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The purpose of the paper is to present a new iteration method for finding a common element for the set of solutions of equilibrium
problems and of operator equations with a finite family of 𝜆

𝑖
-inverse-strongly monotone mappings in Hilbert spaces.

1. Introduction

Let 𝐻 be a real Hilbert space with the inner product ⟨⋅, ⋅⟩
and the norm ‖ ⋅ ‖, respectively. Let 𝐶 be a nonempty closed
convex subset of𝐻, and let𝐺 be a bifunction from𝐶×𝐶 into
(−∞, +∞). The equilibrium problem for 𝐺 is to find 𝑢

∗
∈ 𝐶

such that

𝐺 (𝑢
∗
, V) ≥ 0, ∀V ∈ 𝐶. (1)

The set of solutions of (1) is denoted by EP(𝐺).
Equilibriumproblem (1) includes the numerous problems

in physics, optimization, economics, transportation, and
engineering, as special cases.

Assume that the bifunction 𝐺 satisfies the following
standard properties.

Assumption A. Let 𝐺 : 𝐶 × 𝐶 → (−∞, +∞) be a bifunction
satisfying the conditions (A1)–(A4):

(A1) 𝐺(𝑢, 𝑢) = 0, ∀𝑢 ∈ 𝐶;
(A2) 𝐺(𝑢, V) + 𝐺(V, 𝑢) ≤ 0, ∀(𝑢, V) ∈ 𝐶 × 𝐶;
(A3) for each 𝑢 ∈ 𝐶, 𝐺(𝑢, ⋅) : 𝐶 → (−∞, +∞) is lower

semicontinuous and convex;
(A4) lim

𝑡→+0
𝐺((1 − 𝑡)𝑢 + 𝑡𝑧, V) ≤ 𝐺(𝑢, V), ∀(𝑢, 𝑧, V) ∈ 𝐶 ×

𝐶 × 𝐶.

Let {𝑇
𝑖
}, 𝑖 = 1, . . . , 𝑁, be a finite family of 𝑘

𝑖
-strictly

pseudocontractive mappings from 𝐶 into 𝐶 with the set of
fixed points 𝐹(𝑇

𝑖
); that is,

𝐹 (𝑇
𝑖
) = {𝑥 ∈ 𝐶 : 𝑇

𝑖
𝑥 = 𝑥} . (2)

Assume that

S :=

𝑁

⋂

𝑖=1

𝐹 (𝑇
𝑖
) ∩ EP (𝐺) ̸= 0. (3)

The problem of finding an element

𝑢
∗
∈ S (4)

is studied intensively in [1–27].
Recall that a mapping 𝑇 in 𝐻 is said to be a 𝑘-strictly

pseudocontractive mapping in the terminology of Browder
and Petryshyn [28] if there exists a constant 0 ≤ 𝑘 < 1 such
that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩
2
≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2
+ 𝑘

󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦
󵄩󵄩󵄩󵄩
2
, (5)

for all 𝑥, 𝑦 ∈ 𝐷(𝑇), the domain of 𝑇, where 𝐼 is the identity
operator in𝐻. Clearly, if 𝑘 = 0, then 𝑇 is nonexpansive; that
is,

󵄩󵄩󵄩󵄩𝑇 (𝑥) − 𝑇 (𝑦)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 . (6)
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We know that the class of 𝑘-strictly pseudocontractive
mappings strictly includes the class of nonexpansive map-
pings.

In the case that 𝑇
𝑖
≡ 𝐼, (4) is reduced to the equilibrium

problem (1) and shown in [5, 23] to covermonotone inclusion
problems, saddle point problems, variational inequality prob-
lems, minimization problems, Nash equilibria in noncooper-
ative games, vector equilibrium problems, and certain fixed
point problems (see also [29]). For finding approximative
solutions of (1) there exist severalmethods: the regularization
approach in [7, 9, 15, 24, 30, 31], the gap-function approach in
[8, 15, 16, 18, 19], and the iterative procedure approach in [1–
4, 6, 8, 11–14, 19–22, 32, 33].

In the case that 𝐺 ≡ 0 and 𝑁 = 1, (4) is a problem
of finding a fixed point for a 𝑘-strictly pseudocontractive
mapping in 𝐶 and is given by Marino and Xu [17].

Theorem 1 (see [17]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space𝐻. Let 𝑇 : 𝐶 → 𝐶 be a 𝑘-strictly
pseudocontractive mapping for some 0 ≤ 𝑘 < 1, and assume
that

𝐹 (𝑇) ̸= 0. (7)

Let {𝑥
𝑛
} be the sequence generated by the following algorithm:

𝑥
0
∈ 𝐶,

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
,

𝐶
𝑛
= {𝑧 ∈ 𝐶 :

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩
2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼
𝑛
) (𝑘 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥

𝑛

󵄩󵄩󵄩󵄩
2
} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝑥

0
− 𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥
0
.

(8)

Assume that the control sequence {𝛼
𝑛
} is chosen so that 𝛼

𝑛
< 1

for all 𝑛. Then {𝑥
𝑛
} converges strongly to 𝑃

𝐹(𝑇)
𝑥
0
, the projection

of 𝑥
0
onto 𝐹(𝑇).

For the case that 𝐺 ≡ 0 and 𝑁 > 1, (4) is a problem of
finding a common fixed point for a finite family of 𝑘

𝑖
-strictly

pseudocontractive mappings 𝑇
𝑖
in 𝐶 and is studied in [27].

Let 𝑥
0
∈ 𝐶 and {𝛼

𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} three sequences in

[0, 1] satisfying 𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
= 1 for all 𝑛 ≥ 1, and let {𝑢

𝑛
} be

a sequence in 𝐶. Then the sequence {𝑥
𝑛
} generated by

𝑥
1
= 𝛼
1
𝑥
0
+ 𝛽
1
𝑇
1
𝑥
1
+ 𝛾
1
𝑢
1
,

𝑥
2
= 𝛼
2
𝑥
1
+ 𝛽
2
𝑇
2
𝑥
2
+ 𝛾
2
𝑢
2
,

...

𝑥
𝑁
= 𝛼
𝑁
𝑥
𝑁−1

+ 𝛽
𝑁
𝑇
𝑁
𝑥
𝑁
+ 𝛾
𝑁
𝑢
𝑁
,

𝑥
𝑁+1

= 𝛼
𝑁+1

𝑥
𝑁
+ 𝛽
𝑁+1

𝑇
1
𝑥
𝑁+1

+ 𝛾
𝑁+1

𝑢
𝑁+1

,

...

(9)

is called the implicit iteration process with mean errors for a
finite family of strictly pseudocontractive mappings {𝑇

𝑖
}
𝑁

𝑖=1
.

The scheme (9) can be expressed in the compact form as

𝑥
𝑛
= 𝛼
𝑛
𝑥
𝑛−1

+ 𝛽
𝑛
𝑇
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑢
𝑛
, (10)

where 𝑇
𝑛
= 𝑇
𝑛 mod 𝑁.

Theorem 2 (see [27]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻. Let {𝑇

𝑖
}
𝑁

𝑖=1
be a finite family

of strictly pseudocontractive mappings of 𝐶 into itself such that
𝑁

⋂

𝑖=1

𝐹 (𝑇
𝑖
) ̸= 0. (11)

Let 𝑥
0

∈ 𝐶 and let {𝑢
𝑛
} be a bounded sequence in 𝐶; let

{𝛼
𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} be three sequences in [0, 1] satisfying the

following conditions:
(i) 𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
= 1, ∀𝑛 ≥ 1;

(ii) there exist constants 𝜎
1
, 𝜎
2
such that 0 < 𝜎

1
≤ 𝛽
𝑛
≤

𝜎
2
< 1, ∀𝑛 ≥ 1;

(iii) ∑∞
𝑛=1

𝛾
𝑛
< ∞.

Then the implicit iterative sequence {𝑥
𝑛
} defined by (9) con-

verges weakly to a common fixed point of the mappings {𝑇
𝑖
}
𝑁

𝑖=1
.

Moreover, if there exists 𝑖
0

∈ {1, 2, . . . , 𝑁} such that 𝑇
𝑖
0

is
demicompact, then {𝑥

𝑛
} converges strongly.

If 𝐺 is an arbitrary bifunction satisfying Assumption A
and 𝑁 = 1, then (4) is a problem of finding a common ele-
ment of the fixed point set for a 𝑘-strictly pseudocontractive
mapping in 𝐶 and of the solution set of equilibrium problem
for 𝐺 (see [26]).

Theorem 3 (see [26]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻. Let 𝐺 be a bifunction from
𝐶 × 𝐶 to (−∞, +∞) satisfying Assumption A, and let 𝑇 be a
nonexpansive mapping of 𝐶 into𝐻 such that

𝐹 (𝑇) ∩ 𝐸𝑃 (𝐺) ̸= 0. (12)

Let 𝑓 be a contraction of𝐻 into itself and let {𝑥
𝑛
} and {𝑢

𝑛
} be

sequences generated by 𝑥
1
∈ 𝐻 and

𝐺 (𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑇𝑢
𝑛
,

(13)

for all 𝑛 ∈ N, where {𝛼
𝑛
} ⊂ [0, 1] and {𝑟

𝑛
} ⊂ (0,∞) satisfy

lim
𝑛→∞

𝛼
𝑛
= 0,

∞

∑

𝑛=1

𝛼
𝑛
= ∞,

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨𝛼𝑛+1 − 𝛼
𝑛

󵄨󵄨󵄨󵄨 < ∞,

lim inf
𝑛→∞

𝑟
𝑛
> 0,

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟
𝑛

󵄨󵄨󵄨󵄨 < ∞.

(14)

Then, {𝑥
𝑛
} and {𝑢

𝑛
} converge strongly to 𝑧 ∈ 𝐹(𝑇) ∩ 𝐸𝑃(𝐺),

where

𝑧 = 𝑃
𝐹(𝑇)∩𝐸𝑃(𝐺)

𝑓 (𝑧) . (15)
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Set 𝐴
𝑖
= 𝐼 − 𝑇

𝑖
. Obviously, 𝐴

𝑖
are 𝜆
𝑖
-inverse-strongly

monotone; that is,

⟨𝐴
𝑖 (𝑥) − 𝐴

𝑖
(𝑦) , 𝑥 − 𝑦⟩ ≥ 𝜆

𝑖

󵄩󵄩󵄩󵄩𝐴 𝑖 (𝑥) − 𝐴
𝑖
(𝑦)

󵄩󵄩󵄩󵄩
2
,

∀𝑥, 𝑦 ∈ 𝐷 (𝐴
𝑖
) , 𝜆

𝑖
=

1 − 𝑘
𝑖

2
.

(16)

From now on, let {𝐴
𝑖
}
𝑁

𝑖=1
be a finite family of 𝜆

𝑖
-inverse-

strongly monotone mappings in𝐻 with 𝐶 ⊂ ⋂
𝑁

𝑖=1
𝐷(𝐴
𝑖
) and

𝜆
𝑖
> 0, 𝑖 = 1, . . . , 𝑁. On the other hand, if there exists 𝑖

0
∈

{1, 2, . . . , 𝑁} such that 𝜆
𝑖
0

> 1, then 𝐴
𝑖
0

is a contraction; that
is, ‖𝐴

𝑖
0

(𝑥) − 𝐴
𝑖
0

(𝑦)‖ ≤ (1/𝜆
𝑖
0

)‖𝑥 − 𝑦‖ with 1/𝜆
𝑖
0

< 1. And
hence,𝐴

𝑖
0

has only one solution and, consequently, the stated
problem does not have sense. So, without loss of generality,
assume that 0 < 𝜆

𝑖
≤ 1, 𝑖 = 1, . . . , 𝑁.

Set

𝑆 =

𝑁

⋂

𝑖=1

𝑆
𝑖
, (17)

where 𝑆
𝑖
= {𝑥 ∈ 𝐶 : 𝐴

𝑖
(𝑥) = 0} is the solution set of 𝐴

𝑖
in 𝐶.

Assume that EP(𝐺) ∩ 𝑆 ̸= 0.
Our problem is to find an element

𝑢
∗
∈ EP (𝐺) ∩ 𝑆. (18)

Since the mapping 𝐴 = 𝐼 − 𝑇 is (1/2)-inverse-strongly
monotone for each nonexpansive mapping 𝑇, the problem
of finding an element 𝑢∗ ∈ 𝐶, which is not only a solution
of a variational inequality involving an inverse-strongly
monotone mapping but also a fixed point of a nonexpansive
mapping, is a particular case of (18).

For instance, the case that 𝐺(𝑢, V) ≡ ⟨𝐴(𝑢), V − 𝑢⟩, where
𝐴 is some inverse-strongly monotone mapping and𝑁 = 1, is
studied in [25].

Theorem 4 (see [25]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻. Let 𝜆 > 0. Let 𝐴 be a 𝜆-
inverse-strongly monotone mapping of𝐶 into𝐻, and let 𝑇 be a
nonexpansive mapping of 𝐶 into itself such that

𝐹 (𝑇) ∩ 𝑉𝐼 (𝐶, 𝐴) ̸= 0, (19)

where 𝑉𝐼(𝐶, 𝐴) denotes the solution set of the following
variational inequality: find 𝑥

∗
∈ 𝐶 such that

⟨𝐴 (𝑥
∗
) , 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (20)

Let {𝑥
𝑛
} be a sequence defined by

𝑥
0
∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴 (𝑥
𝑛
)) ,

(21)

for every 𝑛 = 0, 1, . . ., where {𝜆
𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈

(0, 2𝜆) and {𝛼
𝑛
} ⊂ (𝑐, 𝑑) for some 𝑐, 𝑑 ∈ (0, 1). Then, {𝑥

𝑛
}

converges weakly to 𝑧 ∈ 𝐹(𝑇) ∩ 𝑉𝐼(𝐶, 𝐴), where

𝑧 = lim
𝑛→∞

𝑃
𝐹(𝑇)∩𝑉𝐼(𝐶,𝐴)

𝑥
𝑛
. (22)

The following theorem is an improvement of Theorem 4
for the case of nonself-mapping.

Theorem 5 (see [34]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻. Let 𝐴 be a 𝜆-inverse-strongly
monotone mapping of 𝐶 into 𝐻, and let 𝑇 be a nonexpansive
nonself-mapping of 𝐶 into𝐻 such that

𝐹 (𝑇) ∩ 𝑉𝐼 (𝐶, 𝐴) ̸= 0. (23)

Suppose that 𝑥
1
= 𝑥 ∈ 𝐶 and {𝑥

𝑛
} is given by

𝑥
𝑛+1

= 𝑃
𝐶
(𝛼
𝑛
𝑥 + (1 − 𝛼

𝑛
) 𝑇𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴 (𝑥
𝑛
))) (24)

for every 𝑛 = 1, 2, . . ., where {𝛼
𝑛
} is a sequence in [0, 1) and

{𝜆
𝑛
} is a sequence in [0, 2𝛼]. If {𝛼

𝑛
} and {𝜆

𝑛
} are chosen so that

𝜆
𝑛
∈ [𝑎, 𝑏] for some a, b with 0 < 𝑎 < 𝑏 < 2𝛼,

lim
𝑛→∞

𝛼
𝑛
= 0,

∞

∑

𝑛=1

𝛼
𝑛
= ∞,

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨𝛼𝑛+1 − 𝛼
𝑛

󵄨󵄨󵄨󵄨 < ∞,

∞

∑

𝑛=1

󵄨󵄨󵄨󵄨𝜆𝑛+1 − 𝜆
𝑛

󵄨󵄨󵄨󵄨 < ∞,

(25)

then {𝑥
𝑛
} converges strongly to 𝑃

𝐹(𝑇)∩𝑉𝐼(𝐶,𝐴)
𝑥.

We know that 𝜆-inverse-strongly monotone mapping is
(1/𝜆)-Lipschitz continuous andmonotone.Therefore, for the
case that 𝐺(𝑢, V) ≡ ⟨𝐴(𝑢), V − 𝑢⟩, where 𝐴 is not inverse-
strongly monotone, but Lipschitz continuous and monotone,
Nadezhkina and Takahashi [35] prove the following theorem.

Theorem 6 (see [35]). Let 𝐶 be a nonempty closed convex
subset of a real Hilbert space 𝐻. Let 𝐴 be a monotone and
𝑘-Lipschitz continuous mapping of 𝐶 into 𝐻, and let 𝑇 be a
nonexpansive mapping of 𝐶 into itself such that

𝐹 (𝑇) ∩ 𝑉𝐼 (𝐶, 𝐴) ̸= 0. (26)

Let {𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
} be sequences generated by

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴 (𝑥
𝑛
)) ,

𝑧
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴 (𝑦
𝑛
)) ,

𝐶
𝑛
= {𝑧 ∈ 𝐶 :

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝑥 − 𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥

(27)

for every 𝑛 = 0, 1, . . ., where {𝜆
𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈

(0, 1/𝑘) and 𝛼
𝑛
⊂ [0, 𝑐] for some 𝑐 ∈ [0, 1). Then the sequences

{𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
} converge strongly to 𝑃

𝐹(𝑇)∩𝑉𝐼(𝐶,𝐴)
𝑥.

Some similar results are also considered in [36, 37].
Buong [38] introduced two new implicit iteration meth-

ods for solving problem (18).
We construct a regularization solution 𝑢

𝑛
of the following

single equilibrium problem: find 𝑢
𝑛
∈ 𝐶 such that

F (𝑢
𝑛
, V) ≥ 0, ∀V ∈ 𝐶, (28)
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where

F (𝑢, V) := 𝐺 (𝑢, V) +
𝑁

∑

𝑖=1

𝛼
𝜇
𝑖

𝑛
𝐺
𝑖 (𝑢, V) + 𝛼

𝑛 ⟨𝑢, V − 𝑢⟩ ,

𝛼
𝑛
> 0,

𝐺
𝑖 (𝑢, V) = ⟨𝐴

𝑖 (𝑢) , V − 𝑢⟩, 𝑖 = 1, . . . , 𝑁,

0 < 𝜇
𝑖
< 𝜇
𝑖+1

< 1, 𝑖 = 2, . . . , 𝑁 − 1,

(29)

and {𝛼
𝑛
} is the positive sequence of regularization parameters

that converges to 0, as 𝑛 → +∞.
The first one is the following theorem.

Theorem 7 (see [38]). For each 𝛼
𝑛
> 0, problem (28) has a

unique solution 𝑢
𝑛
such that

(i) lim
𝑛→+∞

𝑢
𝑛
= 𝑢
∗, 𝑢∗ ∈ 𝐸𝑃(𝐺) ∩ 𝑆, ‖𝑢∗‖ ≤ ‖𝑦‖, ∀𝑦 ∈

𝐸𝑃(𝐺) ∩ 𝑆;

(ii)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
𝑚

󵄩󵄩󵄩󵄩 ≤ (
󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩 + 𝑑𝑁)

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼
𝑚

󵄨󵄨󵄨󵄨

𝛼
𝑛

, (30)

where 𝑑 is a positive constant.

Next, we introduce the second result. Let {𝑐
𝑛
} and {𝛾

𝑛
} be

some sequences of positive numbers, and let 𝑧
0
and 𝑧
1
be two

arbitrary elements in 𝐶. Then, the sequence {𝑧
𝑛
} of iterations

is defined by the following equilibrium problem: find 𝑧
𝑛+1

∈

𝐶 such that

𝑐
𝑛
(𝐺 (𝑧

𝑛+1
, V) +

𝑁

∑

𝑖=1

𝛼
𝜇
𝑖

𝑛
𝐺
𝑖
(𝑧
𝑛+1

, V) + 𝛼
𝑛
⟨𝑧
𝑛+1

, V − 𝑧
𝑛+1

⟩)

+ ⟨𝑧
𝑛+1

− 𝑧
𝑛
, V − 𝑧

𝑛+1
⟩ − 𝛾
𝑛
⟨𝑧
𝑛
− 𝑧
𝑛−1

, V − 𝑧
𝑛+1

⟩ ≥ 0,

∀V ∈ 𝐶.

(31)

Theorem 8 (see [38]). Assume that the parameters 𝑐
𝑛
, 𝛾
𝑛
, and

𝛼
𝑛
are chosen such that

(i) 0 < 𝑐
0
< 𝑐
𝑛
, 0 ≤ 𝛾

𝑛
< 𝛾
0
,

(ii) ∑∞
𝑛=1

𝑏
𝑛
= +∞, 𝑏

𝑛
= 𝑐
𝑛
𝛼
𝑛
/(1 + 𝑐

𝑛
𝛼
𝑛
),

(iii) ∑∞
𝑛=1

𝛾
𝑛
𝑏
−1

𝑛
‖𝑧
𝑛
− 𝑧
𝑛−1

‖ < +∞,

(iv) lim
𝑛→∞

𝛼
𝑛
= 0, lim

𝑛→∞
(|𝛼
𝑛
− 𝛼
𝑛+1

|/𝛼
𝑛
𝑏
𝑛
) = 0.

Then, the sequence {𝑧
𝑛
} defined by (31) converges strongly to the

element 𝑢∗, as 𝑛 → +∞.

In this paper, we consider the new another iteration
method: for an arbitrary element 𝑥

0
in 𝐻, the sequence {𝑥

𝑛
}

of iterations is defined by finding 𝑢
𝑛
∈ 𝐶 such that

𝐺 (𝑢
𝑛
, 𝑦) + ⟨𝑢

𝑛
− 𝑥
𝑛
, 𝑦 − 𝑢

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝑃
𝐶
(𝑥
𝑛
− 𝛽
𝑛
[𝑥
𝑛
− 𝑢
𝑛
+

𝑁

∑

𝑖=1

𝛼
𝜇
𝑖

𝑛
𝐴
𝑖
(𝑥
𝑛
) + 𝛼
𝑛
𝑥
𝑛
])

= 𝑃
𝐶
(𝑥
𝑛
− 𝛽
𝑛
[

𝑁

∑

𝑖=1

𝛼
𝜇
𝑖

𝑛
𝐴
𝑖
(𝑥
𝑛
) + (1 + 𝛼

𝑛
) 𝑥
𝑛
− 𝑢
𝑛
]) ,

(32)

where 𝑃
𝐶
is the metric projection of 𝐻 onto 𝐶 and {𝛼

𝑛
} and

{𝛽
𝑛
} are sequences of positive numbers.
The strong convergence of the sequence {𝑥

𝑛
} defined by

(32) is proved under some suitable conditions on {𝛼
𝑛
} and

{𝛽
𝑛
} in the next section.

2. Main Results

We formulate the following lemmas for the proof of our main
theorems.

Lemma 9 (see [9]). Let 𝐶 be a nonempty closed convex subset
of a real Hilbert space 𝐻 and let 𝐺 be a bifunction of 𝐶 × 𝐶

into (−∞, +∞) satisfying Assumption A. Let 𝑟 > 0 and 𝑥 ∈ 𝐻.
Then, there exists 𝑧 ∈ 𝐶 such that

𝐺 (𝑧, 𝑦) +
1

𝑟
⟨𝑧 − 𝑥, 𝑦 − 𝑧⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (33)

Lemma 10 (see [9]). Let𝐶 be a nonempty closed convex subset
of a real Hilbert space 𝐻. Assume that 𝐺 : 𝐶 × 𝐶 →

(−∞, +∞) satisfies AssumptionA. For 𝑟 > 0 and 𝑥 ∈ 𝐻, define
a mapping 𝑇

𝑟
: 𝐻 → 𝐶 as follows:

𝑇
𝑟 (𝑥) = {𝑧 ∈ 𝐶 : 𝐺 (𝑧, 𝑦) +

1

𝑟
⟨𝑧 − 𝑥, 𝑦 − 𝑧⟩ ≥ 0}, ∀𝑦 ∈ 𝐶.

(34)

Then, the following statements hold:

(i) 𝑇
𝑟
is single valued;

(ii) 𝑇
𝑟
is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩𝑇𝑟(𝑥) − 𝑇
𝑟
(𝑦)

󵄩󵄩󵄩󵄩
2
≤ ⟨𝑇
𝑟 (𝑥) − 𝑇

𝑟
(𝑦) , 𝑥 − 𝑦⟩; (35)

(iii) 𝐹(𝑇
𝑟
) = 𝐸𝑃(𝐺);

(iv) 𝐸𝑃(𝐺) is closed and convex.

Lemma 11 (see [36]). Let {𝑎
𝑛
}, {𝑏
𝑛
}, and {𝑐

𝑛
} be the sequences

of positive numbers satisfying the following conditions:

(i) 𝑎
𝑛+1

≤ (1 − 𝑏
𝑛
)𝑎
𝑛
+ 𝑐
𝑛
,

(ii) ∑∞
𝑛=0

𝑏
𝑛
= +∞, 𝑏

𝑛
< 1, lim

𝑛→+∞
(𝑐
𝑛
/𝑏
𝑛
) = 0.

Then, lim
𝑛→+∞

𝑎
𝑛
= 0.
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Lemma 12 (see [38]). Let𝐴 be any inverse-strongly monotone
mapping from 𝐶 into 𝐻 with the solution set 𝑆

𝐴
:= {𝑥 ∈ 𝐶 :

𝐴(𝑥) = 0}, and let 𝐶
0
be a closed convex subset of 𝐶 such that

𝑆
𝐴
∩ 𝐶
0

̸= 0. (36)

Then, the solution set of the following variational inequality

⟨𝐴 (𝑦) , 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥 ∈ 𝐶
0
, 𝑦 ∈ 𝐶

0
, (37)

is coincided with 𝑆
𝐴
∩ 𝐶
0
.

From Lemma 9, we can consider the firmly nonexpansive
mapping 𝑇

0
defined by

𝑇
0 (𝑥) = {𝑧 ∈ 𝐶 : 𝐺 (𝑧, 𝑦) + ⟨𝑧 − 𝑥, 𝑦 − 𝑧⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

∀𝑥 ∈ 𝐻.

(38)

From Lemma 10, we know that 𝑇
0
is nonexpansive. Conse-

quently,𝐴
0
:= 𝐼 −𝑇

0
is (1/2)-inverse-strongly monotone. Let

𝑆
0
:= {𝑥 ∈ 𝐶 : 𝐴

0 (𝑥) = 0} . (39)

Then, 𝑆
0
= EP(𝐺) and problem (18) are equivalent to finding

𝑢
∗
∈ 𝑆
0
∩ 𝑆. (40)

Now, we construct a regularization solution 𝑦
𝑛
for (40)

by solving the following variational inequality problem: find
𝑦
𝑛
∈ 𝐶 such that

⟨

𝑁

∑

𝑖=0

𝛼
𝜇
𝑖

𝑛
𝐴
𝑖
(𝑦
𝑛
) + 𝛼
𝑛
𝑦
𝑛
, V − 𝑦

𝑛
⟩ ≥ 0, ∀V ∈ 𝐶,

𝜇
0
= 0 < 𝜇

1
< ⋅ ⋅ ⋅ < 𝜇

𝑁
< 1,

(41)

where the positive regularization parameter 𝛼
𝑛
→ 0, as 𝑛 →

+∞.
Nowwe are in a position to introduce and prove themain

results.

Theorem 13. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝐺 be a bifunction from 𝐶 × 𝐶 to
(−∞, +∞) satisfying Assumption A and let {𝐴

𝑖
}
𝑁

𝑖=1
be a finite

family of 𝜆
𝑖
-inverse-strongly monotone mappings in 𝐻 with

𝐶 ⊂ ⋂
𝑁

𝑖=1
𝐷(𝐴
𝑖
) and 𝜆

𝑖
> 0, 𝑖 = 1, . . . , 𝑁, such that

𝐸𝑃 (𝐺) ∩ 𝑆 ̸= 0, (42)

where 𝐸𝑃(𝐺) denotes the set of solutions for (1) and

𝑆 =

𝑁

⋂

𝑖=1

𝑆
𝑖
, 𝑆
𝑖
= {𝑥 ∈ 𝐶 : 𝐴

𝑖 (𝑥) = 0} . (43)

Then, for each 𝛼
𝑛
> 0, problem (41) has a unique solution 𝑦

𝑛

such that

(i) lim
𝑛→+∞

𝑦
𝑛
= 𝑢
∗, 𝑢∗ ∈ 𝐸𝑃(𝐺) ∩ 𝑆,

(ii) ‖𝑢∗‖ ≤ ‖𝑦‖, ∀𝑦 ∈ 𝐸𝑃(𝐺) ∩ 𝑆,

(iii)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
𝑚

󵄩󵄩󵄩󵄩 ≤

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼
𝑚

󵄨󵄨󵄨󵄨

𝛼
𝑛

(
󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩 + 𝑑𝑁) , (44)

where 𝑑 is some positive constant.

Proof. FromLemma 12, we know that 𝑆
0
is the set of solutions

for the following variational inequality problem: find 𝑢
∗
∈ 𝐶

such that

⟨𝐴
0
(𝑢
∗
) , V − 𝑢

∗
⟩ ≥ 0, ∀V ∈ 𝐶. (45)

If we define the new bifunction 𝐺
0
(𝑢, V) by

𝐺
0 (𝑢, V) = ⟨𝐴

0
(𝑢
∗
) , V − 𝑢

∗
⟩ , (46)

then problem (41) is the same as (28) with a new 𝐺(𝑢, V), and
the proof for the theorem is a complete repetition of the proof
for Theorem 2.1 in [38].

Set

𝐿 = max{2, 1
𝜆
𝑖

, 𝑖 = 1, . . . , 𝑁} . (47)

Theorem 14. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻. Let 𝐺 be a bifunction from 𝐶 × 𝐶 to
(−∞, +∞) satisfying Assumption A and let {𝐴

𝑖
}
𝑁

𝑖=1
be a finite

family of 𝜆
𝑖
-inverse-strongly monotone mappings in 𝐻 with

𝐶 ⊂ ⋂
𝑁

𝑖=1
𝐷(𝐴
𝑖
) and 𝜆

𝑖
> 0, 𝑖 = 1, . . . , 𝑁, such that

𝐸𝑃 (𝐺) ∩ 𝑆 ̸= 0, (48)

where 𝐸𝑃(𝐺) denotes the set of solutions for (1) and

𝑆 =

𝑁

⋂

𝑖=1

𝑆
𝑖
, 𝑆
𝑖
= {𝑥 ∈ 𝐶 : 𝐴

𝑖 (𝑥) = 0} . (49)

Suppose that 𝛼
𝑛
, 𝛽
𝑛
satisfy the following conditions:

𝛼
𝑛
, 𝛽
𝑛
> 0 (𝛼

𝑛
≤ 1) , lim

𝑛→∞
𝛼
𝑛
= 0,

lim
𝑛→∞

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼
𝑛+1

󵄨󵄨󵄨󵄨

𝛼2
𝑛
𝛽
𝑛

= 0,

∞

∑

𝑛=0

𝛼
𝑛
𝛽
𝑛
= ∞,

lim
𝑛→∞

𝛽
𝑛

(𝐿(𝑁 + 1) + 𝛼
𝑛
)
2

𝛼
𝑛

< 1.

(50)

Then, the sequence {𝑥
𝑛
} defined by (32) converges strongly to

𝑢
∗
∈ 𝐸𝑃(𝐺) ∩ 𝑆; that is,

lim
𝑛→∞

𝑥
𝑛
= 𝑢
∗
∈ 𝐸𝑃 (𝐺) ∩ 𝑆. (51)

Proof. Let 𝑦
𝑛
be the solution of (41). Then,

𝑦
𝑛
= 𝑃
𝐶
(𝑦
𝑛
− 𝛽
𝑛
[

𝑁

∑

𝑖=0

𝛼
𝜇
𝑖

𝑛
𝐴
𝑖
(𝑦
𝑛
) + 𝛼
𝑛
𝑦
𝑛
]) . (52)
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Set Δ
𝑛
= ‖𝑥
𝑛
− 𝑦
𝑛
‖. Obviously,

Δ
𝑛+1

=
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦

𝑛+1

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 . (53)

From the nonexpansivity of 𝑃
𝐶
, the monotone and Lipschitz

continuous properties of𝐴
𝑖
, 𝑖 = 0, . . . , 𝑁, (41), (52), and 𝑦

𝑛
=

𝑇
0
(𝑥
𝑛
), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦
𝑛

󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥
𝑛
− 𝑦
𝑛
− 𝛽
𝑛
[

𝑁

∑

𝑖=0

𝛼
𝜇
𝑖

𝑛
(𝐴
𝑖
(𝑥
𝑛
) − 𝐴
𝑖
(𝑦
𝑛
))

+ 𝛼
𝑛
(𝑥
𝑛
− 𝑦
𝑛
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥
𝑛
− 𝑦
𝑛
− 𝛽
𝑛
[

𝑁

∑

𝑖=0

𝛼
𝜇
𝑖

𝑛
(𝐴
𝑖
(𝑥
𝑛
) − 𝐴
𝑖
(𝑦
𝑛
)) + 𝛼

𝑛
(𝑥
𝑛
− 𝑦
𝑛
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩
2

+ 𝛽
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[

𝑁

∑

𝑖=0

𝛼
𝜇
𝑖

𝑛
(𝐴
𝑖
(𝑥
𝑛
) − 𝐴
𝑖
(𝑦
𝑛
)) + 𝛼

𝑛
(𝑥
𝑛
− 𝑦
𝑛
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

− 2𝛽
𝑛
⟨

𝑁

∑

𝑖=0

𝛼
𝜇
𝑖

𝑛
(𝐴
𝑖
(𝑥
𝑛
) − 𝐴
𝑖
(𝑦
𝑛
))

+ 𝛼
𝑛
(𝑥
𝑛
− 𝑦
𝑛
) , 𝑥
𝑛
− 𝑦
𝑛
⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩
2 [

[

1 − 2𝛽
𝑛
𝛼
𝑛
+ 𝛽
2

𝑛
(2 +

𝑁

∑

𝑖=1

𝛼
𝜇
𝑖

𝑛

1

𝜆
𝑖

+ 𝛼
𝑛
)

2

]

]

.

(54)

Thus,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 ≤ Δ
𝑛
(1 − 2𝛽

𝑛
𝛼
𝑛
+ 𝛽
2

𝑛
(𝐿 (𝑁 + 1) + 𝛼

𝑛
)
2
)
1/2

.

(55)

Therefore,

Δ
𝑛+1

≤ Δ
𝑛
(1 − 2𝛽

𝑛
𝛼
𝑛
+ 𝛽
2

𝑛
(𝐿 (𝑁 + 1) + 𝛼

𝑛
)
2
)
1/2

+

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼
𝑛+1

󵄨󵄨󵄨󵄨

𝛼
𝑛

(
󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩 + 𝑑𝑁)

≤ Δ
𝑛
(1 − 𝛼

𝑛
𝛽
𝑛
)
1/2

+

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼
𝑛+1

󵄨󵄨󵄨󵄨

𝛼
𝑛

(
󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩 + 𝑑𝑁) .

(56)

We note that, for 𝜀 > 0, 𝑎 > 0, 𝑏 > 0, the inequality

(𝑎 + 𝑏)
2
≤ (1 + 𝜀) (𝑎

2
+
𝑏
2

𝜀
) (57)

holds. Thus, applying inequality (57) for 𝜀 = 𝛼
𝑛
𝛽
𝑛
/2, we

obtain

0 ≤ Δ
2

𝑛+1

≤ Δ
2

𝑛
(1 − 𝛼

𝑛
𝛽
𝑛
) (1 +

1

2
𝛼
𝑛
𝛽
𝑛
)

+ (
𝛼
𝑛
− 𝛼
𝑛+1

𝛼
𝑛

(
󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩 + 𝑑𝑁))

2
2

𝛼
𝑛
𝛽
𝑛

(1 +
1

2
𝛼
𝑛
𝛽
𝑛
)

= Δ
2

𝑛
(1 −

1

2
𝛼
𝑛
𝛽
𝑛
−
1

2
(𝛼
𝑛
𝛽
𝑛
)
2
)

+ (
𝛼
𝑛
− 𝛼
𝑛+1

𝛼2
𝑛
𝛽
𝑛

(
󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩 + 𝑑𝑁))

2

2𝛼
𝑛
𝛽
𝑛
(1 +

1

2
𝛼
𝑛
𝛽
𝑛
) .

(58)

Set

𝑏
𝑛
= 𝛼
𝑛
𝛽
𝑛
(
1

2
+
1

2
𝛼
𝑛
𝛽
𝑛
)

𝑐
𝑛
= (

𝛼
𝑛
− 𝛼
𝑛+1

𝛼2
𝑛
𝛽
𝑛

(
󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩 + 𝑑𝑁))

2

2𝛼
𝑛
𝛽
𝑛
(1 +

1

2
𝛼
𝑛
𝛽
𝑛
) .

(59)

Then, it is not difficult to check that 𝑏
𝑛
and 𝑐

𝑛
satisfy

the conditions in Lemma 11 for sufficiently large 𝑛. Hence,
lim
𝑛→+∞

Δ
2

𝑛
= 0. Since lim

𝑛→∞
𝑦
𝑛
= 𝑢
∗, we have

lim
𝑛→∞

𝑥
𝑛
= 𝑢
∗
∈ EP (𝐺) ∩ 𝑆. (60)

This completes the proof.

Remark 15. The sequences 𝛼
𝑛
= (1 + 𝑛)

−𝑝
, 0 < 𝑝 < 1/2, and

𝛽
𝑛
= 𝛾
0
𝛼
𝑛
with

0 < 𝛾
0
<

1

(𝐿 (𝑁 + 1) + 𝛼
0
)
2 (61)

satisfy all the necessary conditions inTheorem 14.
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