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We first study the complexity of the algorithm presented in Guo and Huang (2010). After that, a new explicit formula for
computational of the Moore-Penrose inverse 𝐴† of a singular or rectangular matrix 𝐴. This new approach is based on a
modified Gauss-Jordan elimination process. The complexity of the new method is analyzed and presented and is found to be less
computationally demanding than the one presented in Guo and Huang (2010). In the end, an illustrative example is demonstrated
to explain the corresponding improvements of the algorithm.

1. Introduction

Throughout this paper we use the following notation. Let 𝐶𝑛
and 𝐶𝑚×𝑛

𝑟
be the 𝑛 dimensional complex space and the set of

𝑚 × 𝑛 complex matrices with rank 𝑟. For a matrix 𝐴 ∈ 𝐶𝑚×𝑛,
𝑅(𝐴) and𝑁(𝐴) are the range and null space of𝐴; 𝑟(𝐴) and𝐴∗
denote the rank and the the conjugate transpose of 𝐴, while
𝐴
† and ‖𝐴‖ denote the M-P inverse and Frobenius norm,

respectively.
In 1920, Moore [1] defined a new inverse of a matrix

by projection matrices. Moore’s definition of the generalized
inverse of an𝑚 × 𝑛matrix 𝐴 is equivalent to the existence of
an 𝑛 × 𝑚matrix 𝐺 such that

𝐴𝐺 = 𝑃𝑅(𝐴), 𝐺𝐴 = 𝑃𝑅(𝐺), (1)

where 𝑃𝑅(𝐴) is the orthogonal projector on 𝑅(𝐴). Unaware of
Moore’s work, In 1955 Penrose [2] showed that there exists a
unique matrix𝑋 satisfying the four conditions

𝐴𝑋𝐴 = 𝐴,

𝑋𝐴𝑋 = 𝑋,

(𝐴𝑋)
∗
= 𝐴𝑋,

(𝑋𝐴)
∗
= 𝑋𝐴,

(2)

where ∗ denotes conjugate transpose. These conditions are
equivalent to Moore’s conditions. The unique matrix 𝑋 that

satisfied these conditions was known as the Moore-Penrose
inverse (abbreviated M-P) and is denoted by𝐴†. For a subset
{𝑖, 𝑗, . . . , 𝑘} of the set {1, 2, 3, 4}, the set of 𝑛 × 𝑚 matrices
satisfied the equations (𝑖), (𝑗), . . . , (𝑘), from among (2) is
denoted by 𝐴{𝑖,𝑗,...,𝑘}. These concepts can be found in Ben-
Israel and Greville’s famous book [3] or Campell and Meyer’s
book [4]. In their famous books [3, 4], the next statement is
valid for a rectangular matrix.

Lemma 1 (see [3, 4]). Let 𝐴 ∈ 𝐶𝑚×𝑛, 𝑋 ∈ 𝐶𝑛×𝑚 be the M-P
inverse of 𝐴 if and only if 𝑋 is a {2}-inverse of 𝐴 with range
𝑅(𝐴
∗
) and null space𝑁(𝐴∗).

In the latest fifty years, there have been many famous
specialists and scholars, who investigated the generalized
inverse and published many articles and books. Its pertur-
bation theories were introduced in [5–7], and the algebraical
perturbationswere in [8, 9]. Someminors, Cramer rulers, and
sums of 𝐴† can be seen in [10–13]. There are a large number
of papers [9, 14–18] using various methods, iterative or not,
for computing 𝐴†.

One handy method of computing the inverse of a non-
singular matrix 𝐴 is the Gauss-Jordan elimination procedure
by executing elementary row operations on the pair (𝐴, 𝐼) to
transform it into (𝐼, 𝐴−1). Moreover Gauss-Jordan elimina-
tion can be used to determinewhether amatrix is nonsingular
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or not. However, one cannot directly use this method on
a generalized inverse of a rectangular matrix or a square
singular matrix 𝐴.

Recently, Author [19] proposed a Gauss-Jordan elimina-
tion algorithm to compute 𝐴†, which required 3𝑛3 multipli-
cations and divisions.More recently, Ji [20] improved author’s
algorithm [19] and pointed that only 2𝑛3 multiplications and
divisions are required. Following these lines, Stanimirović
and Petković in [21] extended the method of [20] to𝐴(2)

𝑇,𝑆
. But

these three algorithms need also switching. Guo and Huang
[22] executed row and column elementary transformations
for computingM-P inverse𝐴† by applying the rank equalities
of matrix 𝐴. They did not analyze the complexity of their
algorithm. In this paper, we first study the total number
arithmetic operation of GH-algorithm, then improve it, and
present an alternative explicit formula for the M-P inverse of
a matrix; the improvements save the total number arithmetic
operation. We must point that GH-algorithm and our algo-
rithm do not need to switch blocks of certain matrix in the
process of computation.

The paper is organized as follows. The computational
complexity of GH-Algorithm 3 for computing M-P inverse
𝐴
† is surveyed in the next section. In Section 3, we derive a

novel explicit expression for𝐴†, propose a new Gauss-Jordan
elimination procedure for 𝐴† based on the formula, and
study the computational complexity of the new approach and
Algorithm 7. In Section 4, an illustrative example is presented
to explain the corresponding improvements of the algorithm.

2. The Computational Complexity of
GH-Algorithm

In [22], Guo and Huang gave a method of elementary trans-
formation for computing M-P inverse 𝐴† by applying the
rank equalities of matrix 𝐴.

Lemma 2. Suppose that 𝐴 ∈ 𝐶𝑚×𝑛, 𝑋 ∈ 𝐶
𝑘×𝑙, 1 ≤ 𝑘 ≤ 𝑛,

1 ≤ 𝑙 ≤ 𝑚. If

𝑟(

𝐴
∗
𝐴𝐴
∗
𝐴
∗
(
𝐼𝑙
0
)

(𝐼𝑘 0)𝐴
∗

𝑋
) = 𝑟 (𝐴) . (3)

Then𝑋 = (𝐼𝑘 0)𝐴† ( 𝐼𝑙0 ). In particualr when 𝑘 = 𝑛, 𝑙 = 𝑚 and
𝑋 = 𝐴

†.

In [22], the authors also considered an algorithm based
on Lemma 2, which was stated as follows.

Algorithm 3. M-P inverse GH-Algorithm is as follows.

(1) Compute partitioned matrix𝑁1 = ( 𝐴
∗
𝐴𝐴
∗
𝐴
∗

𝐴
∗
0
).

(2) Make the block matrix 𝐴∗𝐴𝐴∗ of 𝑁1(1, 1) become
𝐼𝑟(𝐴) by applying elementary transformations. Mean-
while, the block matrices 𝐴∗ of𝑁1(1, 2) and𝑁1(2, 1)
are accordingly transformed. A new partitioned
matrix𝑁2 = (

𝐼𝑟(𝐴) 0 𝐵1

0 0 0
𝐶1 0 0

) is obtained.

(3) Make the block matrices of 𝑁2(1, 2) and 𝑁2(2, 1) be
zero matrices by applying matrix 𝐼𝑟(𝐴), which yields

𝑁3 = (

𝐼𝑟(𝐴) 0 0

0 0 0

0 0 −𝐶1𝐵1

) (4)

Then 𝐴† = 𝐶1𝐵1

Nevertheless, Guo and Huang [22] did not analyze the
complexity of the numerical algorithm. In the following theo-
rem, we will study the total number of arithmetic operations.

Theorem4. Let𝐴 ∈ 𝐶𝑚×𝑛
𝑟

; the total number of multiplications
and divisions required in Algorithm 3 to compute M-P inverse
𝐴
† is

𝑁(𝑚, 𝑛, 𝑟)

= 2𝑚𝑛
2
+
4𝑚 − 𝑟 − 1

2
𝑛𝑟 + (𝑚 − 𝑟) 𝑛𝑟 + 𝑚𝑛𝑟.

(5)

Moreover, 𝑁(𝑚, 𝑛, 𝑟) is bounded above by 6𝑚𝑛2 − (3/2)𝑛3 −
(1/2)𝑛

2.

Proof. It needs 2𝑚𝑛2 multiplications to compute 𝐴∗𝐴𝐴∗. 𝑟
row pivoting steps and column pivoting steps are needed to
transform the partitioned matrix 𝑁1 into 𝑁2 following the
𝑟(𝐴
∗
𝐴𝐴
∗
) = 𝑟. First row pivoting step involves 2𝑚 nonzero

columns in (𝐴∗𝐴𝐴∗ 𝐴∗). Thus, it needs 2𝑚 − 1 divisions
and (2𝑚 − 1)(𝑛 − 1)multiplications with a total of (2𝑚 − 1)𝑛
multiplications and divisions. On the second row pivoting
step, there is one less column in the first part of the pair.There
are 2𝑚−1 nonzero columns to deal with.These pivoting steps
require (2𝑚 − 2)𝑛 operations. Following the same idea, the
𝑖th (1 ≤ 𝑖 ≤ 𝑟) pivoting steps require (2𝑚 − 𝑖)𝑛 operations.
So it requires (2𝑚 − 1)𝑛 + (2𝑚 − 2)𝑛 + ⋅ ⋅ ⋅ + (2𝑚 − 𝑟)𝑛 =
((4𝑚 − 𝑟 − 1)/2)𝑛𝑟.

For simplicity, assume that 𝐵1 = (𝐼𝑟 𝐵12). Following the
same line, this requires (𝑚−𝑟)𝑛𝑟multiplications and divisions
on the 𝑟 column pivoting steps.

Then resume elementary row and columns operations on
the matrix 𝑁2 to transform it into 𝑁3, which requires 𝑚𝑛𝑟
multiplications, which is the count of 𝐶1𝐵1.

Therefore, the total number of operations needed for
computation of 𝐴† is

𝑁(𝑚, 𝑛, 𝑟)

= 2𝑚𝑛
2
+
4𝑚 − 𝑟 − 1

2
𝑛𝑟 + (𝑚 − 𝑟) 𝑛𝑟 + 𝑚𝑛𝑟.

(6)

Define a function𝑓(𝑟) = 2𝑚𝑛2+((4𝑚−𝑟−1)/2)𝑛𝑟+(𝑚−
𝑟)𝑛𝑟 + 𝑚𝑛𝑟 for fixed 𝑚 and 𝑛. Since 0 ≤ 𝑟 ≤ min{𝑚, 𝑛} = 𝑛,
we have

𝑓
󸀠
(𝑟)

=
4𝑚 − 𝑟 − 1

2
𝑛 −

1

2
𝑛𝑟 + (𝑚 − 𝑟) 𝑛 − 𝑛𝑟 + 𝑚𝑛
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= (4𝑚 −
1

2
− 3𝑟) 𝑛

≥ (𝑚 −
1

2
) 𝑛 > 0

(7)

whichmeans that𝑓(𝑟) is monotonically increasing over [0, 𝑛]
when 𝑛 ≤ 𝑚. Therefore 𝑓(𝑟) takes its maximum value when
𝑟 = 𝑛, which implies

𝑓 (𝑟) ≤ 𝑓 (𝑛) = 6𝑚𝑛
2
−
3

2
𝑛
3
−
1

2
𝑛
2
. (8)

3. Main Results

TheGauss-Jordan row and column elimination procedure for
the M-P inverse 𝐴† of a matrix by Guo and Huang is based
on the partitioned matrix 𝑁1 = ( 𝐴

∗
𝐴𝐴
∗
𝐴
∗

𝐴
∗
0
). In this section,

we will first propose a modified Gauss-Jordan elimination
process to compute 𝐴†and then summarize an algorithm
of this method. Finally, the complexity of the algorithm is
analyzed.

Theorem 5. Let 𝐴 ∈ 𝐶
𝑚×𝑛

𝑟
; there exist an elementary row

operation matrix 𝐸1 = (
𝐸11
𝐸12
)

𝑛

𝑟
𝑛−𝑟 and an elementary column

operation matrix 𝐹1 = (𝐹11 𝐹12)
𝑟 𝑚 − 𝑟

𝑚 , such that

𝐵 = 𝐸1𝐴
∗
= (
𝐸11
𝐸12
)𝐴
∗
= (
𝐵1
0
) ,

𝐶 = 𝐴
∗
𝐹1 = 𝐴

∗
(𝐹11 𝐹12) = (𝐶1 0) ,

(9)

where ( 𝐵1
0
) and (𝐶1 0) are the row and column reduced

echelon form of 𝐴∗, respectively.
Further, there exists an elementary row operation matrix

𝐸2 ∈ 𝐶
𝑟×𝑟 such that

𝐸2𝐵1𝐴𝐶1 = 𝐼𝑟. (10)

Then

𝐴
†
= 𝐶1𝐸2𝐵1 = 𝐶1(𝐵1𝐴𝐶1)

−1
𝐵1 = 𝐴

∗
𝐹11𝐸2𝐸11𝐴

∗
. (11)

Proof. For 𝑟(𝐴) = 𝑟(𝐴
∗
) = 𝑟, there exist two elementary

row and column operation matrices 𝐸1 = (
𝐸11
𝐸12
)

𝑛

𝑟
𝑛−𝑟 and

𝐹1 = (𝐹11 𝐹12)

𝑟 𝑚 − 𝑟

𝑚 , such that

𝐵 = 𝐸1𝐴
∗
= (
𝐸11𝐴
∗

𝐸12𝐴
∗) = (

𝐵1
0
) ,

𝐶 = 𝐴
∗
𝐹1 = (𝐴

∗
𝐹11 𝐴

∗
𝐹12) = (𝐶1 0) .

(12)

It is easy to check that 𝐵1 ∈ 𝐶
𝑟×𝑛

𝑟
and 𝐶1 ∈ 𝐶

𝑚×𝑟

𝑟
; then the

matrix 𝐵1𝐴𝐶1 is nonsingular, which implies that there exists
another elementary row operationmatrix𝐸2 ∈ 𝐶

𝑟×𝑟 such that
𝐸2𝐵1𝐴𝐶1 = 𝐼𝑟. (13)

The above formula also shows that 𝐸2 = (𝐵1𝐴𝐶1)
−1.

Denote that 𝑋 = 𝐶1𝐸2𝐵1 = 𝐴
∗
𝐹11𝐸2𝐸11𝐴

∗; it is obvious
that 𝑅(𝑋) ⊃ 𝑅(𝐴∗) and 𝑁(𝑋) ⊂ 𝑁(𝐴∗). If we can prove
𝑟(𝑋) = 𝑟(𝐴

∗
) = 𝑟, then 𝑅(𝑋) = 𝑅(𝐴∗) and𝑁(𝑋) = 𝑁(𝐴∗).

In fact, 𝐶1 is a full column rank matrix and 𝐸2 is an
invertible matrix, which implies that 𝑟(𝑋) = 𝑟(𝐵1) = 𝑟(𝐴

∗
) =

𝑟.
By deducing, we obtain that

𝑋𝐴𝑋 = 𝐶1𝐸2𝐵1𝐴𝐶1𝐸2𝐵1 = 𝐶1𝐸2𝐵1 = 𝑋. (14)

This means that𝑋 is a 2-inverse of 𝐴 with 𝑅(𝑋) = 𝑅(𝐴∗)
and 𝑁(𝑋) = 𝑁(𝐴∗). From Lemma 1, we know that 𝑋 = 𝐴†.

Remark 6. The representation of 𝐴† in Theorem 5 is con-
sistent with the one in [3], although we use Gauss-Jordan
elimination procedure.

According to the representation introduced in
Theorem 5, we summarize the following algorithm for
computing M-P inverse 𝐴†.

Algorithm 7. M-P inverse-Sheng algorithm is as follows.
(1) Input: 𝐴 ∈ 𝐶𝑚×𝑛

𝑟
.

(2) Execute elementary row operations on first 𝑛 rows
of the partitioned matrix 𝑀1 = ( 0 𝐴

∗

𝐴
∗
0
) into 𝑀2 =

(
0 𝐵

𝐴
∗
0
), where 𝐵 = (

𝐵1
0
) is a reduced row-echelon

matrix.
(3) Perform elementary column operations on first 𝑚

columns of the partitioned matrix 𝑀2 into 𝑀3 =
( 0 𝐵
𝐶 0
), where matrix 𝐶 = (𝐶1 0) has a reduced

column-echelon form.
(4) Compute 𝐷 = 𝐵𝐴𝐶 = ( 𝐵1𝐴𝐶1 0

0 0
) and form the block

matrix

𝑀4 = (
𝐷 𝐵

𝐶 0
) = (

𝐵1𝐴𝐶1 0 𝐵1
0 0 0

𝐶1 0 0

) . (15)

(5) Execute the elementary row operations on first 𝑟 rows

of the partitioned matrix𝑀4 into𝑀5 = (
𝐼𝑟 0 𝐵1
0 0 0
𝐶1 0 0

).

(6) Make the block matrices of 𝑀5(1, 3) and 𝑀5(3, 1)
be zero matrices by applying elementary row and
column transformations, respectively, throughmatrix
𝐼𝑟, which yields

𝑀6 = (

𝐼𝑟 0 0

0 0 0

0 0 −𝐶1𝐵1

) . (16)

Then 𝐴† = 𝐶1𝐵1.
According to Algorithm 7, the next theorem will analyze

the computational complexity of it.

Theorem 8. The total number of multiplications and divisions
required forAlgorithm 7 to computeM-P inverse𝐴† of amatrix
𝐴 ∈ 𝐶

𝑚×𝑛

𝑟
is

𝑇 (𝑚, 𝑛, 𝑟) = (4𝑚𝑛 −
𝑚 + 𝑛

2
) 𝑟 +

𝑚 − 𝑛

2
𝑟
2
− 𝑟
3
. (17)
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Further, the upper bound of 𝑇(𝑚, 𝑛, 𝑟) is less than
(7/2)𝑚𝑛

2
− (1/2)𝑛

3
− ((𝑚 + 𝑛)/2)𝑛 when 𝑛 ≤ 𝑚.

Proof. For a matrix𝐴with rank 𝑟, 𝑟 pivoting steps are needed
to make the partitioned matrix 𝑀1 into 𝑀2. First pivoting
step involves𝑚 nonzero columns in 𝐴∗. Thus, it needs𝑚− 1
divisions and (𝑚 − 1)(𝑛 − 1) multiplications with a total
number of (𝑚 − 1)𝑛 multiplications and divisions. On the
second pivoting step, there is one less column in the first part
of the pair. There are 𝑚 − 1 nonzero columns to deal with.
This pivoting step requires (𝑚−2)𝑛 operations. Following the
same idea, the 𝑖th (1 ≤ 𝑖 ≤ 𝑟) pivoting step requires (𝑚 − 𝑖)𝑛
operations. So these 𝑟 pivoting steps require

(𝑚 − 1) 𝑛 + (𝑚 − 2) 𝑛 + ⋅ ⋅ ⋅ + (𝑚 − 𝑟) 𝑛

=
2𝑚 − 𝑟 − 1

2
𝑛𝑟

(18)

multiplications and divisions to reach the matrix𝑀2.
Similarly, it needs (𝑛 − 1)𝑚 + (𝑛 − 2)𝑚 + ⋅ ⋅ ⋅ + (𝑛 − 𝑟)𝑚 =

((2𝑛−𝑟−1)/2)𝑚𝑟multiplications and divisions to change the
matrix𝑀2 into𝑀3.

For simplicity, assume that 𝐵1 = (𝐼𝑟 𝐵11) and 𝐶1 =
(
𝐼𝑟
𝐶11
), which follows from that 𝐵 and 𝐶 are row-echelon and

column-echelon reduced matrix, respectively.
(𝑚 − 𝑟)𝑟𝑛 + (𝑛 − 𝑟)𝑟

2
= (𝑚𝑛 − 𝑟

2
)𝑟 multiplications

are required to form 𝑀4 = (
𝐵1𝐴𝐶1 0 𝐵1
0 0 0
𝐶1 0 0

) under the above
assumption. Since every row of the partitioned matrix
(𝐵1𝐴𝐶1 0 𝐵1) has 𝑚 + 1 nonzero elements, each pivoting
step needs𝑚𝑟multiplications and divisions. Thus, it requires
𝑚𝑟
2 multiplications and divisions to obtain the matrix𝑀5.
Then resume elementary row and columns operations on

the matrix𝑀5 to transform it into𝑀6.The complexity of this
process is𝑚𝑛𝑟multiplications, which is the count to compute
𝐶1𝐵1.

Hence, the total number of complexity of Algorithm 7 is

𝑇 (𝑚, 𝑛, 𝑟)

=
2𝑚 − 𝑟 − 1

2
𝑛𝑟 +

2𝑛 − 𝑟 − 1

2
𝑚𝑟

+ (𝑚𝑛 − 𝑟
2
) 𝑟 + 𝑚𝑟

2
+ 𝑚𝑛𝑟

= (4𝑚𝑛 −
𝑚 + 𝑛

2
) 𝑟 +

𝑚 − 𝑛

2
𝑟
2
− 𝑟
3
.

(19)

With fixed𝑚 and 𝑛, define a function 𝑔(𝑟) = (4𝑚𝑛− (𝑚+
𝑛)/2)𝑟 + ((𝑚 − 𝑛)/2)𝑟

2
− 𝑟
3 for 0 ≤ 𝑟 ≤ min{𝑚, 𝑛} = 𝑛. Then

we have

𝑔
󸀠
(𝑟) = (4𝑚𝑛 −

𝑚 + 𝑛

2
) + (𝑚 − 𝑛) 𝑟 − 3𝑟

2

= 3 (𝑚𝑛 − 𝑟
2
) + (𝑚 − 𝑛) 𝑟 + (𝑚𝑛 −

𝑚 + 𝑛

2
)

≥ (𝑚 − 𝑛) + (𝑚𝑛 −
𝑚 + 𝑛

2
) > 0

(20)

which implies that 𝑔(𝑟) is also monotonically increasing over
[0, 𝑛] when 𝑛 ≤ 𝑚.

Therefore, when 𝑟 = 𝑛, 𝑔(𝑟) obtains its maximum value,
which yields

𝑔 (𝑟) ≤ 𝑔 (𝑛) =
7

2
𝑚𝑛
2
−
1

2
𝑛
3
−
𝑚 + 𝑛

2
𝑛. (21)

Furthermore, we give two remarks: one is explaining the
computation speed and the other is how to improve the
accuracy of Algorithm 7.

Remark 9. The algorithm in this paper does not need to
switch block of certain matrix in the process computation,
unlike the existing algorithm in [19–21].The higher computa-
tional complexity is about 3𝑛3 multiplications and divisions,
that is, less than GH-algorithm [22], which requires 4.5𝑛3
multiplications and divisions, when they are applied to the
case of 𝑟 ≈ 𝑛 = 𝑚 for 𝐴†.

Remark 10. In order to improve the accuracy of the algo-
rithm, we must select nonzero entries in pivot row and
column in each step of the Gauss-Jordan elimination. This
improvement is based on the fact that Gauss-Jordan elimina-
tion is applied on matrices containing nonnegligible number
zero elements.

4. Numerical Examples

In this section, we will use a numerical example to demon-
strate our results. A handy method is used to compute 𝐴† on
a low order matrix.

Example 1. Use Algorithm 7 to compute the M-P inverse 𝐴†
of the matrix in [21], where

𝐴 = (

1 0 1 1

1 2 0 0

2 2 1 1

) . (22)

Solution. Execute elementary row operations on the first four
rows of the partitioned matrix𝑀1 = ( 0 𝐴

∗

𝐴
∗
0
); we have

𝑀1 = (
0 𝐴
∗

𝐴
∗
0
)

=

(
(
(
(

(

0 0 0 1 1 2

0 0 0 0 2 2

0 0 0 1 0 1

0 0 0 1 0 1

1 1 2 0 0 0

0 2 2 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

)
)
)
)

)

󳨀→𝑀2 =

(
(
(
(

(

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0

1 1 2 0 0 0

0 2 2 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

)
)
)
)

)

.

(23)
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Then perform elementary column operations on the first
three columns of matrix𝑀2, which yields

𝑀2 =

(
(
(
(
(
(
(
(
(

(

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0

1 1 2 0 0 0

0 2 2 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

)
)
)
)
)
)
)
)
)

)

󳨀→𝑀3 =

(
(
(
(
(
(
(
(
(

(

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 2 0 0 0 0

1 −1 0 0 0 0

1 −1 0 0 0 0

)
)
)
)
)
)
)
)
)

)

.

(24)

Denote

𝐵 =(

1 0 1

0 1 1

0 0 0

0 0 0

), 𝐶 =
(
(
(

(

1 0 0

0 1 0

1 −
1

2
0

1 −
1

2
0

)
)
)

)

. (25)

By computing, we have

𝐷 = 𝐵𝐴𝐶

= (

1 0 1

0 1 1

0 0 0

0 0 0

)(

1 0 1 1

1 2 0 0

2 2 1 1

)

(
(
(
(
(

(

1 0 0

0 1 0

1 −
1

2
0

1 −
1

2
0

)
)
)
)
)

)

=(

7 0 0

5 3 0

0 0 0

0 0 0

).

(26)

We execute elementary row operations on the first two
rows of the partitioned matrix𝑀4 = (𝐷 𝐵𝐶 0 ) again; we have

𝑀4 =

(
(
(
(
(
(
(
(
(
(

(

7 0 0 1 0 1

5 3 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

1 −
1

2
0 0 0 0

1 −
1

2
0 0 0 0

)
)
)
)
)
)
)
)
)
)

)

󳨀→𝑀5 =

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

1 0 0
1

7
0
1

7

0 1 0 −
5

21

1

3

2

21

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

1 −
1

2
0 0 0 0

1 −
1

2
0 0 0 0

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(27)

One then resumes elementary row and column opera-
tions on𝑀5, which results in

𝑀5 =

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

1 0 0
1

7
0
1

7

0 1 0 −
5

21

1

3

2

21

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

1 −
1

2
0 0 0 0

1 −
1

2
0 0 0 0

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

󳨀→𝑀6 =

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −
1

7
0 −

1

7

0 0 0
5

21
−
1

3
−
2

21

0 0 0 −
11

42

1

6
−
2

21

0 0 0 −
11

42

1

6
−
2

21

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(28)
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Then we can obtain

𝐴
†
=

(
(
(
(
(

(

1

7
0

1

7

−
5

21

1

3

2

21

11

42
−
1

6

2

21

11

42
−
1

6

2

21

)
)
)
)
)

)

. (29)
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tion method for computing outer inverses,” Applied Mathemat-
ics and Computation, vol. 219, no. 9, pp. 4667–4679, 2013.

[22] W. Guo and T. Huang, “Method of elementary transformation
to compute Moore-Penrose inverse,” Applied Mathematics and
Computation, vol. 216, no. 5, pp. 1614–1617, 2010.


