
Research Article
An Interior Projected-Like Subgradient Method for Mixed
Variational Inequalities

Guo-ji Tang1 and Xing Wang2

1 School of Science, Guangxi University for Nationalities, Nanning, Guangxi 530006, China
2 School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330013, China

Correspondence should be addressed to Guo-ji Tang; guojvtang@126.com

Received 5 February 2014; Accepted 12 March 2014; Published 15 May 2014

Academic Editor: Xian-Jun Long

Copyright © 2014 G.-j. Tang and X. Wang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

An interior projected-like subgradient method for mixed variational inequalities is proposed in finite dimensional spaces, which is
based on using non-Euclidean projection-like operator. Under suitable assumptions, we prove that the sequence generated by the
proposed method converges to a solution of the mixed variational inequality. Moreover, we give the convergence estimate of the
method. The results presented in this paper generalize some recent results given in the literatures.

1. Introduction

Let R𝑛 be endowed with the inner product ⟨⋅, ⋅⟩ and the
associated norm ‖⋅‖. Let𝑋 be a nonempty, closed, and convex
subset of R𝑛 and let 𝐹 : R𝑛 󴁂󴀱 R𝑛 be a set-valued mapping.
Let 𝑓 : R𝑛 → R ∪ {+∞} be a proper, convex, and lower
semicontinuous function. The mixed variational inequality
problem (denoted by (MVI)) consists of finding an 𝑥∗ ∈ 𝑋
such that there exists 𝑢∗ ∈ 𝐹(𝑥∗) satisfying

⟨𝑢
∗

, 𝑥 − 𝑥
∗

⟩ + 𝑓 (𝑥) − 𝑓 (𝑥
∗

) ≥ 0, ∀𝑥 ∈ 𝑋, (1)

which is well known to be a very useful tool to formulate a
large class of problems encountered in mechanics, control,
economics, structural engineering, social sciences, and so on
[1–3]. In this paper, we denote by SOL(MVI) the solution set
of (MVI).

It is well known that (MVI) includes a large variety of
problems as special cases. For example, if 𝑓 = 𝛿

𝑋
, where

𝛿
𝑋
is the indicator function over the constraint set 𝑋, that

is, 𝛿
𝑋
(𝑥) = 0 if 𝑥 ∈ 𝑋 and 𝛿

𝑋
(𝑥) = +∞ otherwise, then

(MVI) reduces to the generalized variational inequality (in
short (GVI)): find an𝑥∗ ∈ 𝑋 such that there exists𝑢∗ ∈ 𝐹(𝑥∗)
satisfying

⟨𝑢
∗

, 𝑥 − 𝑥
∗

⟩ , ∀𝑥 ∈ 𝑋. (2)

If 𝑓 = 𝛿
𝑋
and 𝐹 is single-valued, then (MVI) collapses to

Stampacchia variational inequality problem: find 𝑥∗ ∈ 𝑋

such that

⟨𝐹 (𝑥
∗

) , 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝑋. (3)

One of the most interesting and important problems in
the variational inequality theory is the development of an
efficient iterative algorithm to compute approximate solu-
tions, and the convergence analysis of the algorithm. Many
methods have been proposed to solve (MVI) (see, e.g., [4–
15]). Most of them are projection-type methods. Recently,
projected subgradient methods have become effective and
strong tools for solving (MVI) (see, e.g., [8, 14]). However,
all these methods are based on the Euclidean projection
operator that produces iterates which hit the boundary of the
constraints andmight often lead to zigzagging effect resulting
in slower convergence properties. Moreover, the projection
itself can be computationally expensive, if the constraints are
not simple.

Recently, to overcome the above difficulties, Auslender
and Teboulle [16] proposed an approach for solving (GVI),
which is to replace the classical projection with a non-
Euclidean distance-like function that can automatically elim-
inate the constraints and produce interior trajectories. This
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line of analysis has been studied and developed over the
recent years [17, 18].

On the other hand, unlike problems (2) and (3), in
general, (MVI) is not equivalent to the fixed point problem
involving the projection operator because of the presence
of the nonlinear term 𝑓 in problem (MVI). However, the
projection-like map introduced by Auslender and Teboulle
[16–18] does not improve this situation. A natural problem is
whether the techniques presented in [16] can be generalized
from (GVI) to the setting of (MVI).That iswe expect to devise
a method for solving (MVI), which can not only inherit
the nice property of interior-point methods of Auslender
and Teboulle [16–18] but also overcome the difficulty as the
presence of the nonlinear term𝑓.This is themainmotivation
of this paper.

Motivated and inspired by the research work mentioned
above, in this paper, we aim at extending the methods pre-
sented in [16] tomixed variational inequalities by introducing
an interior projected-like subgradient method for mixed
variational inequalities. The proposed method is based on
using non-Euclidean projection-like operator. Under suitable
assumptions, we prove that the sequence generated by the
proposed method converges to a solution of the mixed
variational inequality. Moreover, we give the convergence
estimate of the method. The results presented in this paper
generalize and improve some recent results.

2. Preliminaries

Definition 1. Let 𝐹 : R𝑛 󴁂󴀱 R𝑛 be a set-valuedmapping.Then
the mapping 𝐹 is said to be

(i) monotone if, for any 𝑥, 𝑦 ∈ R𝑛, 𝑢 ∈ 𝐹(𝑥), and V ∈
𝐹(𝑦),

⟨V − 𝑢, 𝑦 − 𝑥⟩ ≥ 0; (4)

(ii) maximal monotone if it is monotone and the graph of
𝐹, denoted by Gph𝐹, is not properly contained in the
graph of any other monotone operator;

(iii) upper hemicontinuous at 𝑥
0
∈ R𝑛 if, for any 𝑦, 𝑧 ∈

R𝑛, the mapping 𝜑 : R
+
󴁂󴀱 R, 𝑡 󴁂󴀱 ⟨𝐹(𝑥

0
+ 𝑡𝑦), 𝑧⟩ is

upper continuous at 𝑡 = 0.

Remark 2. It is well known that 𝐹 : R𝑛 󴁂󴀱 R𝑛 is maximal
monotone if and only if

(i) for any 𝑥 ∈ R𝑛, 𝐹(𝑥) is a closed and convex subset of
R𝑛;

(ii) 𝐹 is upper hemicontinuous.

For many applications purposes, it will be useful to
consider the ground set𝑋 for (MVI) in the form

𝑋 := 𝐶 ∩ 𝑉, (5)

where𝐶 ⊂ R𝑛 is nonempty, open, and convex set with closure
𝐶 and 𝑉 := {𝑥 ∈ R𝑛 : 𝐴𝑥 = 𝑏}, where 𝐴 : R𝑛 → R𝑚 is a
linear map, and 𝑏 ∈ R𝑚 (see, e.g., [16–18]).

Definition 3. Let 𝑑 : R𝑛 × R𝑛 → R
+
∪ {+∞} be a proximal

distance which for each 𝑦 ∈ 𝐶 ∩ 𝑉 satisfies the following
properties:

(d
1
) 𝑑(⋅, 𝑦) is proper, lower semicontinuous, and convex
and 𝐶1 on 𝐶 ∩ 𝑉, with 𝑑(𝑦, 𝑦) = 0 and ∇

1
𝑑(𝑦, 𝑦) =

0 (the gradient of 𝑑(⋅, 𝑦) with respect to the first
variable);

(d
2
) dom𝑑(⋅, 𝑦) ⊂ 𝐶, and dom𝜕

1
𝑑(⋅, 𝑦) = 𝐶, where

𝜕
1
𝑑(⋅, 𝑦) denotes the subgradient map of the function

𝑑(⋅, 𝑦) with respect to the first variable;
(d
3
) 𝑑(⋅, 𝑦) is 𝜎 strongly convex, over 𝐶 ∩ 𝑉; that is, there
exists 𝜎 > 0 such that for all 𝑦 ∈ 𝐶 ∩ 𝑉,

⟨∇
1
𝑑 (𝑥
1
, 𝑦) − ∇

2
𝑑 (𝑥
2
, 𝑦) , 𝑥

1
− 𝑥
2
⟩ ≥ 𝜎

󵄩󵄩󵄩󵄩𝑥1 − 𝑥2
󵄩󵄩󵄩󵄩
2

,

∀𝑥
1
, 𝑥
2
∈ 𝐶 ∩ 𝑉,

(6)

for some norm ‖ ⋅ ‖ in R𝑛.

We denote byD
𝑉
(𝐶) the family of functions 𝑑 satisfying

the above three properties.

Remark 4. It is easy to see that the usual squared Euclidean
distance 𝑑

1
(𝑥, 𝑦) := ‖𝑥 − 𝑦‖

2 satisfies the above three
properties; that is, 𝑑

1
(⋅, ⋅) ∈ D

𝑉
(𝐶). Therefore, the notion

of proximal distance extends the usual squared Euclidean
distance.

Given 𝑑 ∈ D
𝑉
(𝐶), it follows from the proof of Proposi-

tion 2.1 of [18] that for each 𝑥 ∈ 𝐶 ∩ 𝑉 and for each 𝑔 ∈ R𝑛

there exists a unique (by strong convexity) point 𝑝(𝑔, 𝑥) ∈
𝐶 ∩ 𝑉 solving

𝑝 (𝑔, 𝑥) := argmin
V∈𝑉

{⟨V, 𝑔⟩ + 𝑑 (V, 𝑥)} . (7)

From this fact, one can define a projected-likemap as follows.

Definition 5. For any 𝑔 ∈ R𝑛, and any 𝑥 ∈ 𝐶∩𝑉, a projected-
like map 𝑝(⋅, ⋅) is defined by

𝑝 (𝑔, 𝑥) := argmin
V∈𝑉

{⟨V, 𝑔⟩ + 𝑑 (V, 𝑥)} . (8)

Remark 6. (i) From the optimality conditions for the convex
problem (8) (see, e.g., [19]), there exists 𝜇 := 𝜇(𝑔, 𝑥) ∈ R𝑚

such that

𝑔 + 𝐴
𝑡

𝜇 + ∇
1
𝑑 (𝑝 (𝑔, 𝑥) , 𝑥) = 0, 𝐴𝑝 (𝑔, 𝑥) = 𝑏. (9)

(ii) We would like to mention that the resulting
projection-like map 𝑝(𝑔, 𝑥) remains in 𝐶 ∩ 𝑉, that is, an
interior point with respect to the constraint set 𝐶. However,
we also note that the properties of the map 𝑝 remain valid for
an arbitrary closed and convex set𝑋.The resulting projection
map in that case leads to a noninterior projection-like map 𝑝
defined by

𝑝 (𝑔, 𝑥) := argmin
𝑧∈𝑋

{⟨𝑔, 𝑧⟩ + 𝑑 (𝑧, 𝑥)} (10)
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and characterized via

⟨𝑝 (𝑔, 𝑥) − 𝜉, 𝑔⟩

≤ ⟨𝜉 − 𝑝 (𝑔, 𝑥) , ∇
1
𝑑 (𝑝 (𝑔, 𝑥) , 𝑥) , 𝑥⟩ , ∀𝜉 ∈ 𝑋.

(11)

In particular for 𝑑(𝑥, 𝑦) = (1/2)‖𝑥 − 𝑦‖2, we have 𝑝(𝑔, 𝑥) =
𝑃
𝑋
(𝑥 − 𝑔), where 𝑃

𝑋
is the usual Euclidean projection

operator.

Lemma 7 (Proposition 4.1 of [18]). For any 𝑥 ∈ 𝐶 ∩ 𝑉 and
any 𝑔 ∈ R𝑛 and 𝜆 > 0, the point 𝑝(𝜆𝑔, 𝑥) satisfies 𝑝(0, 𝑥) = 𝑥
and the following properties hold:

(i) 𝜎‖𝑥 − 𝑝(𝜆𝑔, 𝑥)‖2 ≤ 𝜆⟨𝑥 − 𝑝(𝜆𝑔, 𝑥), 𝑔⟩;

(ii) ‖𝑝(𝜆𝑔, 𝑥) − 𝑥‖ ≤ 𝜆𝜎−1‖𝑔‖.

To establish convergence of our algorithm in this paper,
for each given 𝑑 ∈ D(𝐶), we need a corresponding proximal
distance𝐻 satisfying some desirable properties.

Definition 8. Given𝐶 ⊂ R𝑛, open and convex, and 𝑑 ∈ D(𝐶),
a function𝐻 : R𝑛 ×R𝑛 → R

+
∪ {+∞} is called the induced

proximal distance to 𝑑 if𝐻 is finite valued on 𝐶×𝐶 such that
for any 𝑎, 𝑏 ∈ 𝐶,

𝐻(𝑎, 𝑎) = 0, (12)

⟨𝑐 − 𝑏, ∇
1
𝑑 (𝑏, 𝑎)⟩ ≤ 𝐻 (𝑐, 𝑎) − 𝐻 (𝑐, 𝑏) , ∀𝑐 ∈ 𝐶, (13)

and

(i) for any 𝑦 ∈ 𝐶 and {𝑦
𝑘
} ⊂ 𝐶 being bounded with

lim
𝑘→+∞

𝐻(𝑦, 𝑦
𝑘
) = 0, one has lim

𝑘→+∞
𝑦
𝑘
= 𝑦;

(ii) for any 𝑦 ∈ 𝐶 and {𝑦
𝑘
} ⊂ 𝐶 converging to 𝑦, one has

lim
𝑘→+∞

𝐻(𝑦, 𝑦
𝑘
) = 0;

(iii) for any 𝑦 ∈ 𝐶, lim
𝑥∈𝐶,‖𝑥‖→∞

𝐻(𝑦, 𝑥) = +∞.

We write (𝑑,𝐻) ∈ F
+
(𝐶) to quantify the triple [𝐶, 𝑑,𝐻]

that satisfies the premises of Definition 8.

Remark 9. One typical and useful example is the logarithmic
quadratic distance 𝑑 given by

𝑑 (𝑧, 𝑥) =

𝑛

∑
𝑗=1

𝑥
2

𝑗
𝜔 (𝑥
−1

𝑗
𝑧
𝑗
)

with 𝜔 (𝑡) = 𝜎
2
(𝑡 − 1)

2

+ 𝜇 (𝑡 − log 𝑡 − 1) ,

(14)

with 𝜎 ≥ 𝜇 > 0. In that case, with𝐻(𝑥, 𝑦) = 𝜂‖𝑥 − 𝑦‖2, 𝜂 :=
2
−1

(𝜇 + 𝜎), one can verify that (𝑑,𝐻) ∈ F
+
(𝐶) (see page 709

of [18]). For more examples, the interested reader is referred
to [16–18].

3. An Interior Projected-Like
Subgradient Method

In this paper, we adopt the following assumptions.

Assumption A. (A
1
) The solution set of (MVI) is nonempty;

that is, SOL(MVI) ̸= 0.
(A
2
) dom𝐹 := {𝑥 ∈ R𝑛 : 𝐹(𝑥) ̸= 0} ⊃ 𝑋 and 𝐹 is maximal

monotone.
(A
3
) 𝐹 is bounded on bounded subset of ri(𝑋).

(A
4
) 𝑓 : R𝑛 → R ∪ {+∞} is convex, lower semicontinu-

ous, proper, and finite on𝑋.
(A
5
) The subdifferential map 𝜕𝑓 is nonempty on 𝑋 and

bounded on bounded subsets of ri(𝑋).

Remark 10. The Assumptions (A
1
)–(A
3
) are the same as

Assumption A of [16]. The Assumptions (A
4
)-(A
5
) are the

same asAssumptions (B
1
)-(B
2
) of [16].These assumptions are

the same as those of [14], except for those on the mapping 𝐹.

Algorithm 11. Initialization. Let 𝑥1 ∈ 𝐶 ∩ 𝑉.

Iteration Step. Given 𝑥𝑘 ∈ 𝐶 ∩ 𝑉, take 𝑢𝑘 ∈ 𝐹(𝑥𝑘) and V𝑘 ∈
𝜕𝑓(𝑥
𝑘

), and compute

𝑥
𝑘+1

:= 𝑝 (𝜆
𝑘
(𝑢
𝑘

+ V𝑘) , 𝑥𝑘) for some 𝜆
𝑘
> 0. (15)

Remark 12. (i) If 𝑓 = 𝛿
𝑋
, then (15) reduces to (3.11) of [16].

Thus, Algorithm 11 generalizes the basic iteration scheme of
[16] from the variational inequality to the setting of themixed
variational inequality.

(ii) If 𝑑(𝑥, 𝑦) = (1/2)‖𝑥 − 𝑦‖2, then (15) becomes

𝑥
𝑘+1

:= 𝑃
𝑋
[𝑥
𝑘

− 𝜆
𝑘
(𝑢
𝑘

+ V𝑘)] , (16)

which is the basic scheme of projected subgradient methods
for mixed variational inequality (see, e.g., [8, 11, 12, 14]).

We first establish the key result giving themain properties
of the basic scheme (15) that will be used extensively to
establish our convergence results.

Lemma 13. Let (𝑑,𝐻) ∈ F
+
(𝐶) and let {𝑥𝑘} ⊂ 𝐶 ∩ 𝑉

be the sequence generated by Algorithm 11. Then the following
properties hold:

(a) 𝜆
𝑘
⟨𝑥
𝑘

− 𝜉, 𝑢
𝑘

+ V𝑘⟩ ≤ 𝐻(𝜉, 𝑥
𝑘

) − 𝐻(𝜉, 𝑥
𝑘+1

) +

𝜆
2

𝑘
𝜎
−1

‖𝑢
𝑘

+ V𝑘‖
2

, ∀𝜉 ∈ 𝐶 ∩ V;

(b) 𝐻(𝑥∗, 𝑥𝑘+1) ≤ 𝐻(𝑥
∗

, 𝑥
𝑘

) + 𝜆
2

𝑘
𝜎
−1

‖𝑢
𝑘

+ V𝑘‖
2

, ∀𝑥
∗

∈

𝑆𝑂𝐿(𝑀𝑉𝐼);
(c) for any 𝜉 ∈ 𝐶 ∩ 𝑉 and 𝑢 ∈ 𝐹(𝜉),

⟨𝑢, 𝑧
𝑙

− 𝜉⟩ + 𝑓 (𝑧
𝑙

) − 𝑓 (𝜉)

≤
𝐻(𝜉, 𝑥

1

) + 𝜎
−1

∑
𝑙

𝑘=1
𝜆
2

𝑘

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

+ V𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝑠
𝑙

(17)

with 𝑧𝑙 := ∑𝑙
𝑘=1
𝜆
𝑘
𝑥
𝑘

/𝑠
𝑙
and 𝑠l := ∑

𝑙

𝑘=1
𝜆
𝑘
.
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Proof. (a) Set 𝛼
𝑘
:= ⟨𝑢
𝑘

+ V𝑘, 𝑥𝑘 − 𝑥𝑘+1⟩. It follows from item
(i) of Lemma 7 that

𝜎
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+1
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝜆
𝑘
⟨𝑥
𝑘

− 𝑥
𝑘+1

, 𝑢
𝑘

+ V𝑘⟩

≤ 𝜆
𝑘
𝛼
𝑘
≤ 𝜆
𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+1
󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

+ V𝑘
󵄩󵄩󵄩󵄩󵄩
.

(18)

As a consequence, we have

𝛼
𝑘
≥ 0,

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
𝑘+1
󵄩󵄩󵄩󵄩󵄩
≤ 𝜆
𝑘
𝜎
−1
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

+ V𝑘
󵄩󵄩󵄩󵄩󵄩
,

𝛼
𝑘
≤ 𝜆
𝑘
𝜎
−1
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

+ V𝑘
󵄩󵄩󵄩󵄩󵄩

2

.

(19)

Now let 𝜉 ∈ 𝐶 ∩ 𝑉. It follows from inequality (13) and the
relation (9) that

𝜆
𝑘
⟨𝑥
𝑘+1

− 𝜉, 𝑢
𝑘

+ V𝑘⟩ ≤ 𝐻(𝜉, 𝑥𝑘) − 𝐻(𝜉, 𝑥𝑘+1) . (20)

Since

⟨𝑢
𝑘

+ V𝑘, 𝑥𝑘+1 − 𝜉⟩

= ⟨𝑢
𝑘

+ V𝑘, 𝑥𝑘+1 − 𝑥𝑘⟩ + ⟨𝑢𝑘 + V𝑘, 𝑥𝑘 − 𝜉⟩ ,
(21)

we have

𝜆
𝑘
⟨𝑥
𝑘

− 𝜉, 𝑢
𝑘

+ V𝑘⟩

≤ 𝐻(𝜉, 𝑥
𝑘

) − 𝐻(𝜉, 𝑥
𝑘+1

) + 𝜆
𝑘
𝛼
𝑘
, ∀𝜉 ∈ 𝐶 ∩ 𝑉.

(22)

This together with (19) implies item (a).
(b) For each 𝑥∗ ∈ SOL(MVI) with any 𝑢∗ ∈ 𝐹(𝑥∗), we

have

⟨𝑥
𝑘

− 𝑥
∗

, 𝑢
𝑘

+ V𝑘⟩

≥ ⟨𝑢
𝑘

, 𝑥
𝑘

− 𝑥
∗

⟩ + 𝑓 (𝑥
𝑘

) − 𝑓 (𝑥
∗

) (by V𝑘 ∈ 𝜕𝑓 (𝑥𝑘))

≥ ⟨𝑢
∗

, 𝑥
𝑘

− 𝑥
∗

⟩ + 𝑓 (𝑥
𝑘

) − 𝑓 (𝑥
∗

)

(by the monotonicity of 𝐹)

≥ 0. (by 𝑥∗ ∈ SOL (MVI)) .
(23)

Combining with item (a) taking 𝜉 = 𝑥∗, we obtain item (b).
(c) For each 𝜉 ∈ 𝐶 ∩ 𝑉, it follows from the monotonicity

of 𝐹, V𝑘 ∈ 𝜕𝑓(𝑥𝑘) and item (a) that

𝐻(𝜉, 𝑥
𝑘

) − 𝐻(𝜉, 𝑥
𝑘+1

) + 𝜆
2

𝑘
𝜎
−1
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

+ V𝑘
󵄩󵄩󵄩󵄩󵄩

2

≥ 𝜆
𝑘
⟨𝑥
𝑘

− 𝜉, 𝑢
𝑘

+ V𝑘⟩ (by item (a))

≥ 𝜆
𝑘
[⟨𝑢
𝑘

, 𝑥
𝑘

− 𝜉⟩ + 𝑓 (𝑥
𝑘

) − 𝑓 (𝜉)] (by V𝑘 ∈ 𝜕𝑓 (𝑥𝑘))

≥ 𝜆
𝑘
[⟨𝑢, 𝑥

𝑘

− 𝜉⟩ + 𝑓 (𝑥
𝑘

) − 𝑓 (𝜉)] ,

∀𝑢 ∈ 𝐹 (𝜉) (by the monotonicity of 𝐹) .
(24)

Summing over 𝑘 = 1, . . . , 𝑙 and dividing both members by 𝑠
𝑙
,

by the convexity of 𝑓, one obtains that for each 𝑢 ∈ 𝐹(𝜉),

⟨𝑢, 𝑧
𝑙

− 𝜉⟩ + 𝑓 (𝑧
𝑙

) − 𝑓 (𝜉)

≤
𝐻 (𝜉, 𝑥

1

) + 𝜎
−1

∑
𝑙

𝑘=1
𝜆
2

𝑘

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

+ V𝑘
󵄩󵄩󵄩󵄩󵄩

2

𝑠
𝑙

.

(25)

This completes the proof.

From now on, we analyze the convergence behavior of
Algorithm 11 by choosing the parameter 𝜆

𝑘
as

𝜆
𝑘
= 𝜃
𝑘
𝜇
𝑘
, (26)

where the parameter 𝜃
𝑘
is freely chosen and satisfies

𝜃
𝑘
> 0,

∞

∑
𝑘=1

𝜃
𝑘
= +∞,

∞

∑
𝑘=1

𝜃
2

𝑘
< +∞. (27)

About the parameter 𝜇
𝑘
, we make the following assumptions.

Assumption B. (B
1
) {𝑢
𝑘

} and {V𝑘} are bounded⇒ there exists
𝜇
∗
> 0 such that 𝜇

𝑘
≥ 𝜇
∗
for all 𝑘;

(B
2
) there exits some 𝐿 > 0 such that 𝜇

𝑘
‖𝑢
𝑘

+ V𝑘‖ ≤ 𝐿 for
all 𝑘.

Remark 14. We would like to mention that there are many
well-known alternatives for the choice of 𝜇

𝑘
; for example,

𝜇
𝑘
=
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

+ V𝑘
󵄩󵄩󵄩󵄩󵄩

−1

,

𝜇
𝑘
= max {1, 󵄩󵄩󵄩󵄩󵄩𝑢

𝑘

+ V𝑘
󵄩󵄩󵄩󵄩󵄩

−1

} ,

𝜇
𝑘
= (1 +

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

+ V𝑘
󵄩󵄩󵄩󵄩󵄩
)
−1

,

𝜇
𝑘
= max {𝜃

𝑘
,
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘

+ V𝑘
󵄩󵄩󵄩󵄩󵄩

−1

} .

(28)

The interested reader is referred to [8, 14, 20, 21]. Note that
both hypotheses (with 𝐿 = 1 for (B

2
)) are satisfied by all

the above suggested choices for 𝜇
𝑘
. In particular, if 𝑑(𝑥, 𝑦) =

(1/2)‖𝑥 − 𝑦‖
2 and 𝜆

𝑘
= 𝜃
𝑘
𝜇
𝑘
with 𝜇

𝑘
= (max{1, ‖𝑢𝑘‖ +

‖V𝑘‖})−1, then Algorithm 11 reduces to the method proposed
by Xia et al. [14].

Theorem 15. Let (𝑑,𝐻) ∈ F
+
(𝐶). Suppose that Assump-

tions A and B hold. Let {𝑥𝑙} be the sequence generated by
Algorithm 11, and set

𝑠
𝑙
=

𝑙

∑
𝑘=1

𝜆
𝑘
, 𝑧

𝑙

=
∑
𝑙

𝑘=1
𝜆
𝑘
𝑥
𝑘

𝑠
𝑙

. (29)

Then the sequences {𝑥𝑙}, {𝑧𝑙} are bounded and each cluster
point of the sequence {𝑧𝑙} belongs to the solution set of (MVI).
Moreover, suppose that

𝐻(𝑥, 𝑦) = ]󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2

, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ] > 0. (30)

Then the whole sequence {𝑧𝑙} converges to some solution of
(MVI).
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Proof. We divide the proof into two steps.

Step 1. Invoking item (b) of Lemma 13, and using assumption
(B
2
), we get by induction

𝐻(𝑥
∗

, 𝑥
𝑘

)

≤ 𝐻(𝑥
∗

, 𝑥
1

) + 𝐿
2

𝜎
−1

𝑘

∑
𝑙=1

𝜃
2

𝑙
, ∀𝑥

∗

∈ SOL (MVI) .
(31)

Using ∑∞
𝑘=1
𝜃
2

𝑘
< +∞, it is easy to see that {𝐻(𝑥∗, 𝑥𝑘)} is

bounded. From item (iii) of Definition 8, we know that {𝑥𝑘} is
bounded. As a consequence the sequence {𝑧𝑘} is bounded. It
follows from Assumptions (A

3
) and (A

5
) that the sequences

{𝑢
𝑘

} and {V𝑘} are also bounded.Then, using Assumption (B
1
)

we get
𝜇
𝑘
≥ 𝜇
∗
, ∀𝑘. (32)

Since 𝑠
𝑙
= ∑
𝑙

𝑘=1
𝜃
𝑘
𝜇
𝑘
, using inequality (32), one has 𝑠

𝑙
≥

𝜇
∗
∑
𝑙

𝑘=1
𝜃
𝑘
. It follows from item (c) of Lemma 13 that for any

𝜉 ∈ 𝐶 ∩ 𝑉 and 𝑢
𝜉
∈ 𝐹(𝜉),

⟨𝑢
𝜉
, 𝑧
𝑙

− 𝜉⟩ + 𝑓 (𝑧
𝑙

) − 𝑓 (𝜉) ≤
𝐾
𝜉

∑
𝑙

𝑘=1
𝜃
𝑘

,

with 𝐾
𝜉
=
𝐻(𝜉, 𝑥

1

) + 𝜎
−1

𝐿
2

∑
𝑙

𝑘=1
𝜃
2

𝑘

𝜇
∗

.

(33)

Let 𝑧∞ be a cluster point of the sequence {𝑧𝑙}. Since ∑∞
𝑘=1

=

+∞ and 𝑓 is lower semicontinuous, taking limits in both
sides of inequality (32), one gets

⟨𝑢
𝜉
, 𝑧
∞

− 𝜉⟩ + 𝑓 (𝑧
∞

) − 𝑓 (𝜉) ≤ 0,

∀𝜉 ∈ 𝑋 = 𝐶 ∩ 𝑉, ∀𝑢
𝜉
∈ 𝐹 (𝜉) .

(34)

Furthermore, 𝑧∞ ∈ 𝑋. Now set 𝐹
𝑝
(𝑥) := 𝐹(𝑥)+𝜕(𝑓+𝛿

𝑋
)(𝑥),

where 𝛿
𝑋
denotes the indicator function over𝑋; that is, if 𝑥 ∈

𝑋, then 𝛿
𝑋
= 0, otherwise, 𝛿

𝑋
= +∞. Since𝐹(𝑥) is nonempty

for each 𝑥 ∈ 𝑋, it follows that 𝐹
𝑝
is maximal monotone. From

the definition of subdifferential, we have
⟨V
𝜉
, 𝑧
∞

− 𝜉⟩ + 𝑓 (𝜉) − 𝑓 (𝑧
∞

) ≤ 0,

∀V
𝜉
∈ 𝜕 (𝑓 + 𝛿

𝑋
) (𝜉) , ∀𝜉 ∈ 𝑋.

(35)

Summing both sides of inequalities (34) and (35), we obtain

⟨𝑢
𝜉
+ V
𝜉
, 𝑧
∞

− 𝜉⟩ ≤ 0, ∀𝜉 ∈ 𝑋, ∀𝑔
𝑝
:= 𝑢
𝜉
+ V
𝜉
∈ 𝐹
𝑝
(𝜉) .

(36)

Since 𝐹
𝑝
is maximal monotone, this means that 0 ∈ 𝐹

𝑝
(𝑧
∞

),
which is equivalent to say that 𝑧∞ is a solution of (MVI).

Step 2. Invoking item (b) of Lemma 13, andusingAssumption
(B
2
), we get by induction

𝐻(𝑥
∗

, 𝑥
𝑘+𝑝

) ≤ 𝐻(𝑥
∗

, 𝑥
𝑘

) + 𝜎
−1

𝐿
2

𝑘+𝑝

∑
𝑙=𝑘

𝜃
2

𝑙
,

∀𝑥
∗

∈ SOL (MVI) , ∀𝑝 ∈ N.

(37)

Using ∑∞
𝑘=1
𝜃
2

𝑘
< +∞ and (30) we get

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+𝑝

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜌
𝑘
, ∀𝑥

∗

∈ SOL (MVI) ,

with lim
𝑘→∞

𝜌
𝑘
= 0.

(38)

From item (i), we know that the sequence {𝑧𝑙} is bounded
with all its cluster points belonging to SOL(MVI). Thus, to
complete the proof of our claim on the whole convergence
of the sequence {𝑧𝑙} to a solution of (MVI), we only need to
prove that the sequence {𝑧𝑙} has a unique cluster point. The
proof of the remainder is exactly the same one as given by
Bruck [22] in Steps 2 and 3 of Theorem 1. For the sake of
convenience, the reader is also referred to Corollary 1 of the
recent paper [16] (page 38–40) and so we omit it here.

Remark 16. If 𝑓 = 𝛿
𝑋
, thenTheorem 15 reduces to item (a) of

Theorem 1 and Corollary 1 of [16]. Thus, we extend the main
results of [16] from variational inequalities to the setting of
mixed variational inequalities.

Remark 17. Compared with Theorem 3.5 of Xia et al. [14],
Theorem 15 says that the sequence {𝑧𝑙}, rather than {𝑥𝑘}, is
convergent to a solution of (MVI).

Definition 18. A function 𝛾 : 𝑋 ⊂ R𝑛 → R
+
is called a gap

function for (MVI) when the following statements hold:

(i) 𝛾(𝑧) ≥ 0 for any 𝑧 ∈ 𝑋;
(ii) 𝛾(𝑧

0
) = 0 if and only if 𝑧

0
is the solution of (MVI).

Clearly, a gap functionwith the properties ofDefinition 18
allows us to reformulate (MVI) as an optimization problem,
namely, as

min
𝑧∈𝑋

𝛾 (𝑧) . (39)

In order to establish efficiency estimates for mixed varia-
tional inequality problems, we will introduce a gap function
for (MVI).

Proposition 19. The function

𝛾 (𝑧) = sup {⟨𝑔, 𝑧 − 𝜉⟩ + 𝑓 (𝑧) − 𝑓 (𝜉) : 𝑔 ∈ 𝐹 (𝜉) , 𝜉 ∈ 𝑋}
(40)

is a gap function for (MVI).

Proof. The proof is in two parts.

(i) [𝛾(𝑧) ≥ 0] It is easy to see that

𝛾 (𝑧)

= sup {⟨𝑔, 𝑧 − 𝑥⟩ + 𝑓 (𝑧) − 𝑓 (𝑥) : 𝑔 ∈ 𝐹 (𝑥) , 𝑥 ∈ 𝑋}

≥ ⟨𝑔
𝑧
, 𝑧 − 𝑧⟩ + 𝑓 (𝑧) − 𝑓 (𝑧) (𝑔

𝑧
∈ 𝐹 (𝑧))

= 0.

(41)
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(ii) [𝛾(𝑧
0
) = 0 ⇔ 𝑧

0
∈ SOL(MVI)] If 𝑧

0
∈ 𝑋 solves

(MVI), then there exists 𝑔
𝑧0
∈ 𝐹(𝑧
0
) such that

⟨𝑔
𝑧0
, 𝑥 − 𝑧

0
⟩ + 𝑓 (𝑥) − 𝑓 (𝑧

0
) ≥ 0, ∀𝑥 ∈ 𝑋. (42)

By monotonicity of 𝐹, we have

⟨𝑔
𝑥
, 𝑥 − 𝑧

0
⟩ + 𝑓 (𝑥) − 𝑓 (𝑧

0
) ≥ 0,

∀𝑥 ∈ 𝑋, 𝑔
𝑥
∈ 𝐹 (𝑥) .

(43)

Therefore, it follows that

𝛾 (𝑧
0
)

= sup {⟨𝑔
𝑥
, 𝑧
0
− 𝑥⟩ + 𝑓 (𝑧

0
) − 𝑓 (𝑥) : 𝑔

𝑥
∈ 𝐹 (𝑥) , 𝑥 ∈ 𝑋}

≤ 0.

(44)

By item (i), we have 𝛾(𝑧
0
) = 0.

Conversely, if 𝛾(𝑧
0
) = 0, then, by the definition of 𝛾, we

get

⟨𝑔
𝑥
, 𝑥 − 𝑧

0
⟩ + 𝑓 (𝑥) − 𝑓 (𝑧

0
) ≥ 0, ∀𝑥 ∈ 𝑋, 𝑔

𝑥
∈ 𝐹 (𝑥) .

(45)

By maximal monotonicity of 𝐹, we know that 𝐹 is upper
hemicontinuous. Therefore, it is easy to see that there exists
𝑔
𝑧0
∈ 𝐹(𝑧
0
) such that

⟨𝑔
𝑧0
, 𝑦 − 𝑧

0
⟩ + 𝑓 (𝑦) − 𝑓 (𝑧

0
) ≥ 0, ∀𝑦 ∈ 𝑋. (46)

This completes the proof.

In order to characterize the convergence estimate of
Algorithm 11, we also need the quantity

𝑉
𝐻
= sup {𝐻 (𝜉, 𝑥1) : 𝜉 ∈ 𝑋} . (47)

Now we present the convergence estimate of Algorithm 11.

Theorem 20. Let (𝑑,𝐻) ∈ F
+
(𝐶). Suppose that Assump-

tions A and B hold. Let {𝑥𝑙} be the sequence generated by
Algorithm 11 and set

𝑠
𝑙
=

𝑙

∑
𝑘=1

𝜆
𝑘
, 𝑧

𝑙

=
∑
𝑙

𝑘=1
𝜆
𝑘
𝑥
𝑘

𝑠
𝑙

. (48)

If 𝑉
𝐻
is finite, then we have

𝛾 (𝑧
𝑙

) ≤ (
𝑉
𝐻
+ 𝜎
−1

𝐿
2

∑
∞

𝑘=1
𝜃
2

𝑘

𝜇
∗

) ⋅
1

∑
𝑙

𝑘=1
𝜃
𝑘

, ∀𝑙. (49)

Proof. If 𝑉
𝐻
is finite, then the estimate (49) is an immediate

consequence of inequality (33) and the definition of the gap
function 𝛾(⋅).

Remark 21. If 𝑓 = 𝛿
𝑋
, then Theorem 20 reduces to item (b)

of Theorem 1 of [16].
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