𝑡 ∈ [𝑎, 𝑏]. Let Ω = {𝜑𝑝 :

𝑝 ∈ 𝐽} (where 𝐽 is an interval in R) be a family of functions
𝜑𝑝 : [𝛼, 𝛽] → R, 𝜑𝑝 ∈ 𝐶([𝛼, 𝛽]), such that the function
𝑝 󳨃→ [𝑦0, 𝑦1, 𝑦2]𝜑𝑝 is exponentially convex in the Jensen sense
on 𝐽 for every threemutually different points𝑦0, 𝑦1, 𝑦2 ∈ [𝛼, 𝛽].
Let 𝜆 : [𝑎, 𝑏] → R be a continuous function or a function of
bounded variation such that 𝜆(𝑎) ̸= 𝜆(𝑏), let 𝑔 ∈ [𝑚,𝑀], and
let Φ1 and Φ2 be linear functionals defined in (35) and (36),
respectively. Then the function 𝑝 󳨃→ Φ𝑖(𝑔, 𝜆, 𝜑𝑝) (𝑖 = 1, 2) is
exponentially convex in the Jensen sense on 𝐽. If the function
𝑝 󳨃→ Φ𝑖(𝑔, 𝜆, 𝜑𝑝) is continuous on 𝐽, then it is exponentially
convex on 𝐽.

Corollary 30. Let 𝑔 : [𝑎, 𝑏] → R be a continuous function
and [𝛼, 𝛽] an interval. Let 𝑚,𝑀 ∈ ⟨𝛼, 𝛽⟩ (𝑚 ̸= 𝑀) be such
that 𝑚 ≤ 𝑔(𝑡) ≤ 𝑀 for all 𝑡 ∈ [𝑎, 𝑏]. Let Ω = {𝜑𝑝 : 𝑝 ∈ 𝐽}

(where 𝐽 is an interval in R) be a family of functions 𝜑𝑝 :

[𝛼, 𝛽] → R, 𝜑𝑝 ∈ 𝐶([𝛼, 𝛽]), such that the function 𝑝 󳨃→

[𝑦0, 𝑦1, 𝑦2]𝜑𝑝 is 2-exponentially convex in the Jensen sense on
𝐽 for every three mutually different points 𝑦0, 𝑦1, 𝑦2 ∈ [𝛼, 𝛽].
Let 𝜆 : [𝑎, 𝑏] → R be a continuous function or a function of
bounded variation such that 𝜆(𝑎) ̸= 𝜆(𝑏), let 𝑔 ∈ [𝑚,𝑀], and
let Φ1 and Φ2 be linear functionals defined in (35) and (36),
respectively.

Then the following statements hold.

(i) If the function 𝑝 󳨃→ Φ𝑖(𝑔, 𝜆, 𝜑𝑝) is continuous on
𝐽, then it is 2-exponentially convex on 𝐽. If 𝑝 󳨃→

Φ𝑖(𝑔, 𝜆, 𝜑𝑝) is additionally strictly positive, then it is
also log-convex on 𝐽, and for 𝑟, 𝑠, 𝑡 ∈ 𝐽 such that 𝑟 <

𝑠 < 𝑡, we have

(Φ𝑖 (𝑔, 𝜆, 𝜑𝑠))
𝑡−𝑟

≤ (Φ𝑖 (𝑔, 𝜆, 𝜑𝑟))
𝑡−𝑠

(Φ𝑖 (𝑔, 𝜆, 𝜑𝑡))
𝑠−𝑟

. (57)

(ii) If the function 𝑝 󳨃→ Φ𝑖(𝑔, 𝜆, 𝜑𝑝) is strictly positive and
differentiable on 𝐽, then for every𝑝, 𝑞, 𝑢, V ∈ 𝐽 such that
𝑝 ≤ 𝑢 and 𝑞 ≤ V, we have

𝜇𝑝,𝑞 (𝑔, Φ𝑖, Ω) ≤ 𝜇𝑢,V (𝑔, Φ𝑖, Ω) , (𝑖 = 1, 2) , (58)

where

𝜇𝑝,𝑞 (𝑔, Φ𝑖, Ω) =

{{{{{{{{

{{{{{{{{

{

(
Φ𝑖 (𝑔, 𝜆, 𝜑𝑝)

Φ𝑖 (𝑔, 𝜆, 𝜑𝑞)
)

1/(𝑝−𝑞)

, 𝑝 ̸= 𝑞,

exp(
(𝑑/𝑑𝑝)Φ𝑖 (𝑔, 𝜆, 𝜑𝑝)

Φ𝑖 (𝑔, 𝜆, 𝜑𝑝)
) , 𝑝 = 𝑞,

(59)

for 𝜑𝑝, 𝜑𝑞 ∈ Ω.

Proof. (i) The first part is an immediate consequence
of Theorem 28, and in the second part, log-convexity is

an immediate consequence of Remark 23. Since 𝑝 󳨃→

Φ𝑖(𝑔, 𝜆, 𝜑𝑝) is strictly positive, then by applying Lemma 24 on
the function 𝑓(𝑥) = logΦ𝑖(𝑔, 𝜆, 𝜑𝑥) and 𝑟, 𝑠, 𝑡 ∈ 𝐽 (𝑟 < 𝑠 < 𝑡)

we get

(𝑡 − 𝑠)Φ𝑖 (𝑔, 𝜆, 𝜑𝑟) + (𝑟 − 𝑡)Φ𝑖 (𝑔, 𝜆, 𝜑𝑠)

+ (𝑠 − 𝑟)Φ𝑖 (𝑔, 𝜆, 𝜑𝑡) ≥ 0,

(60)

which is equivalent to inequality (57).
(ii) Since by (i) the function 𝑝 󳨃→ Φ𝑖(𝑔, 𝜆, 𝜑𝑝) is log-

convex on 𝐽, that is, the function 𝑝 󳨃→ logΦ𝑖(𝑔, 𝜆, 𝜑𝑝) is
convex on 𝐽, by applying Lemma 25 for 𝑝 ≤ 𝑢, 𝑞 ≤ V, 𝑝 ̸= 𝑞,
and 𝑢 ̸= V, we get

logΦ𝑖 (𝑔, 𝜆, 𝜑𝑝) − logΦ𝑖 (𝑔, 𝜆, 𝜑𝑞)
𝑝 − 𝑞

≤
logΦ𝑖 (𝑔, 𝜆, 𝜑𝑢) − logΦ𝑖 (𝑔, 𝜆, 𝜑V)

𝑢 − V
,

(61)

and therefore we conclude that

𝜇𝑝,𝑞 (𝑔, Φ𝑖, Ω) ≤ 𝜇𝑢,V (𝑔, Φ𝑖, Ω) . (62)

The cases 𝑝 = 𝑞 and 𝑢 = V follow from (61) as limit cases.

Remark 31. Note that the results from Theorem 28 and
Corollaries 29 and 30 still hold when two of the points
𝑦0, 𝑦1, 𝑦2 ∈ [𝛼, 𝛽] coincide (say 𝑦1 = 𝑦0), for a family
of differentiable functions 𝜑𝑝 such that the function 𝑝 󳨃→

[𝑦0, 𝑦1, 𝑦2]𝜑𝑝 is 𝑛-exponentially convex in the Jensen sense
(exponentially convex in the Jensen sense, log-convex in the
Jensen sense). Furthermore, these results still hold when
all three points coincide for a family of twice differentiable
functions with the above mentioned properties. The proofs
are obtained by recalling Remark 27 and suitable characteri-
zation of convexity.

Remark 32. The results from this section also hold if we set
𝑚 = 𝛼 and 𝑀 = 𝛽, that is, if we extend the image of the
function 𝑔 to the entire interval [𝛼, 𝛽], provided that 𝜑󸀠

+
(𝛼)

and 𝜑
󸀠

−
(𝛽) are finite.

5. Examples

In this section we will vary on choice of a family Ω = {𝜑𝑝 :

𝑝 ∈ 𝐽}, presenting several families of functions which fulfil
the conditions ofTheorem 28 and Corollaries 29 and 30 (and
Remark 31). This enables us to construct different examples
of exponentially convex functions and to construct some
Cauchy-type means.

Example 1. Let

Ω1 = {𝜓𝑝 : R → [0,∞) : 𝑝 ∈ R} (63)

be a family of functions defined by

𝜓𝑝 (𝑥) =

{{{

{{{

{

1

𝑝2
𝑒
𝑝𝑥
, 𝑝 ̸= 0;

1

2
𝑥
2
, 𝑝 = 0.

(64)
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Since (𝑑
2
/𝑑𝑥
2
)𝜓𝑝(𝑥) = 𝑒

𝑝𝑥
> 0 for 𝑥 ∈ R, 𝜓𝑝 is convex

function on R for every 𝑝 ∈ R. From Remark 22 it follows
that the function 𝑝 󳨃→ (𝑑

2
/𝑑𝑥
2
)𝜓𝑝(𝑥) is exponentially con-

vex, and from [10] we then also have that 𝑝 󳨃→ [𝑦0, 𝑦1, 𝑦2]𝜓𝑝
is exponentially convex (and so exponentially convex in the
Jensen sense). So, our family Ω1 of functions 𝜓𝑝 fulfills the
condition given in Corollary 29, and we conclude that 𝑝 󳨃→

Φ𝑖(𝑔, 𝜆, 𝜓𝑝) (for 𝑖 = 1, 2) are exponentially convex in the
Jensen sense. It is easy to verify that these mappings are
continuous (although 𝑝 󳨃→ 𝜓𝑝 is not continuous at 𝑝 = 0),
so they are exponentially convex.

Using Corollary 30 for this family of functions,
𝜇𝑝,𝑞(𝑔, Φ𝑖, Ω1) (𝑖 = 1, 2) from (59) become

𝜇𝑝,𝑞 (𝑔, Φ𝑖, Ω1)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

(
Φ𝑖 (𝑔, 𝜆, 𝜓𝑝)

Φ𝑖 (𝑔, 𝜆, 𝜓𝑞)
)

1/(𝑝−𝑞)

, 𝑝 ̸= 𝑞;

exp(
Φ𝑖 (𝑔, 𝜆, 𝑖𝑑 ⋅ 𝜓𝑝)

Φ𝑖 (𝑔, 𝜆, 𝜓𝑝)
−

2

𝑝
) , 𝑝 = 𝑞 ̸= 0;

exp(
1

3

Φ𝑖 (𝑔, 𝜆, 𝑖𝑑 ⋅ 𝜓0)

Φ𝑖 (𝑔, 𝜆, 𝜓0)
) , 𝑝 = 𝑞 = 0;

(65)

and using (58) we have that they are monotonous in parame-
ters 𝑝 and 𝑞.

IfΦ𝑖 (𝑖 = 1, 2) are positive, then usingTheorem 15 applied
for 𝜑 = 𝜓𝑝 ∈ Ω1 and 𝜓 = 𝜓𝑞 ∈ Ω1, it follows that

𝑀𝑝,𝑞 (𝑔, Φ𝑖, Ω1) = log𝜇𝑝,𝑞 (𝑔, Φ𝑖, Ω1) , for 𝑖 = 1, 2, (66)

satisfy

𝛼 ≤ 𝑀𝑝,𝑞 (𝑔, Φ𝑖, Ω1) ≤ 𝛽, for 𝑖 = 1, 2. (67)

If we set that the image of the function 𝑔 is [𝛼, 𝛽], then we
have

𝛼 = min
𝑡∈[𝑎,𝑏]

{𝑔 (𝑡)} ≤ 𝑀𝑝,𝑞 (𝑔, Φ𝑖, Ω1)

≤ max
𝑡∈[𝑎,𝑏]

{𝑔 (𝑡)} = 𝛽, for 𝑖 = 1, 2,

(68)

which shows that in this case 𝑀𝑝,𝑞(𝑔, Φ𝑖, Ω1) are means (of
the function 𝑔). Notice that by (58) 𝑀𝑝,𝑞(𝑔, Φ𝑖, Ω1) are also
monotonic.

Example 2. Let

Ω2 = {𝜑𝑝 : R
+
󳨀→ R : 𝑝 ∈ R} (69)

be a family of functions defined by

𝜑𝑝 (𝑥) =

{{{{

{{{{

{

𝑥
𝑝

𝑝 (𝑝 − 1)
, 𝑝 ̸= 0, 1;

− log𝑥, 𝑝 = 0;

𝑥 log𝑥, 𝑝 = 1.

(70)

Since (𝑑
2
/𝑑𝑥
2
)𝜑𝑝(𝑥) = 𝑥

𝑝−2
= 𝑒
(𝑝−2) log𝑥

> 0, 𝜑𝑝 is
convex function for 𝑥 > 0. From Remark 22 it follows that

𝑝 󳨃→ (𝑑
2
/𝑑𝑥
2
)𝜑𝑝(𝑥) is exponentially convex, and from [10]

we then also have that 𝑝 󳨃→ [𝑦0, 𝑦1, 𝑦2]𝜑𝑝 is exponentially
convex (and so exponentially convex in the Jensen sense). So,
our family Ω2 of functions 𝜑𝑝 fulfills the condition given in
Corollary 29.

In this example we assume that our interval [𝛼, 𝛽] from
Corollaries 29 and 30 is a subset of R+, and for our family of
functions we have the following:

𝜇𝑝,𝑞 (𝑔, Φ𝑖, Ω2)

=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

(
Φ𝑖 (𝑔, 𝜆, 𝜑𝑝)

Φ𝑖 (𝑔, 𝜆, 𝜑𝑞)
)

1/(𝑝−𝑞)

, 𝑝 ̸= 𝑞;

exp(
1 − 2𝑝

𝑝 (𝑝 − 1)
−

Φ𝑖 (𝑔, 𝜆, 𝜑0𝜑𝑝)

Φ𝑖 (𝑔, 𝜆, 𝜑𝑝)
) , 𝑝 = 𝑞 ̸= 1, 0;

exp(1 −
Φ𝑖 (𝑔, 𝜆, 𝜑

2

0
)

2Φ𝑖 (𝑔, 𝜆, 𝜑0)
) , 𝑝 = 𝑞 = 0.

exp(−1 −
Φ𝑖 (𝑔, 𝜆, 𝜑0𝜑1)

2Φ𝑖 (𝑔, 𝜆, 𝜑1)
) , 𝑝 = 𝑞 = 1.

(71)

As in the previous example, we conclude that functions
𝑝 󳨃→ Φ𝑖(𝑔, 𝜆, 𝜑𝑝) (𝑖 = 1, 2) are exponentially convex and that
for 𝜇𝑝,𝑞(𝑔, Φ𝑖, Ω2) the monotonicity property holds.

If Φ𝑖 (𝑖 = 1, 2) are positive, then Theorem 15 applied for
𝜑 = 𝜑𝑝 ∈ Ω2 and 𝜓 = 𝜑𝑞 ∈ Ω2 yields that there exist

𝜉𝑖 ∈ [𝛼, 𝛽] , (𝑖 = 1, 2) , (72)

such that

𝜉
𝑝−𝑞

𝑖
=

Φ𝑖 (𝑔, 𝜆, 𝜑𝑝)

Φ𝑖 (𝑔, 𝜆, 𝜑𝑞)
. (73)

Since the function 𝜉 󳨃→ 𝜉
𝑝−𝑞 is invertible for 𝑝 ̸= 𝑞, we then

have

𝛼 ≤ (
Φ𝑖 (𝑔, 𝜆, 𝜑𝑝)

Φ𝑖 (𝑔, 𝜆, 𝜑𝑞)
)

1/(𝑝−𝑞)

≤ 𝛽, for 𝑖 = 1, 2. (74)

As in the previous example, if we set that the image of the
function 𝑔 is [𝛼, 𝛽], then we have

𝛼 = min
𝑡∈[𝑎,𝑏]

{𝑔 (𝑡)} ≤ (
Φ𝑖 (𝑔, 𝜆, 𝜑𝑝)

Φ𝑖 (𝑔, 𝜆, 𝜑𝑞)
)

1/(𝑝−𝑞)

≤ max
𝑡∈[𝑎,𝑏]

{𝑔 (𝑡)} = 𝛽,

(75)

which shows that in this case 𝜇𝑝,𝑞(𝑔, Φ𝑖, Ω2) are means (of
function 𝑔).



10 Abstract and Applied Analysis

Now, we impose one additional parameter 𝑟. For 𝑟 ̸= 0 by
substituting 𝑔 → 𝑔

𝑟, 𝑝 → 𝑝/𝑟, and 𝑞 → 𝑞/𝑟 in (75), we get

min
𝑡∈[𝑎,𝑏]

{(𝑔 (𝑡))
𝑟
} ≤ (

Φ𝑖 (𝑔
𝑟
, 𝜆, 𝜑𝑝)

Φ𝑖 (𝑔
𝑟, 𝜆, 𝜑𝑞)

)

𝑟/(𝑝−𝑞)

≤ max
𝑡∈[𝑎,𝑏]

{(𝑔 (𝑡))
𝑟
} , for 𝑖 = 1, 2.

(76)

We define new generalized mean as follows:

𝜇𝑝,𝑞;𝑟 (𝑔, Φ𝑖, Ω2) =

{{

{{

{

(𝜇𝑝/𝑟,𝑞/𝑟 (𝑔
𝑟
, Φ𝑖, Ω2))

1/𝑟

, 𝑟 ̸= 0;

𝜇𝑝,𝑞 (log𝑔,Φ𝑖, Ω1) , 𝑟 = 0.

(77)

These new generalized means are also monotonic. If
𝑝, 𝑞, 𝑢, V ∈ R, 𝑟 ̸= 0 such that 𝑝 ≤ 𝑢, 𝑞 ≤ V, then we have

𝜇𝑝,𝑞;𝑟 (𝑔, Φ𝑖, Ω2) ≤ 𝜇𝑢,V;𝑟 (𝑔, Φ𝑖, Ω2) , for 𝑖 = 1, 2. (78)

This result follows from

𝜇𝑝/𝑟,𝑞/𝑟 (𝑔
𝑟
, Φ𝑖, Ω2) = (

Φ𝑖 (𝑔
𝑟
, 𝜆, 𝜑𝑝/𝑟)

Φ𝑖 (𝑔
𝑟, 𝜆, 𝜑𝑞/𝑟)

)

𝑟/(𝑝−𝑞)

≤ (
Φ𝑖 (𝑔
𝑟
, 𝜆, 𝜑𝑢/𝑟)

Φ𝑖 (𝑔
𝑟, 𝜆, 𝜑V/𝑟)

)

𝑟/(𝑢−V)

= 𝜇𝑢/𝑟,V/𝑟 (𝑔
𝑟
, Φ𝑖, Ω2) ,

(79)

for 𝑝, 𝑞, 𝑢, V ∈ R, 𝑟 ̸= 0, such that 𝑝/𝑟 ≤ 𝑢/𝑟, 𝑞/𝑟 ≤ V/𝑟, and
the fact that 𝜇𝑝,𝑞(𝑔, Φ𝑖, Ω2) for 𝑖 = 1, 2 are monotonous in
both parameters. For 𝑟 = 0, we obtain the required result by
taking the limit 𝑟 → 0.

Example 3. Let

Ω3 = {𝜃𝑝 : R
+
󳨀→ R

+
: 𝑝 ∈ R

+
} (80)

be a family of functions defined by

𝜃𝑝 (𝑥) =
𝑒
−𝑥√𝑝

𝑝
. (81)

Since (𝑑
2
/𝑑𝑥
2
)𝜃𝑝(𝑥) = 𝑒

−𝑥√𝑝
> 0, 𝜃𝑝 is convex function for

𝑥 > 0. From Remark 22 we have that 𝑝 󳨃→ (𝑑
2
/𝑑𝑥
2
)𝜃𝑝(𝑥) is

exponentially convex, and from [10] we then also have that
𝑝 󳨃→ [𝑦0, 𝑦1, 𝑦2]𝜃𝑝 is exponentially convex function. Family
Ω3 of functions 𝜃𝑝 fulfills the condition given in Corollary 29.
Here in this example we again assume that interval [𝛼, 𝛽]
from our corollaries is a subset of R+, and so for our family
of functions we have the following possible cases for 𝜇𝑝,𝑞:

𝜇𝑝,𝑞 (𝑔, Φ𝑖, Ω3)

=

{{{{{{{

{{{{{{{

{

(
Φ𝑖 (𝑔, 𝜆, 𝜃𝑝)

Φ𝑖 (𝑔, 𝜆, 𝜃𝑞)
)

1/(𝑝−𝑞)

, 𝑝 ̸= 𝑞;

exp(−
Φ𝑖 (𝑔, 𝜆, 𝑖𝑑 ⋅ 𝜃𝑝)

2√𝑝Φ𝑖 (𝑔, 𝜆, 𝜃𝑝)
−

1

𝑝
) , 𝑝 = 𝑞.

(82)

As before, we conclude that the functions 𝑝 󳨃→

Φ𝑖(𝑔, 𝜆, 𝜃𝑝) (𝑖 = 1, 2) are exponentially convex and that for
𝜇𝑝,𝑞(𝑔, Φ𝑖, Ω3) the monotonicity property holds.

IfΦ𝑖 (𝑖 = 1, 2) are positive, then usingTheorem 15 applied
for 𝜑 = 𝜃𝑝 ∈ Ω3 and 𝜓 = 𝜃𝑞 ∈ Ω3, it follows that

M𝑝,𝑞 (𝑔, Φ𝑖, Ω3) = − (√𝑝 + √𝑞) log 𝜇𝑝,𝑞 (𝑔, Φ𝑖, Ω3) (83)

satisfy

𝛼 ≤ M𝑝,𝑞 (𝑔, Φ𝑖, Ω3) ≤ 𝛽, for 𝑖 = 1, 2. (84)

If we set that the image of the function 𝑔 is [𝛼, 𝛽], then
we have that in this case M𝑝,𝑞(𝑔, Φ𝑖, Ω3) are means (of the
function 𝑔).

Example 4. Let

Ω4 = {𝜙𝑝 : R
+
󳨀→ R

+
: 𝑝 ∈ R

+
} (85)

be a family of functions defined by

𝜙𝑝 (𝑥) =

{{{{{

{{{{{

{

𝑝
−𝑥

(log𝑝)2
, 𝑝 ̸= 1;

𝑥
2

2
, 𝑝 = 1.

(86)

Since (𝑑
2
/𝑑𝑥
2
)𝜙𝑝(𝑥) = 𝑝

−𝑥
> 0, 𝜙𝑝 is convex function for

𝑝 > 0. From Remark 22 it follows that 𝑝 󳨃→ (𝑑
2
/𝑑𝑥
2
)𝜙𝑝(𝑥)

is exponentially convex function, and from [10] we then
also have that 𝑝 󳨃→ [𝑦0, 𝑦1, 𝑦2]𝜙𝑝 is exponentially convex.
Our family Ω4 of functions 𝜙𝑝 fulfills the condition given in
Corollary 29. We assume again that interval [𝛼, 𝛽] from our
corollaries is a subset of R+, and so for our family of functions
we have the following:

𝜇𝑝,𝑞 (𝑔, Φ𝑖, Ω4)

=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

(
Φ𝑖 (𝑔, 𝜆, 𝜙𝑝)

Φ𝑖 (𝑔, 𝜆, 𝜙𝑞)
)

1/(𝑝−𝑞)

, 𝑝 ̸= 𝑞;

exp(−
Φ𝑖 (𝑔, 𝜆, 𝑖𝑑 ⋅ 𝜙𝑝)

𝑝Φ𝑖 (𝑔, 𝜆, 𝜙𝑝)
−

2

𝑝 log𝑝
) , 𝑝 = 𝑞 ̸= 1;

exp(−
2

3

Φ𝑖 (𝑔, 𝜆, 𝑖𝑑 ⋅ 𝜙1)

Φ𝑖 (𝑔, 𝜆, 𝜙1)
) , 𝑝 = 𝑞 = 1.

(87)

As before, we conclude that the functions 𝑝 󳨃→

Φ𝑖(𝑔, 𝜆, 𝜙𝑝) (𝑖 = 1, 2) are exponentially convex, and for
𝜇𝑝,𝑞(𝑔, Φ𝑖, Ω4) the monotonicity property holds.

IfΦ𝑖 (𝑖 = 1, 2) are positive, then usingTheorem 15 applied
for 𝜑 = 𝜙𝑝 ∈ Ω4 and 𝜓 = 𝜙𝑞 ∈ Ω4, it follows that

N𝑝,𝑞 (𝑔, Φ𝑖, Ω4) = −𝐿 (𝑝, 𝑞) log𝜇𝑝,𝑞 (𝑔, Φ𝑖, Ω4) , (88)

where 𝐿(𝑝, 𝑞) denotes the logarithmic mean defined by
𝐿(𝑝, 𝑞) = (𝑝 − 𝑞)/(log𝑝 − log 𝑞) for 𝑝 ̸= 𝑞, and 𝐿(𝑝, 𝑝) =

𝑝 satisfy

𝛼 ≤ N𝑝,𝑞 (𝑔, Φ𝑖, Ω4) ≤ 𝛽, for 𝑖 = 1, 2. (89)
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If we set that the image of the function 𝑔 is [𝛼, 𝛽], then
we have that in this case N𝑝,𝑞(𝑔, Φ𝑖, Ω4) are means (of the
function 𝑔).
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