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We are concerned with oscillation of the first order neutral delay differential equation [𝑥(𝑡) − 𝑝𝑥(𝑡 − 𝜏)]
󸀠

+ 𝑞𝑥(𝑡 − 𝜎) = 0 with
constant coefficients, and we obtain some necessary and sufficient conditions of oscillation for all the solutions in respective cases
0 < 𝑝 < 1 and 𝑝 > 1.

1. Introduction

Delay differential equations (DDEs) arose widely in many
fields, like oscillation theory [1–9], stability theory [10–12],
dynamical behavior of delayed network systems [13–15], and
so on. Theoretical studies on oscillation of solutions for
DDEs have fundamental significance (see [16, 17]). For this
reason, DDEs have been attracting great interest of many
mathematicians during the last few decades.

In this paper, we consider a class of neutral DDEs

[𝑥 (𝑡) − 𝑝𝑥 (𝑡 − 𝜏)]
󸀠

+ 𝑞𝑥 (𝑡 − 𝜎) = 0, 𝑡 ⩾ 𝑡
0
, (1)

where 𝑡
0
is a positive number and 𝑝, 𝑞, 𝜏, and 𝜎 are positive

constants. Generally, a solution of (1) is called oscillatory
if it is neither eventually positive nor eventually negative.
Otherwise, it is nonoscillatory. It can be seen in the literature
that the oscillation theory regarding solutions of (1) has been
extensively developed in the recent years.

In [18], Zhang came to the following conclusion.

Theorem I. Assume that 𝑝 ∈ (0, 1) and 𝑞𝜎𝑒 > 1 − 𝑝; then all
solutions of (1) are oscillatory.

This result in Theorem I improves the corresponding
result in [19]. Afterward, many authors have been devoted
to studying this problem and have obtained many better

results. For details, Gopalsamy and Zhang [20] obtained the
improved result shown inTheorem II.

Theorem II. If 𝑝 ∈ (0, 1) and 𝑞𝜎𝑒 > 1 − 𝑝[1 + 𝑞𝜏/(1 − 𝑝)],
then all solutions of (1) are oscillatory.

Further, Zhou and Yu [21] proved the following theorem.

Theorem III. Suppose that 𝑝 ∈ (0, 1) and 𝑞𝜎𝑒 > 1 − 𝑝[1 +

𝑞𝜏/(1 − 𝑝) + (𝑞𝜏)
2
/2(1 − 𝑝)

2
]; then all solutions of (1) are

oscillatory.
Continuing to improve the research work, Xiao and Li [22]

obtained the following.

Theorem IV. Let 𝑝 ∈ (0, 1) and 𝑞𝜎𝑒 > 1 − 𝑝𝑒
𝑞𝜏/(1−𝑝); then all

solutions of (1) are oscillatory.
Finally, Lin [23] obtained the result shown in Theorem V.

Theorem V. Assume that 𝑝 ∈ (0, 1) and 𝑞𝜎𝑒 > 1 −

𝑝𝑒
𝑞𝜏/(1−𝑝−𝑞𝜎); then all solutions of (1) are oscillatory.
However, all the conclusions mentioned above are limited

to sufficient conditions in the case 0 < 𝑝 < 1. The aim of this
paper is to establish systematically the necessary and sufficient
conditions of oscillation for all solutions of (1) for the cases 0 <

𝑝 < 1 and 𝑝 > 1.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 623713, 5 pages
http://dx.doi.org/10.1155/2014/623713

http://dx.doi.org/10.1155/2014/623713


2 Abstract and Applied Analysis

2. Main Results

It is well known [24] that all solutions of (1) are oscillatory if
and only if the characteristic equation of (1)

𝑓 (𝜆) ≡ 𝜆 − 𝑝𝜆𝑒
−𝜆𝜏

+ 𝑞𝑒
−𝜆𝜎

= 0 (2)

has no real roots.

Theorem 1. Assume that 𝑝 ∈ (0, 1) and let

𝜑 (𝜇) := 𝑞 (𝜎𝜇 − 1) + 𝑝𝜏𝜇
2
𝑒
(𝜏−𝜎)𝜇

, (3)

ℎ (𝜇) := 𝑞𝑒
𝜇𝜎

[(𝜏 − 𝜎) 𝜇 + 1] − 𝜏𝜇
2
. (4)

Then all solutions of (1) are oscillatory if and only if

ℎ (𝜃) = 𝑞𝑒
𝜃𝜎

[(𝜏 − 𝜎) 𝜃 + 1] − 𝜏𝜃
2
> 0, (5)

where 𝜃 is a unique zero of 𝜑(𝜇) in (0, 1/𝜎).

Proof. It is easy to see that, for 𝜆 ⩾ 0, we have

𝑓 (𝜆) = 𝜆 (1 − 𝑝𝑒
−𝜆𝜏

) + 𝑞𝑒
−𝜆𝜎

≥ 𝑞𝑒
−𝜆𝜎

> 0. (6)

Thus any real root of (2) must be negative.
Next, let

𝑔 (𝜇) =
𝑞

𝜇
𝑒
𝜇𝜎

+ 𝑝𝑒
𝜇𝜏

− 1 = 0. (7)

We consider the monotonicity of the function 𝑔(𝜇) :=

𝑓(−𝜇)/𝜇. Differentiation yields

𝑔
󸀠
(𝜇) =

𝑒
𝜇𝜎
𝜑 (𝜇)

𝜇2
, (8)

where 𝜑(𝜇) satisfies the following properties:

(1) 𝜑(𝜇) > 0 for 𝜇 ∈ (1/𝜎, +∞);
(2) 𝜑(𝜇) is strictly increasing on (0, 1/𝜎) since the func-

tion 𝜇
2
𝑒
(𝜏−𝜎)𝜇 is strictly increasing on (0, 1/𝜎).

In addition,

𝜑 (0) = −𝑞 < 0, 𝜑 (
1

𝜎
) = 𝑝𝜏

1

𝜎2
𝑒
(𝜏−𝜎)/𝜎

> 0. (9)

Thus, we get that function𝜑(𝜇) has a unique zero 𝜃 in (0, 1/𝜎).
Hence 𝑔󸀠(𝜇) < 0 for 𝜇 ∈ (0, 𝜃) and 𝑔󸀠(𝜇) > 0 for 𝜇 ∈ (𝜃, +∞),
which imply that 𝑔(𝜇) is decreasing on (0, 𝜃) and increasing
on (𝜃, +∞). Therefore, 𝑔(𝜇) > 0 for 𝜇 ∈ (0, +∞) if and only
if (7) has no real roots in 𝜇 ∈ (0, 1/𝜎). It is easy to see that
𝑔(𝜃) is the minimum value of 𝑔(𝜇) in (0, 1/𝜎). Consequently,
𝑔(𝜇) = 0 has no real roots in (0, 1/𝜎) if and only if 𝑔(𝜃) > 0.
Since

𝑔 (𝜃) =
𝑞

𝜃
𝑒
𝜃𝜎

+ 𝑝𝑒
𝜃𝜏
− 1 =

ℎ (𝜃)

𝜏𝜃2
, (10)

we obtain the result immediately.

FromTheorem 1, we obtain immediately the following.

Corollary 2. If 𝑝 ∈ (0, 1) and 𝜏 = 𝜎, then all solutions of
(1) are oscillatory if and only if 𝑞𝑒𝜃𝜎 > 𝜎𝜃

2 holds, where 𝜃 =

(√𝑞𝜎(𝑞𝜎 + 4𝑝) − 𝑞𝜎)/2𝑝𝜎.

Theorem 3. Suppose that 𝑝 ∈ (0, 1); then all solutions of (1)
are oscillatory if and only if one of the following conditions
holds:

(𝐻
1
) 𝑞𝜎𝑒 ⩾ 1;

(𝐻
2
) 𝜃 > 𝜃,

where 𝜃 and 𝜃 are the unique zeros of 𝜑(𝜇) and ℎ(𝜇) (see (3)
and (4)) in (0, 1/𝜎), respectively.

Proof. Let 𝑦(𝜇) = ℎ(𝜇)/𝜇
2
= 𝑞𝑒
𝜇𝜎
((𝜏 − 𝜎)/𝜇 + 1/𝜇

2
) − 𝜏; then

𝑦
󸀠
(𝜇) =

𝑞𝑒
𝜇𝜎
𝑧 (𝜇)

𝜇3
, (11)

where 𝑧(𝜇) = (𝜏 − 𝜎)𝜎𝜇
2
+ (2𝜎 − 𝜏)𝜇 − 2, which satisfies

𝑧 (0) = −2 < 0, 𝑧 (
1

𝜎
) = −1 < 0. (12)

If 𝜏 ⩾ 𝜎, we get obviously that 𝑧(𝜇) < 0 for all 𝜇 ∈ (0, 1/𝜎]. If
𝜏 < 𝜎, we also get 𝑧(𝜇) < 0 for all 𝜇 ∈ (0, 1/𝜎] since 𝑧󸀠(1/𝜎) =
𝜏 > 0. Thus, 𝑧(𝜇) < 0 for all 𝜇 ∈ (0, 1/𝜎]. From this and (11)
we get that 𝑦󸀠(𝜇) < 0 for all 𝜇 ∈ (0, 1/𝜎]. Consequently, 𝑦(𝜇)
is strictly decreasing on (0, 1/𝜎]. Further,

lim
𝜇→0

+

𝑦 (𝜇) = +∞, 𝑦 (
1

𝜎
) = (𝑞𝑒𝜎 − 1) 𝜏. (13)

Therefore, if 𝑞𝜎𝑒 ⩾ 1, we have 𝑦(𝜃) > 0. Hence ℎ(𝜃) > 0. If
𝑞𝜎𝑒 < 1, we have𝑦(1/𝜎) < 0. Hence, it is easy to find that both
functions 𝑦(𝜇) and ℎ(𝜇) have an equal and unique zero 𝜃 ∈

(0, 1/𝜎). Consequently, ℎ(𝜃) > 0 is equivalent to 𝜃 > 𝜃.

FromTheorem 1, all solutions of (1) are oscillatory if and
only if one of (H

1
) or (H

2
) holds.

Theorem 4. Assume that 𝑝 ∈ (0, 1); then all solutions of (1)
are oscillatory if one of the following conditions holds:

(𝐻
1
) 𝑞/𝜃 + 𝑞𝜎 ⩾ 1 − 𝑝;

(𝐻
2
) 𝑞𝜎𝑒 ⩾ 1 − 𝑝𝑒

𝑞𝜏/(1−𝑝−𝑞𝜎),

where 𝜃 is a unique zero of 𝜑(𝜇) in (0, 1/𝜎).

Proof. If 𝑞/𝜃 + 𝑞𝜎 ⩾ 1 − 𝑝, we have that

𝑔 (𝜇) =
𝑞

𝜇
𝑒
𝜇𝜎

+ 𝑝𝑒
𝜇𝜏

− 1 >
𝑞

𝜇
(1 + 𝜇𝜎) + 𝑝 − 1

=
𝑞

𝜇
+ 𝑞𝜎 + 𝑝 − 1.

(14)

From the proof of Theorem 1, all solutions of (1) are oscilla-
tory.
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If 𝑞𝜎𝑒 ⩾ 1 − 𝑝𝑒
𝑞𝜏/(1−𝑝−𝑞𝜎), we suppose furthermore that

𝑞/𝜃+𝑞𝜎 < 1−𝑝 (otherwise, all solutions of (1) are oscillatory
by the above conclusion); that is, 𝜃 > 𝑞/(1 − 𝑝 − 𝑞𝜎). Since
𝑞𝜎𝑒 is a minimum value of the function (𝑞/𝜇)𝑒

𝜇𝜎 at 𝜇 = 1/𝜎,
we have that

𝑔 (𝜃) =
𝑞

𝜃
𝑒
𝜃𝜎

+ 𝑝𝑒
𝜃𝜏
− 1 > 𝑞𝜎𝑒 + 𝑝𝑒

𝑞𝜏/(1−𝑝−𝑞𝜎)
− 1 ⩾ 0,

(15)

and the result follows.
So far, for 𝑝 ∈ (0, 1) we have discussed the necessary

and sufficient conditions of oscillation for all solutions of (1).
Our results have perfected the results in [23] (seeTheorem 4).
Next, we will discuss the behavior of oscillation of solutions
of (1) in the case 𝑝 > 1.

Lemma 5. Let 𝑝 > 1; then all solutions of (1) are oscillatory if
and only if the equation

𝑔 (𝜇) =
𝑞

𝜇
𝑒
𝜇𝜎

+ 𝑝𝑒
𝜇𝜏

− 1 = 0 (16)

has no real roots in (− ln𝑝/𝜏, 0).

Proof. By (14), we know that 𝑔(𝜇) > 0 for 𝜇 ∈ (0,∞). It is
not difficult to see that 𝑒𝜇𝜎/𝜇 is strictly decreasing on (−∞, 0)

while 𝑒𝜇𝜏 is strictly increasing on (−∞, 0). Notice that 𝑝𝑒𝜇𝜏 −
1 = 0 at 𝜇 = − ln𝑝/𝜏; we find that

𝑔 (𝜇) < 0 for 𝑢 ∈ (−∞,
− ln𝑝
𝜏

] . (17)

Hence,𝑓(𝜆) has no real roots which is equivalent to 𝑔(𝜇) that
has no real roots in (− ln𝑝/𝜏, 0).

Theorem 6. Suppose that 𝑝 > 1 and 𝜏 = 𝜎; then all solutions
of (1) are oscillatory if and only if

𝑞𝑒
𝜃𝜎

< 𝜎𝜃
2
, (18)

where 𝜃 = (−√𝑞𝜎(𝑞𝜎 + 4𝑝) − 𝑞𝜎)/2𝑝𝜎.

Proof. It is similar to the proof of Theorem 1; 𝑔(𝜃) is the
maximum value of 𝑔(𝜇) for 𝜇 ∈ (−∞, 0). This and Lemma 5
imply the result.

Theorem 7. Assume that 𝑝 > 1 and 𝜏 < 𝜎; then all solutions
of (1) are oscillatory if and only if

ℎ (𝜃) = 𝑞𝑒
𝜃𝜎

[(𝜏 − 𝜎) 𝜃 + 1] − 𝜏𝜃
2
< 0, (19)

where 𝜃 is a unique zero of (3) in (−∞, 0).

Proof. Firstly, we prove that 𝜑(𝜇) has a unique zero 𝜃 in
(−∞, 0). In fact,

𝜑
󸀠
(𝜇) = 𝑝𝜏𝑒

(𝜏−𝜎)𝜇
[(𝜏 − 𝜎) 𝜇

2
+ 2𝜇] + 𝑞𝜎. (20)

It is easy to verify that 𝜑󸀠(𝜇) is strictly increasing on (−∞, 0).
In addition,

𝜑
󸀠

(0) = 𝑞𝜎 > 0, 𝜑
󸀠
(𝜇) → −∞(𝜇 → −∞) . (21)

Therefore, 𝜑󸀠(𝜇) has a unique zero𝜔
0
in (−∞, 0). Hence, 𝜑(𝜇)

is strictly decreasing on (−∞,𝜔
0
) and strictly increasing on

(𝜔
0
, 0), so that 𝜑(𝜇) has a unique zero 𝜃 in (−∞, 0) as 𝜑(0) =

−𝑞 < 0 and 𝜑(𝜇) → +∞(𝜇 → −∞).

Now, from (8), it follows that 𝑔(𝜃) is the maximum value
of 𝑔(𝜇) in (−∞, 0). By (10), we know that (19) is equivalent to
𝑔(𝜇) < 0 for 𝜇 ∈ (−∞, 0).

From Theorem 7, we obtain the following corollary that
extends Theorem 1 in [25] for 𝜏 < 𝜎.

Corollary 8. If 𝑝 > 1, 𝜏 < 𝜎, and 𝜏𝑞𝑒
−(𝜎/𝜏) ln𝑝

⩾

𝜏ln2𝑝/(𝜎 ln𝑝 + 𝜏), then all solutions of (1) are oscillatory.

Proof. The inequality 𝜏𝑞𝑒
−(𝜎/𝜏) ln𝑝

⩾ 𝜏ln2𝑝/(𝜎 ln𝑝 + 𝜏) is
equivalent to 𝜑(− ln𝑝/𝜏) ⩽ 0. From the proof of Theorem 7,
we get that 𝜃 ⩽ − ln𝑝/𝜏. This and (17) imply 𝑔(𝜃) < 0;
therefore, ℎ(𝜃) < 0.

Theorem 9. Suppose that 𝑝 > 1 and 𝜏 > 𝜎; then all solutions
of (1) are oscillatory if and only if one of the following conditions
holds:

(𝐻
1
) 𝑞𝜎𝑒2−√2 ⩾ (2√2 − 2)𝑝𝜏/(𝜏 − 𝜎);

(𝐻
2
) 𝜎(𝜏 − 𝜎)𝜔

2

1
+ (2𝜎 − 𝜏)𝜔

1
⩽ 2;

(𝐻
3
) ℎ(𝜃
2
) = 𝑞𝑒

𝜃
2
𝜎
[(𝜏 − 𝜎)𝜃

2
+ 1] − 𝜏𝜃

2

2
< 0,

where𝜔
1
is a unique zero of 𝜑󸀠(𝜇) in (−2/(𝜏−𝜎), (√2−2)/(𝜏−

𝜎)) and 𝜃
2
is the maximum negative zero of 𝜑(𝜇).

Proof. By Lemma 5, all solutions of (1) are oscillatory if and
only if

𝑔 (𝜇) < 0, for 𝜇 ∈ (−∞, 0) . (22)

From (20), we have that

𝜑
󸀠
(𝜇) > 0 for 𝜇 ∈ (−∞,

−2

𝜏 − 𝜎
] , (23)

and𝜑󸀠(𝜇) is strictly decreasing on (−2/(𝜏−𝜎), (√2−2)/(𝜏−𝜎))

and strictly increasing on ((√2−2)/(𝜏−𝜎), 0).Thus, 𝜑󸀠((√2−

2)/(𝜏 − 𝜎)) is the minimum value of 𝜑󸀠(𝜇) in (−2/(𝜏 − 𝜎), 0).

(1) If 𝜑󸀠((√2 − 2)/(𝜏 − 𝜎)) ⩾ 0, which is the case of (H
1
),

we have that

𝜑
󸀠
(𝜇) ⩾ 0, 𝜇 ∈ (

−2

𝜏 − 𝜎
, 0) . (24)

Combining (23) and (24), we obtain that

𝜑 (𝜇) ⩽ 𝜑 (0) = −𝑞 < 0, 𝜇 ∈ (−∞, 0) . (25)

This means that 𝑔(𝜇) is strictly decreasing on (−∞, 0) and,
consequently,

𝑔 (𝜇) < lim
𝜇→−∞

𝑔 (𝜇) = −1. (26)

(2) If 𝜑󸀠((√2 − 2)/(𝜏 − 𝜎)) < 0, 𝜑󸀠(𝜇) has a unique zero
𝜔
1
in (−2/(𝜏 − 𝜎), (√2 − 2)/(𝜏 − 𝜎)) and a unique zero 𝜔

2
in
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((√2 − 2)/(𝜏 − 𝜎), 0) since 𝜑󸀠(−2/(𝜏 − 𝜎)) = 𝑞𝜎 > 0. Hence
𝜑(𝜇) is strictly increasing on (−∞,𝜔

1
), strictly decreasing

on (𝜔
1
, 𝜔
2
), and strictly increasing on (𝜔

2
, 0). Consequently,

𝜑(𝜔
1
) is the maximum value of 𝜑(𝜇) in (−∞,𝜔

2
). Now, it is

easy to find that (22) holds if 𝜑(𝜔
1
) ⩽ 0.

On the other hand, applying 𝜑󸀠(𝜔
1
) = 0, we can get

𝜑 (𝜔
1
) =

𝑞 [𝜎 (𝜏 − 𝜎) 𝜔
2

1
+ (2𝜎 − 𝜏) 𝜔

1
− 2]

(𝜏 − 𝜎) 𝜔
1
+ 2

. (27)

So 𝜑(𝜔
1
) ⩽ 0 is equivalent to 𝜎(𝜏 − 𝜎)𝜔

2

1
+ (2𝜎 − 𝜏)𝜔

1
⩽ 2.

This is the case of (H
2
).

If 𝜑(𝜔
1
) > 0, we obtain that 𝜑(𝜇) has a unique zero 𝜃

1
in

(−∞,𝜔
1
) and a unique zero 𝜃

2
in (𝜔
1
, 𝜔
2
). Therefore, 𝑔(𝜇) is

strictly decreasing on (−∞, 𝜃
1
), strictly increasing on (𝜃

1
, 𝜃
2
),

and strictly decreasing on (𝜃
2
, 0). Therefore, it is not difficult

to find that (22) holds if and only if 𝑔(𝜃
2
) < 0 and it is the case

of (H
3
).

From Theorem 9, we obtain the following corollary
immediately.

Corollary 10. If 𝑝 > 1, 𝜏 > 𝜎, and 𝑞𝜎 ⩾ 𝑝𝜏/(𝜏 − 𝜎), then all
solutions of (1) are oscillatory.

Example 11. Consider the following neutral delay differential
equation:

[𝑥 (𝑡) − 20𝑥 (𝑡 − 12)]
󸀠
+ 10.5𝑥 (𝑡 − 2) = 0. (28)

It is not difficult to see that 𝑝 = 20, 𝑞 = 10.5, 𝜏 = 12, and
𝜎 = 2. Consequently, 𝜏 > 𝜎, and

𝑞𝜎𝑒
2−√2

−
(2√2 − 2) 𝑝𝜏

𝜏 − 𝜎
> 21 (3 − √2) − 24 (2√2 − 2)

= 3 (37 − 23√2) > 0,

(29)

so that all the solutions of (28) are oscillatory from
Theorem 9.
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