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This paper is concerned with the existence of solutions to a discrete three-point boundary value problem at resonance involving
the Riemann-Liouville fractional difference of order 𝛼 ∈ (0, 1]. Under certain suitable nonlinear growth conditions imposed
on the nonlinear term, the existence result is established by using the coincidence degree continuation theorem. Additionally, a
representative example is presented to illustrate the effectiveness of the main result.

1. Introduction

For any number 𝑎 ∈ R, we denote N
𝑎
= {𝑎, 𝑎 + 1, 𝑎 + 2, . . .}

and [𝑐, 𝑑]N
𝑎

= {𝑐, 𝑐 + 1, . . . , 𝑑 − 1, 𝑑}, for any 𝑐, 𝑑 ∈ N
𝑎
with

𝑐 < 𝑑, throughout this paper. It is also worth noting that, in
what follows, we appeal to the conventions ∑𝑘2

𝑠=𝑘
1

𝑢(𝑠) = 0

and∏𝑘2
𝑠=𝑘
1

𝑢(𝑠) = 1 for a given function 𝑢 defined on N
𝑎
and

𝑘
1
, 𝑘
2
∈ N
𝑎
with 𝑘

1
> 𝑘
2
.

In this paper, we will consider the existence of solutions
for the following discrete fractional three-point boundary
value problem:

Δ
𝛼

𝑢 (𝑡) = 𝑓 (𝑡 + 𝛼 − 1, 𝑢 (𝑡 + 𝛼 − 1)) , 𝑡 ∈ [0, 𝑏]N
0

,

𝑢 (𝛼 − 1) − 𝛽𝑢 (𝛼 + 𝜂) = 𝛾𝑢 (𝛼 + 𝑏) ,

(1)

where 0 < 𝛼 ≤ 1 is a real number, Δ𝛼 denotes the Riemann-
Liouville fractional difference of order 𝛼, 𝑓 : [𝛼 − 1, 𝛼 + 𝑏 −
1]N
𝛼−1

×R → R, 𝜂 ∈ [0, 𝑏 − 1]N
0

, 𝛽, 𝛾 > 0, and

𝛽

𝜂+1

∏

𝑖=1

𝛼 + 𝑖 − 1

𝑖

+ 𝛾

𝑏+1

∏

𝑖=1

𝛼 + 𝑖 − 1

𝑖

= 1, (2)

which implies that the problem (1) is at resonance. We note
that the problem (1) happens to be at resonance in the sense

that the associated linear homogeneous boundary value
problem

Δ
𝛼

𝑢 (𝑡) = 0, 𝑡 ∈ [0, 𝑏]N
0

,

𝑢 (𝛼 − 1) − 𝛽𝑢 (𝛼 + 𝜂) = 𝛾𝑢 (𝛼 + 𝑏) ,

(3)

has 𝑢(𝑡) = 𝑐𝑡𝛼−1, 𝑡 ∈ [𝛼 − 1, 𝛼 + 𝑏]N
𝛼−1

, 𝑐 ∈ R, as a nontrivial
solution.

The continuous fractional calculus has received increas-
ing attention within the last ten years or so and the theory
of fractional differential equations has been a new important
mathematical branch due to its demonstrated applications in
various fields of science and engineering. For more details,
see [1–14] and references therein. Significantly less is known,
however, about the discrete fractional calculus, but in recent
several years, a lot of papers have appeared; see [15–36]. For
example, in [19], Atıcı and Eloe explored a discrete frac-
tional conjugate boundary value problem with the Riemann-
Liouville fractional difference. To the best of our knowledge,
this is a pioneering work on discussing boundary value
problems in discrete fractional calculus. After that, Goodrich
studied discrete fractional boundary value problems involv-
ing the Riemann-Liouville fractional difference intensively
and obtained a series of excellent results; see [20–26]. Bastos
et al. in [28, 29] considered the discrete fractional calcu-
lus of variations and established the necessary conditions
for fractional difference variational problems. Abdeljawad
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introduced the Caputo fractional difference and developed
some useful properties of it in [30]. Ferreira [35] investigated
the existence and uniqueness of solutions for some discrete
fractional nonresonance boundary value problems of order
less than one by using the Banach fixed point theorem.

Although the solvability of fractional boundary value
problems has been studied extensively, there are few papers
dealing with it under resonance conditions, besides [37–41].
Additionally, as far as we know, the existence of solutions to
discrete fractional boundary value problems at resonance has
not been studied.

Motivated by the aforementioned results, we will inves-
tigate the discrete fractional boundary value problem (1) at
resonance and establish some sufficient conditions for the
existence of solutions to it by using the coincidence degree
theory.

For the sake of convenience, we will always assume that
the following conditions hold in this paper:

(H
1
) 𝛼 ∈ (0, 1], 𝜂 ∈ [0, 𝑏 − 1]N

0

, 𝛽, 𝛾 > 0, and 𝛽∏𝜂+1
𝑖=1
(𝛼 +

𝑖 − 1)/𝑖 + 𝛾∏
𝑏+1

𝑖=1
(𝛼 + 𝑖 − 1)/𝑖 = 1;

(H
2
) 𝑓 : [𝛼 − 1, 𝛼 + 𝑏 − 1]N

𝛼−1

×R → R is continuous.

The remainder of this paper is organized as follows.
Section 2 preliminarily provides some necessary basic knowl-
edge for the theory of discrete fractional calculus and the
coincidence degree continuation theorem. In Section 3, the
existence result of solutions for problem (1) will be established
with the help of the coincidence degree theory. Finally in
Section 4, a concrete example is provided to illustrate the
possible application of the established analytical result.

2. Preliminaries

Since the theory of discrete fractional calculus is in its infancy
to some extent, in order tomake this paper self-contained, we
begin by presenting here somenecessary basic definitions and
lemmas about it. For more details, see [15, 16, 19, 34].

Definition 1 (see [15]). For any 𝑡 and ], the falling factorial
function is defined as

𝑡
]
=

Γ (𝑡 + 1)

Γ (𝑡 + 1 − ])
, (4)

provided that the right-hand side is well defined.We appeal to
the convention that if 𝑡+1−] is a pole of the Gamma function
and 𝑡 + 1 is not a pole, then 𝑡] = 0.

Definition 2 (see [42]). The ]th discrete fractional sum of a
function 𝑓 : N

𝑎
→ R, for ] > 0, is defined by

Δ
−]
𝑎
𝑓 (𝑡) =

1

Γ (])

𝑡−]

∑

𝑠=𝑎

(𝑡 − 𝑠 − 1)
]−1
𝑓 (𝑠) , 𝑡 ∈ N

𝑎+]. (5)

Also, we define the trivial sum Δ0
𝑎
𝑓(𝑡) = 𝑓(𝑡), 𝑡 ∈ N

𝑎
.

Definition 3 (see [15]). The ]th discrete Riemann-Liouville
fractional difference of a function 𝑓 : N

𝑎
→ R, for ] > 0, is

defined by

Δ
]
𝑎
𝑓 (𝑡) = Δ

𝑛

Δ
−(𝑛−])
𝑎

𝑓 (𝑡) , 𝑡 ∈ N
𝑎+𝑛−], (6)

where 𝑛 is the smallest integer greater than or equal to ] and
Δ
𝑛 is the 𝑛th order forward difference operator. If ] = 𝑛 ∈ N

1
,

then Δ𝑛
𝑎
𝑓(𝑡) = Δ

𝑛

𝑓(𝑡).

Remark 4. From the Definitions 2 and 3, it is easy to see
that Δ−]

𝑎
maps functions defined on N

𝑎
to functions defined

on N
𝑎+] and Δ

]
𝑎
maps functions defined on N

𝑎
to functions

defined on N
𝑎+𝑛−], where 𝑛 is the smallest integer greater

than or equal to ]. Also, it is worth reminding the reader
that the 𝑡 in Δ]

𝑎
𝑓(𝑡) (or Δ−]

𝑎
𝑓(𝑡)) represents an input for the

function Δ]
𝑎
𝑓 (or Δ−]

𝑎
𝑓) and not for the function 𝑓. For ease

of notation, we throughout this paper omit the subscript 𝑎
in Δ]
𝑎
𝑓(𝑡) and Δ−]

𝑎
𝑓(𝑡) when it does not to lead to domains

confusion and general ambiguity.

Lemma 5 (see [19]). Let ] > 0. Then Δ−]Δ]𝑓(𝑡) = 𝑓(𝑡) +
𝑐
1
𝑡
]−1
+ 𝑐
2
𝑡
]−2
+ ⋅ ⋅ ⋅ + 𝑐

𝑛
𝑡
]−𝑛, where 𝑐

𝑖
∈ R, 𝑖 = 1, 2, . . . , 𝑛, and

𝑛 is the smallest integer greater than or equal to ].

Lemma 6 (see [21]). Let ] ∈ R and 𝑡, 𝑠 ∈ R such that (𝑡 − 𝑠)]
is well defined. Then

Δ
𝑠
(𝑡 − 𝑠)

]
= −](𝑡 − 𝑠 − 1)]−1. (7)

Next, we will briefly recall some notations in the frame of
Mawhin’s coincidence degree continuous theorem. For more
details, see [43].

Let 𝑋 and 𝑌 be two real Banach spaces. Consider an
operator equation 𝐿𝑢 = 𝑁𝑢, where 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑌 is
a linear operator and 𝑁 : 𝑋 → 𝑌 is a nonlinear operator.
The operator 𝐿 will be called a Fredholm operator of index
zero if dim Ker 𝐿 = codim Im 𝐿 < ∞ and Im 𝐿 is closed in
𝑌. If 𝐿 is a Fredholm operator of index zero, then there exist
continuous projectors 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑌 → 𝑌 such
that Ker 𝐿 = Im𝑃, Im 𝐿 = Ker𝑄 and𝑋 = Ker 𝐿 ⊕ Ker𝑃, 𝑌 =
Im 𝐿 ⊕ Im𝑄. It follows that 𝐿|Dom𝐿∩Ker𝑃 : Dom𝐿 ∩ Ker𝑃 →
Im 𝐿 is invertible and its inverse is denoted by𝐾

𝑝
.

If Ω is an open bounded subset of𝑋 and Dom𝐿 ∩ Ω ̸= 0,
the operator 𝑁 : 𝑋 → 𝑌 will be called 𝐿-compact on Ω if
𝑄𝑁(Ω) is bounded and 𝐾

𝑝
(𝐼 − 𝑄)𝑁 : Ω → 𝑋 is compact.

Now, we present the coincidence degree continuation
theorem as follows, which will be used in the sequel to
establish the existence of solutions for problem (1).

Theorem 7 (see [43]). Let 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑌 be a Fred-
holm operator of index zero and let𝑁 : 𝑋 → 𝑌 be 𝐿-compact
on Ω. Assume that the following conditions are satisfied:

(i) 𝐿𝑥 ̸= 𝜆𝑁𝑥 for every (𝑥, 𝜆) ∈ [(Dom𝐿 \Ker 𝐿) ∩ 𝜕Ω] ×
(0, 1);

(ii) 𝑁𝑥 ∉ Im 𝐿 for every 𝑥 ∈ Ker 𝐿 ∩ 𝜕Ω;
(iii) deg(𝑄𝑁|Ker𝐿, Ω∩Ker 𝐿, 0) ̸= 0, where𝑄 is a projection

such that Im 𝐿 = Ker𝑄.
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Then the operator equation 𝐿𝑥 = 𝑁𝑥 has at least one solution
in Dom𝐿 ∩ Ω.

Finally, we wish to fix our framework for the study of
problem (1). First of all, we denote𝑋 = {𝑢 : [𝛼−1, 𝛼+𝑏]N

𝛼−1

→

R} and𝑌 = {𝑦 : [0, 𝑏]N
0

→ R}, and it is clear that𝑋 and𝑌 are
two Banach spaces when equipped with the usual maximum
norm; that is, for any 𝑢 ∈ 𝑋 and 𝑦 ∈ 𝑌, ‖𝑢‖ = max{|𝑢(𝑡)| : 𝑡 ∈
[𝛼 − 1, 𝛼 + 𝑏]N

𝛼−1

} and ‖𝑦‖ = max{|𝑦(𝑡)| : 𝑡 ∈ [0, 𝑏]N
0

}. Next,
we define the linear operator 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑌 by

𝐿𝑢 = Δ
𝛼

𝑢, (8)

with

Dom𝐿 = {𝑢 : 𝑢 ∈ 𝑋, 𝑢 (𝛼 − 1) − 𝛽𝑢 (𝛼 + 𝜂) = 𝛾𝑢 (𝛼 + 𝑏)} ,
(9)

and the nonlinear operator𝑁 : 𝑋 → 𝑌 as

𝑁𝑢 (𝑡) = 𝑓 (𝑡 + 𝛼 − 1, 𝑢 (𝑡 + 𝛼 − 1)) , for 𝑡 ∈ [0, 𝑏]N
0

.

(10)

Then the problem (1) is equivalent to an operator equation

𝐿𝑢 = 𝑁𝑢, 𝑢 ∈ Dom𝐿. (11)

3. Main Results

In this section, we will establish the existence of at least one
solution for the problem (1). To accomplish this, we firstly
present here several lemmas which will be used in the sequel.

For convenience, we define the operator 𝑄
1
: 𝑌 → 𝑌 by

(𝑄
1
𝑦) (𝑡) = 𝛽

𝜂

∑

𝑠=0

(𝛼 + 𝜂 − 𝑠 − 1)
𝛼−1

𝑦 (𝑠)

+ 𝛾

𝑏

∑

𝑠=0

(𝛼 + 𝑏 − 𝑠 − 1)
𝛼−1

𝑦 (𝑠) ,

𝑡 ∈ [0, 𝑏]N
0

,

(12)

and by Lemma 6, we can find that 𝑄
1
(1) = (𝛽(𝛼 + 𝜂)

𝛼

+

𝛾(𝛼 + 𝑏)
𝛼

)/𝛼 > 0.

Lemma 8. If (𝐻
1
) holds, then

Ker 𝐿 = {𝑢 ∈ 𝑋 : 𝑢 = 𝑐𝑡𝛼−1, 𝑐 ∈ R} , (13)

Im 𝐿 = {𝑦 ∈ 𝑌 : 𝑄
1
𝑦 = 0} , (14)

where 𝐿 and 𝑄
1
are defined by (8) and (12), respectively.

Proof. At first, in view of Lemma 5 and (H
1
), we can easily

verify that (13) holds. Next, we prove that (14) also holds.
For any 𝑦 ∈ Im 𝐿, then there exists a function 𝑢 ∈ Dom𝐿

such that 𝑦 = Δ𝛼𝑢. Based on Lemma 5, we have

𝑢 (𝑡) =

1

Γ (𝛼)

𝑡−𝛼

∑

𝑠=0

(𝑡 − 𝑠 − 1)
𝛼−1

𝑦 (𝑠) + 𝑐𝑡
𝛼−1

, (15)

where 𝑡 ∈ [𝛼 − 1, 𝛼 + 𝑏]N
𝛼−1

, 𝑐 ∈ R. From conditions 𝑢(𝛼 −
1)−𝛽𝑢(𝛼+𝜂) = 𝛾𝑢(𝛼+𝑏) and (H

1
), we can easily obtain that

𝑄
1
𝑦 = 0.

Conversely, for any 𝑦 ∈ 𝑌 with 𝑄
1
𝑦 = 0, if we set 𝑢(𝑡) =

Δ
−𝛼

𝑦(𝑡), 𝑡 ∈ [𝛼 − 1, 𝛼 + 𝑏]N
𝛼−1

, then 𝑢(𝛼 − 1) = 0, and it
is easy to verify that 𝑢 ∈ Dom𝐿. Moreover, by the relation
Δ
𝛼

Δ
−𝛼

𝑦 = 𝑦, we have 𝐿𝑢 = 𝑦, which lead to 𝑦 ∈ Im 𝐿. So we
get that (14) holds. The proof is complete.

Lemma 9. If (𝐻
1
) holds, then 𝐿 defined by (8) is a Fredholm

operator of index zero.

Proof. In order to show that 𝐿 is a Fredholm operator of index
zero, firstly, we consider the following operator 𝑄 : 𝑌 → 𝑌

defined by

𝑄𝑦 =

𝛼 (𝑄
1
𝑦)

𝛽(𝛼 + 𝜂)
𝛼

+ 𝛾(𝛼 + 𝑏)
𝛼
=

𝑄
1
𝑦

𝑄
1
(1)

, (16)

where 𝑄
1
is defined by (12). Evidently, Im𝑄 = R and 𝑄 is a

continuous linear projector. In fact, for any 𝑦 ∈ 𝑌, we have

𝑄
1
(𝑄𝑦) = 𝑄

1
(

𝑄
1
𝑦

𝑄
1
(1)

) =

𝑄
1
𝑦

𝑄
1
(1)

𝑄
1
(1) = 𝑄

1
𝑦,

𝑄
2

𝑦 = 𝑄 (𝑄𝑦) =

𝑄
1
(𝑄𝑦)

𝑄
1
(1)

=

𝑄
1
𝑦

𝑄
1
(1)

= 𝑄𝑦;

(17)

that is to say,𝑄 : 𝑌 → 𝑌 is idempotent. Hence,𝑄 is a projec-
tor.

From the definition of𝑄 and (14), it is easy to see that 𝑦 ∈
Im 𝐿 leads to 𝑄𝑦 = 0, and if 𝑦 ∈ Ker𝑄, we can get 𝑄

1
𝑦 = 0,

which implies that 𝑦 ∈ Im 𝐿. So, we derive Ker𝑄 = Im 𝐿.
For any𝑦 ∈ 𝑌, set𝑦 = (𝑦−𝑄𝑦)+𝑄𝑦. Since𝑄𝑦 ∈ Im𝑄 and

(𝐼 − 𝑄)𝑦 ∈ Ker𝑄, we have 𝑌 = Im𝑄+Ker𝑄. Moreover, take
𝑦
0
∈ Ker𝑄 ∩ Im𝑄. Then 𝑦

0
can be written as 𝑦

0
(𝑡) = 𝑐, 𝑡 ∈

[0, 𝑏]N
0

, 𝑐 ∈ R, for 𝑦
0
∈ Im𝑄. On the other hand, since 𝑦

0
∈

Ker𝑄 = Im 𝐿, by (14), we can get𝑄
1
𝑦
0
= 𝑄
1
(𝑐) = 𝑐𝑄

1
(1) = 0,

which implies that 𝑦
0
= 𝑐 = 0. So, we have Im𝑄∩Ker𝑄 = {0}

and 𝑌 = Im𝑄 ⊕ Ker𝑄 = Im𝑄 ⊕ Im 𝐿.
Now, since dim Ker 𝐿 = codim Im 𝐿 = dim Im𝑄 = 1

and Im 𝐿 is closed in 𝑌, 𝐿 is a Fredholm operator of index
zero. The proof is complete.

Let 𝑃 : 𝑋 → 𝑋 be defined by

𝑃𝑢 (𝑡) =

1

Γ (𝛼)

𝑢 (𝛼 − 1) 𝑡
𝛼−1

, 𝑡 ∈ [𝛼 − 1, 𝛼 + 𝑏]N
𝛼−1

. (18)

It is clear that 𝑃 : 𝑋 → 𝑋 is a linear continuous projector
and

Im𝑃 = {𝑢 ∈ 𝑋 : 𝑢 = 𝑐𝑡𝛼−1, 𝑐 ∈ R} = Ker 𝐿. (19)

Also, proceeding as the proof of Lemma 9, we can show that
𝑋 = Ker𝑃 ⊕ Im𝑃 = Ker𝑃 ⊕ Ker 𝐿. (20)

Define operator𝐾
𝑝
: Im 𝐿 → Dom𝐿 ∩ Ker𝑃 by

𝐾
𝑝
𝑦 (𝑡) = Δ

−𝛼

𝑦 (𝑡)

=

1

Γ (𝛼)

𝑡−𝛼

∑

𝑠=0

(𝑡 − 𝑠 − 1)
𝛼−1

𝑦 (𝑠) ,

𝑡 ∈ [𝛼 − 1, 𝛼 + 𝑏]N
𝛼−1

,

(21)

where 𝑦 ∈ Im 𝐿.
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From the definitions of 𝑃 and𝐾
𝑝
, it is easy to see that the

inverse of 𝐿|Dom𝐿∩Ker𝑃 is𝐾𝑝. In fact, if 𝑦 ∈ Im 𝐿, then we have

𝐿𝐾
𝑝
𝑦 = Δ

𝛼

Δ
−𝛼

𝑦 = 𝑦. (22)

Also, if 𝑢 ∈ Dom𝐿 ∩ Ker𝑃, by Lemma 5, we have

𝐾
𝑝
𝐿𝑢 (𝑡) = 𝑢 (𝑡) + 𝑐𝑡

𝛼−1

, (23)

where 𝑡 ∈ [𝛼 − 1, 𝛼 + 𝑏]N
𝛼−1

, 𝑐 ∈ R. Then it follows from
𝐾
𝑝
𝐿𝑢 ∈ Ker𝑃 and 𝑢 ∈ Ker𝑃 that

𝐾
𝑝
𝐿𝑢 (𝛼 − 1) = 𝑢 (𝛼 − 1) + 𝑐(𝛼 − 1)

𝛼−1

= Γ (𝛼) 𝑐 = 0, (24)

which implies that 𝑐 = 0. Consequently, we have 𝐾
𝑝
𝐿𝑢 = 𝑢

for 𝑢 ∈ Dom𝐿 ∩ Ker𝑃. So,𝐾
𝑝
= (𝐿|Dom𝐿∩Ker𝑃)

−1.

Lemma 10. Suppose that (𝐻
2
) holds. If Ω ⊂ 𝑋 is an open

bounded subset and Dom𝐿 ∩ Ω ̸= 0, then 𝑁 is 𝐿-compact on
Ω.

Proof. By the continuity of 𝑓, we can verify that 𝑄𝑁(Ω) and
𝐾
𝑝
(𝐼 − 𝑄)𝑁(Ω) are bounded. So we get that𝐾

𝑝
(𝐼 − 𝑄)𝑁(Ω)

is compact. Therefore 𝑁 is 𝐿-compact on Ω. The proof is
complete.

To establish the main result, we need the following
conditions.

(H
3
)There exist two nonnegative functions 𝑝, 𝑞 ∈ 𝑋 with
{∏
𝑏

𝑖=1
((𝛼 + 𝑖)/𝑖) + ((𝑏 + 1)/𝛼)}‖𝑝‖ < 1 such that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
≤ 𝑝 (𝑡) |𝑢| + 𝑞 (𝑡) ,

for (𝑡, 𝑢) ∈ [𝛼 − 1, 𝛼 + 𝑏 − 1]N
𝛼−1

× (−∞, +∞) .

(25)

(H
4
)There exists a constant𝑀 > 0 such that

𝑄
1
𝑁𝑢 ̸= 0, (26)

for each 𝑢 ∈ 𝑋 satisfying |𝑢(𝑡)| > 𝑀, 𝑡 ∈

[𝛼 − 1, 𝛼 + 𝑏]N
𝛼−1

.
(H
5
)There exists a constant 𝑀∗ > 0 such that for any
𝑢(𝑡) = 𝑐𝑡

𝛼−1, 𝑡 ∈ [𝛼 − 1, 𝛼 + 𝑏]N
𝛼−1

, 𝑐 ∈ R, if |𝑐| > 𝑀∗,
then either

𝑐𝑄
1
𝑁𝑢 > 0 (27)

or

𝑐𝑄
1
𝑁𝑢 < 0. (28)

Theorem 11. If (𝐻
1
)–(𝐻
5
) hold, then the problem (1) has at

least one solution in𝑋.

Proof. This proof will be divided into four main steps. Now
let us prove the steps one by one.

Step 1. Set Ω
1
= {𝑢 ∈ Dom𝐿 \ Ker 𝐿 : 𝐿𝑢 = 𝜆𝑁𝑢, 𝜆 ∈ (0, 1)}

and prove thatΩ
1
is bounded in𝑋.

For 𝑢 ∈ Ω
1
, then 𝑢 ∈ Dom𝐿 \ Ker 𝐿 and 𝐿𝑢 = 𝜆𝑁𝑢, so

𝑁𝑢 ∈ Im 𝐿. By (14), we have 𝑄
1
𝑁𝑢 = 0. From (H

4
), there

exists a constant 𝑡
0
∈ [𝛼 − 1, 𝛼 + 𝑏]N

𝛼−1

such that |𝑢(𝑡
0
)| ≤ 𝑀.

Since 𝐿𝑢 = 𝜆𝑁𝑢, by Lemma 5, we have

𝑢 (𝑡) =

𝜆

Γ (𝛼)

𝑡−𝛼

∑

𝑠=0

(𝑡 − 𝑠 − 1)
𝛼−1

𝑁𝑢 (𝑠) + 𝑐𝑡
𝛼−1

,

𝑡 ∈ [𝛼 − 1, 𝛼 + 𝑏]N
𝛼−1

, 𝑐 ∈ R.

(29)

Considering |𝑢(𝑡
0
)| ≤ 𝑀, we get

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑡
𝛼−1

0

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀 +

1

Γ (𝛼)

𝑡
0
−𝛼

∑

𝑠=0

(𝑡
0
− 𝑠 − 1)

𝛼−1

|𝑁𝑢 (𝑠)| . (30)

Consequently, by (29), (30), Lemma 6, (H
3
), and the mono-

tonicity of functions 𝑡𝛼 and 𝑡𝛼−1 on [𝛼 − 1, 𝛼 + 𝑏]N
𝛼−1

, we have

|𝑢 (𝑡)|

≤

1

Γ (𝛼)

𝑡−𝛼

∑

𝑠=0

(𝑡 − 𝑠 − 1)
𝛼−1

|𝑁𝑢 (𝑠)| +

𝑡
𝛼−1

𝑡
𝛼−1

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐𝑡
𝛼−1

0

󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

Γ (𝛼)

𝑡−𝛼

∑

𝑠=0

(𝑡 − 𝑠 − 1)
𝛼−1

|𝑁𝑢 (𝑠)| +

(𝛼 − 1)
𝛼−1

(𝛼 + 𝑏)
𝛼−1

× {𝑀 +

1

Γ (𝛼)

𝑡
0
−𝛼

∑

𝑠=0

(𝑡
0
− 𝑠 − 1)

𝛼−1

|𝑁𝑢 (𝑠)|}

=

1

Γ (𝛼)

𝑡−𝛼

∑

𝑠=0

(𝑡 − 𝑠 − 1)
𝛼−1 󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠 + 𝛼 − 1, 𝑢 (𝑠 + 𝛼 − 1))

󵄨
󵄨
󵄨
󵄨

+

𝑏+1

∏

𝑖=1

𝑖

𝛼 + 𝑖 − 1

{𝑀 +

1

Γ (𝛼)

𝑡
0
−𝛼

∑

𝑠=0

(𝑡
0
− 𝑠 − 1)

𝛼−1

×
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠 + 𝛼 − 1, 𝑢 (𝑠 + 𝛼 − 1))

󵄨
󵄨
󵄨
󵄨
}

≤

1

Γ (𝛼)

𝑡−𝛼

∑

𝑠=0

(𝑡 − 𝑠 − 1)
𝛼−1

× {𝑝 (𝑠 + 𝛼 − 1) |𝑢 (𝑠 + 𝛼 − 1)| + 𝑞 (𝑠 + 𝛼 − 1)}

+

𝑏+1

∏

𝑖=1

𝑖

𝛼 + 𝑖 − 1

× {𝑀 +

1

Γ (𝛼)

𝑡
0
−𝛼

∑

𝑠=0

(𝑡
0
− 𝑠 − 1)

𝛼−1

× {𝑝 (𝑠 + 𝛼 − 1) |𝑢 (𝑠 + 𝛼 − 1)| + 𝑞 (𝑠 + 𝛼 − 1)}}
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≤

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
‖𝑢‖ +

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

Γ (𝛼)

{

𝑡−𝛼

∑

𝑠=0

(𝑡 − 𝑠 − 1)
𝛼−1

+ (

𝑏+1

∏

𝑖=1

𝑖

𝛼 + 𝑖 − 1

)

×

𝑡
0
−𝛼

∑

𝑠=0

(𝑡
0
− 𝑠 − 1)

𝛼−1

}

+𝑀

𝑏+1

∏

𝑖=1

𝑖

𝛼 + 𝑖 − 1

=

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
‖𝑢‖ +

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

Γ (𝛼 + 1)

{𝑡
𝛼

+ (

𝑏+1

∏

𝑖=1

𝑖

𝛼 + 𝑖 − 1

) 𝑡
𝛼

0
}

+𝑀

𝑏+1

∏

𝑖=1

𝑖

𝛼 + 𝑖 − 1

≤

󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
‖𝑢‖ +

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩

Γ (𝛼 + 1)

{(𝛼 + 𝑏)
𝛼

+ (

𝑏+1

∏

𝑖=1

𝑖

𝛼 + 𝑖 − 1

)

× (𝛼 + 𝑏)
𝛼

} +𝑀

𝑏+1

∏

𝑖=1

𝑖

𝛼 + 𝑖 − 1

≤ {

𝑏

∏

𝑖=1

𝛼 + 𝑖

𝑖

+

𝑏 + 1

𝛼

} (
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
‖𝑢‖ +

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩
) + 𝑀

𝑏+1

∏

𝑖=1

𝑖

𝛼 + 𝑖 − 1

.

(31)

So, by the fact that {∏𝑏
𝑖=1
((𝛼 + 𝑖)/𝑖) + ((𝑏 + 1)/𝛼)}‖𝑝‖ < 1 in

(H
3
) and (31), we can derive thatΩ

1
is bounded.

Step 2. Set Ω
2
= {𝑢 ∈ Ker 𝐿 : 𝑁𝑢 ∈ Im 𝐿} and prove that Ω

2

is bounded in𝑋.
For any 𝑢 ∈ Ω

2
, there exists a constant 𝑐 ∈ R such that

𝑢(𝑡) = 𝑐𝑡
𝛼−1, 𝑡 ∈ [𝛼 − 1, 𝛼 + 𝑏]N

𝛼−1

, and 𝑁𝑢 ∈ Im 𝐿. So it
follows from (14) that 𝑄

1
𝑁𝑢 = 0. By virtue of (H

5
) and the

fact that 𝑡𝛼−1 is decreasing for 𝑡 on [𝛼 − 1, 𝛼 + 𝑏]N
𝛼−1

, we can
derive that |𝑢(𝑡)| ≤ |𝑐|(𝛼 − 1)𝛼−1 ≤ 𝑀∗Γ(𝛼), which implies
thatΩ

2
is bounded in𝑋.

Step 3. Set Ω
3
= {𝑢 ∈ Ker 𝐿 : 𝜆𝐽𝑢 + (1 − 𝜆)𝜃𝑄𝑁𝑢 = 0, 𝜆 ∈

[0, 1]} and prove thatΩ
3
is bounded in𝑋, where 𝐽 : Ker 𝐿 →

Im𝑄 is a linear isomorphism defined by

𝐽 (𝑐𝑡
𝛼−1

) = 𝑐,

𝜃 = {

1, if (H
5
) (27) holds,

−1, if (H
5
) (28) holds.

(32)

For any 𝑐𝑡𝛼−1 ∈ Ω
3
, there exists 𝜆 ∈ [0, 1] such that

𝜆𝑐 = − (1 − 𝜆) 𝜃𝑄𝑁(𝑐𝑡
𝛼−1

) . (33)

If 𝜆 = 0, then 𝑄𝑁(𝑐𝑡𝛼−1) = 0. Hence 𝑄
1
𝑁(𝑐𝑡
𝛼−1

) = 0. By
(H
5
), we get |𝑐| ≤ 𝑀∗. If 𝜆 = 1, then 𝑐 = 0. For 𝜆 ∈ (0, 1), if

|𝑐| > 𝑀
∗, then, from (H

5
), we can obtain that

𝜃𝑐𝑄
1
𝑁(𝑐𝑡
𝛼−1

) > 0. (34)

Therefore, we have

𝜆𝑐
2

= − (1 − 𝜆) 𝜃𝑐𝑄𝑁(𝑐𝑡
𝛼−1

) < 0, (35)

which is a contradiction. So, Ω
3
⊂ {𝑢 ∈ Ker 𝐿 : 𝑢 = 𝑐𝑡𝛼−1,

|𝑐| ≤ 𝑀
∗

} is bounded in𝑋.

Step 4. LetΩ be a bounded open set such thatΩ ⊃ ∪3
𝑖=1
Ω
𝑖
and

prove that

deg (𝑄𝑁|Ker𝐿, Ω ∩ Ker 𝐿, 0) ̸= 0. (36)

It follows from Lemma 10 that𝑁 is 𝐿-compact onΩ. Then by
Steps 1 and 2, we have

(i) 𝐿𝑢 ̸= 𝜆𝑁𝑢 for every (𝑢, 𝜆) ∈ [(Dom𝐿 \Ker 𝐿) ∩ 𝜕Ω]×
(0, 1);

(ii) 𝑁𝑢 ∉ Im 𝐿 for every 𝑢 ∈ Ker 𝐿 ∩ 𝜕Ω.

At last, we prove that condition (iii) of Theorem 7 is
satisfied. Let

𝐻(𝑢, 𝜆) = 𝜆𝐽𝑢 + (1 − 𝜆) 𝜃𝑄𝑁𝑢. (37)

According to the arguments in Step 3, we have

𝐻(𝑢, 𝜆) ̸= 0, ∀𝑢 ∈ Ker 𝐿 ∩ 𝜕Ω, (38)

and therefore, via the homotopy property of degree, we get
that

deg (𝑄𝑁|Ker𝐿, Ω ∩ Ker 𝐿, 0)

= deg (𝜃𝐻 (⋅, 0) , Ω ∩ Ker 𝐿, 0)

= deg (𝜃𝐻 (⋅, 1) , Ω ∩ Ker 𝐿, 0)

= deg (𝜃𝐽, Ω ∩ Ker 𝐿, 0)

̸= 0,

(39)

which implies that condition (iii) of Theorem 7 is satisfied.
Then by Theorem 7, we can conclude that 𝐿𝑢 = 𝑁𝑢 has at
least one solution in Dom𝐿 ∩ Ω; that is, (1) has at least one
solution in𝑋. The proof is completed.

4. An Illustrative Example

In this section, wewill illustrate the possible application of the
above established analytical result with a concrete example.

Example 1. Consider the following discrete fractional bound-
ary value problem:

Δ
1/2

𝑢 (𝑡) = 𝑓(𝑡 −

1

2

, 𝑢 (𝑡 −

1

2

)) , 𝑡 ∈ [0, 3]N
0

,

𝑢 (−

1

2

) −

16

9

𝑢 (

3

2

) =

128

105

𝑢 (

7

2

) ,

(40)
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where

𝑓 (𝑡, 𝑢) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

2 −

𝑡
2

100000

[sin (𝑡 + 𝑢2)]
2

,

(𝑡, 𝑢) ∈ [−

1

2

,

5

2

]

N
−1/2

× (

62

3

, +∞) ,

3

31

𝑢 −

𝑡
2

100000

[sin (𝑡 + 𝑢2)]
2

,

(𝑡, 𝑢) ∈ [−

1

2

,

5

2

]

N
−1/2

× (−

62

3

, +

62

3

) ,

−2 −

𝑡
2

100000

[sin (𝑡 + 𝑢2)]
2

,

(𝑡, 𝑢) ∈ [−

1

2

,

5

2

]

N
−1/2

× (−∞, −

62

3

) .

(41)

It is obvious that 𝑓 is continuous. Corresponding to problem
(1), there exist 𝛼 = 1/2, 𝛽 = 16/9, 𝛾 = 128/105, 𝜂 = 1, 𝑏 = 3,
and

𝛽

𝜂+1

∏

𝑖=1

𝛼 + 𝑖 − 1

𝑖

+ 𝛾

𝑏+1

∏

𝑖=1

𝛼 + 𝑖 − 1

𝑖

=

16

9

2

∏

𝑖=1

1/2 + 𝑖 − 1

𝑖

+

128

105

4

∏

𝑖=1

1/2 + 𝑖 − 1

𝑖

= 1.

(42)

Therefore, the problem (40) is at resonance.

Choosing 𝑝(𝑡) = 3/31, 𝑞(𝑡) = 𝑡2/100000, 𝑡 ∈ [−1/2,
7/2]N

−1/2

, then we have

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
≤ 𝑝 (𝑡) |𝑢| + 𝑞 (𝑡) , for (𝑡, 𝑢) ∈ [−1

2

,

5

2

]

N
−1/2

×R,

{

3

∏

𝑖=1

1/2 + 𝑖

𝑖

+

3 + 1

1/2

}
󵄩
󵄩
󵄩
󵄩
𝑝
󵄩
󵄩
󵄩
󵄩
=

163

16

×

3

31

=

489

496

< 1.

(43)

Hence, the condition (H
3
) in Theorem 11 holds.

Let 𝑀 = 21. If |𝑢(𝑡)| > 𝑀 holds for any 𝑡 ∈ [−1/2,
7/2]N

−1/2

, then we can easily verify that

𝑄
1
𝑁𝑢 ̸= 0, (44)

which implies that condition (H
4
) of Theorem 11 holds.

Furthermore, we can choose𝑀∗ = 50, to show that the
condition (H

5
) of Theorem 11 holds. In fact, for any 𝑢(𝑡) =

𝑐𝑡
−1/2

, 𝑡 ∈ [−1/2, 7/2]N
−1/2

satisfying |𝑐| > 𝑀∗, we can get that

𝑐𝑁𝑢 (𝑡) > 0, for 𝑡 ∈ [0, 3]N
0

. (45)

So, by the fact that (𝑡 − 𝑠 − 1/2)−1/2 > 0 for (𝑡, 𝑠) ∈ [0, 3]N
0

×

[0, 𝑡]N
0

and (45), we can derive that, for any 𝑢(𝑡) = 𝑐𝑡𝛼−1, 𝑡 ∈
[−1/2, 7/2]N

−1/2

satisfying |𝑐| > 𝑀∗,

𝑐𝑄
1
𝑁𝑢 = 𝑄

1
(𝑐𝑁𝑢) > 0, (46)

which implies that (27) in (H
5
) of Theorem 11 holds. There-

fore, all conditions of Theorem 11 hold. Hence, we can
conclude that problem (40) has at least one solution.
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