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Background and foreground modeling is a typical method in the application of computer vision. The current general “low-rank +
sparse” model decomposes the frames from the video sequences into low-rank background and sparse foreground. But the sparse
assumption in such a model may not conform with the reality, and the model cannot directly reflect the correlation between the
background and foreground either.Thus, we present a novel model to solve this problem by decomposing the arranged data matrix
𝐷 into low-rank background 𝐿 and moving foreground𝑀. Here, we only need to give the priori assumption of the background
to be low-rank and let the foreground be separated from the background as much as possible. Based on this division, we use a
pair of dual norms, nuclear norm and spectral norm, to regularize the foreground and background, respectively. Furthermore, we
use a reweighted function instead of the normal norm so as to get a better and faster approximation model. Detailed explanation
based on linear algebra about our two models will be presented in this paper. By the observation of the experimental results, we
can see that our model can get better background modeling, and even simplified versions of our algorithms perform better than
mainstream techniques IALM and GoDec.

1. Introduction

Over the past several decades, the applications of monitoring
and control system, including video surveillance, traffic
monitoring and analysis, human detection and tracking, and
gesture recognition in human-machine interface, are increas-
ingly popular and widely used in our daily life. Moeslund
et al. [1] and many scholars were committed to the related
researches by using various methods.

Background subtraction is an algorithm proposed since
1999.Due to the underlying ease of implementation and effec-
tiveness, foreground object detection by using background
subtraction has been widely used in the video surveillance
applications. This kind of approach can be traced back to
Toyama et al. [2], the algorithmwhich predicts pixel intensity
by using the Wiener filter to dig out the foreground region
instead of maintaining a specific image. In the meanwhile,
Stauffer and Grimson [3, 4] proposed a method based on
the Gaussian mixture model (GMM) to track the dynamic

objects and give the trajectory of them.TheGMMhas gained
great popularity among the computer vision community,
and other scholars continue to revisit the method and
propose enhanced algorithms [5, 6]. But modeling the high
frequency variations in the background with 3–5 of Gaussian
distribution is not accurate and even fails to achieve the
sensitive detection. So, in the following studies, Elgammal
et al. [7, 8] proposed a corresponding new background
subtraction, using more short-term distributions to obtain
better detection sensitivity. They put forward the statistical
scene background by using general nonparametric kernel
density estimation to subtract the backgroundwhile retaining
the foreground image. All the methods above are real-time
algorithm; the estimated background at each pixel location is
based on the pixels recent history and no spatial correlation
is used between different or neighbouring pixel locations.
So, Oliver built an eigenspace to model the background
and used principal component analysis (PCA) to reduce the
dimensionality of the space [9].
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Over the last five years, there has been growing interest
within the usage of PCA to model the background. Chan-
drasekaran put forward the “low-rank + sparse” model to
achieve the purpose of backgroundmodeling and foreground
detection in the video processing field [10]. In 2009, Candes
et al. [11] proposed the robust principal component analysis
(RPCA) method to decompose the large data matrix of video
sequence into low-rank and sparse components. RPCA being
used firstly in the field of computer vision was put forward by
de la Torre and Black [12]. Almost at the same time as Candes,
Wright et al. [13] also chose RPCA to model the background
as a low-rank part of the frames in the video sequence. After
that, many scholars threw themselves into the work to solve
this model better. An alternating direction method (ADM)
for sparsity and low-rank decompositionwas studied by Yuan
and Yang [14]. Lin et al. solved this optimization problem
via the method of augmented Lagrange multipliers (ALM)
in [15]. Zhou and Tao [16] introduced a special fast low-
rank approximation based on bilateral random projections
(BRP), which was the essence of their algorithmGoDec. Peng
et al. [17] referred to RPCA problem as robust alignment
by sparse and low-rank (RASL) decomposition and gave the
outer and inner loop of RASL to solve the problem. All these
improved PCA methods exploit the correlations between
different pixels very well and no longer being local method
like the previous background subtraction algorithms.

The general “low-rank + sparse” model in the articles
available is as follows:

min
𝐿,𝑆

1

2
‖𝐷 − 𝐿 − 𝑆‖

2

𝐹
+ 𝜆‖𝐿‖∗ + 𝜇‖𝑆‖1, (1)

where 𝐷 is a data matrix whose columns are the pixels
from each frame in the video sequence; 𝐿 denotes a low-
rank matrix which naturally corresponds to the stationary
background; and 𝑆 is a sparse matrix which contains the
moving objects in the foreground.The Frobenius norm ‖ ⋅ ‖

2

𝐹

is defined as the quadratic sum of the matrix elements; the
nuclear norm ‖ ⋅ ‖

∗
is defined as the sumof its singular values;

the 𝑙
1
-norm ‖ ⋅ ‖

1
is seen as the sum of the absolute values of

the matrix elements [18, 19].
To address this convex optimization problem, numerous

approaches have been explored and proposed in the academic
papers over several decades. However, in my opinion, the
“sparse” assumption in this model may not always conform
to the reality. The foreground moving target may be a very
small part of the full panoramic view, and itmay also occupy a
large proportion in the captured picture. And, under normal
circumstances, the scholars usually add a related item onto
(1) to constraint the correlation between foreground and
background matrices. Therefore, we are trying to improve
the PCA method in another way to find a new model to
separate the background and foreground and reflect the
correlation between them as well. In this paper, we proposed
a “low-rank + dual” model to solve this foreground and
background modeling problem. And we further use the
reweighted dual function norm instead of the normal norms
so as to get a better and fastermodel, as shown inAlgorithm 2.
Although our two models are all based on offline method,
they provide the probability distribution function of the

background within the consideration of the spatial corre-
lation between neighboring pixels. Experiments on several
scenes show that our methods have better performance and
lower consumption compared with the “low-rank + sparse”
methods, IALM and GoDec.

This paper is organized as follows. Section 2 briefly
details our motivation of proposing the rudimentary dual
model, and the algorithm to this dual model will also be
given; a further improved reweighted form model and the
corresponding algorithm will be given in Section 3; and, in
Section 4, the experiments of our methods will be presented
and the results will be compared with IALM and GoDec; and
a final summary will be given in Section 5.

2. Dual Norm Model

2.1. Functional with the Dual Norm Constraint. Inspired by
Meyer for the usage of the dual norms to regular the cartoon
and texture in the image decomposition problem [20], we
try to use the advantages of such dual regularizations. So,
we put forward our rudimentary dual norm model, “low-
rank + dual” model, which has been improved from the
general “low-rank + sparse” model, as shown in Algorithm 1.
Here, we keep the low-rank hypothesis of the model for
the background, which is similar to Oliver’s concept of
eigenspace, and use the nuclear norm as one regularization
to realize this assumption. But, for the foreground part, we
use the “dual” norm regularization instead of the “sparse”
constraint to obtain the most uncorrelated foreground from
the background. To illustrate this point, we need to recall the
definition of the dual norm [21].

Definition 1. For any given norm ‖ ⋅ ‖ in an inner product
space, there exists a dual norm ‖ ⋅ ‖

𝑑
defined as

‖𝑋‖𝑑 := sup {|⟨𝑋, 𝑌⟩| : 𝑌 ∈ R
𝑚×𝑛
, ‖𝑌‖ ≤ 1}

= sup{|⟨𝑋, 𝑌⟩|
‖𝑌‖

: 𝑌 ∈ R
𝑚×𝑛
, 𝑌 ̸= 0} .

(2)

Furthermore, the dual norm of ‖ ⋅ ‖
𝑑
is again the original

norm ‖ ⋅ ‖.

From the definition, we can obtain the following upper
bound of the inner product:

|⟨𝑋, 𝑌⟩| ≤ ‖𝑋‖𝑑 ‖𝑌‖ . (3)

Then, due to the fact that ∀𝑎, 𝑏 > 0 always has 2√𝑎𝑏 ≤ 𝑎 + 𝑏,
we can further convert (3) into the following equivalent result:

2√|⟨𝑋, 𝑌⟩| ≤ ‖𝑋‖𝑑 + ‖𝑌‖ . (4)

Thus, minimizing the sum of the norms ‖𝑋‖
𝑑
and ‖𝑌‖

can get a smaller value of the inner product |⟨𝑋, 𝑌⟩|, which
leads to the most irrelevant𝑋 and 𝑌. Back to the foreground
and background modeling processing in the video sequence
problems, we use the nuclear norm as a prior assumption of
the background.Then, if we use the dual norm of the nuclear
norm to the foreground and minimize the sum of the norms
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(1) Input:𝐷,
(2) initialize: 𝐿0 = 𝐷, 𝑘 = 0, 𝜆 > 0, 𝜇 > 0.
(3) repeat
(4) 𝑘 = 𝑘 + 1;
(5) 𝑀

𝑘
= 𝑇
𝜏
(𝐷 − 𝐿

𝑘−1
); [calculate 𝜏 with (17)]

(6) 𝐿
𝑘
= 𝑆
𝜆
(𝐷 −𝑀

𝑘
).

(7) until a stopping criterion is satisfied.
(8) output: 𝐿∗,𝑀∗.

Algorithm 1: Solving dual norm model NSMP with AIM.

(1) Input:𝐷,
(2) initialize:𝑀0 = 0, 𝑘 = 0, 𝜆 > 0, 𝜇 > 0, 𝑐 > 0, 𝛿 > 0.
(3) repeat
(4) 𝑘 = 𝑘 + 1;
(5) 𝑤

𝑘

𝑖
∈ 𝑐√𝑛/(Σ

𝑖
(𝐷 −𝑀

𝑘−1
) + 𝛿);

(6) 𝐿
𝑘
= 𝑇
𝜆𝑤
(𝐷 −𝑀

𝑘−1
);

(7) 𝑀
𝑘
= 𝑇
𝜏/𝑤
(𝐷 − 𝐿

𝑘
). [calculate 𝜏 with (17)]

(8) until a stopping criterion is satisfied.
(9) output: 𝐿∗,𝑀∗.

Algorithm 2: Solving WNSMP with reweighted dual function.

in the minimization problem, then we will be able to get the
most unrelated foreground and background from the known
data matrix.

Theorem 2 (Proposition 2.1 in [22]). The dual norm of the
nuclear norm ‖ ⋅ ‖

∗
is the operator norm ‖ ⋅ ‖ (it is the spectral

norm ‖ ⋅ ‖
2
) in R𝑚×𝑛.

So, the minimization problem (1) can be improved as
the following nuclear norm and spectral norm minimization
problem (NSMP):

NSMP : min
𝐿,𝑀

1

2
‖𝐷 − 𝐿 −𝑀‖

2

𝐹
+ 𝜆‖𝐿‖∗ + 𝜇‖𝑀‖2, (5)

where ‖ ⋅ ‖
2
, the spectral norm, is the largest singular value of

the matrix.
This is our rudimentary model, with the fidelity term,

whichmakes the result being faithful and loyal to the original
video data; with the regularization terms, the nuclear norm
ensures the low-rank of the background, and the spectral
norm ensures the extraction of the foreground.

2.2. Algorithm to the Dual Norm Model. Although (5) is
a nonconvex problem, while its two subproblems, nuclear
norm minimization (NNM) problem and spectral norm
minimization (SNM) problem, are all convex. Thus, we can
solve the subproblems alternatively instead of solving (5)
directly.

2.2.1. Nuclear Norm Minimization Problem. For a fixed
matrix 𝑀, the NNM problem can be expressed as the

following subproblem:

min
𝐿

𝐽
1
= arg min

𝐿

1

2
‖(𝐷 −𝑀) − 𝐿‖

2

𝐹
+ 𝜆‖𝐿‖∗. (6)

The solution to this NNM problem has already been given
by Cai et al. in Theorem 2.1 of his work [23]. Suppose 𝐷 −

𝑀 = 𝑈Σ𝑉
𝑇 is the singular value decomposition (SVD) of the

matrix𝐷 −𝑀; then, the solution to (6) is

S
𝜆 (𝐷 −𝑀) := 𝑈S𝜆 (Σ)𝑉

𝑇
, (7)

where the soft-threshold operator S
𝜆
is defined as S

𝜆
:=

max(| ⋅ | − 𝜆, 0) [24].

2.2.2. Spectral Norm Minimization Problem. Similarly, for a
fixed matrix 𝐿, the other subproblem can be expressed as the
following form:

min
𝑀

𝐽
2
= arg min
𝑀

1

2
‖(𝐷 − 𝐿) −𝑀‖

2

𝐹
+ 𝜇‖𝑀‖2. (8)

We will provide the singular value threshold method for
the spectral norm minimization problem based on the linear
algebra in this section. For convenience, we can reexpress the
problem as follows:

min
𝑋

𝐽 = arg min
𝑋

1

2
‖𝑌 − 𝑋‖

2

𝐹
+ 𝜇‖𝑋‖2. (9)

Suppose we have the SVD of the matrix 𝑌 = 𝑈
𝑌
Σ
𝑌
𝑉
𝑇

𝑌
; then,

we put forward the following theorem.
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Theorem 3. The solution to the minimization problem (9) can
be obtained by𝑋 = 𝑈

𝑌
Γ
∗
𝑉
𝑇

𝑌
, where Γ∗ obeys

min 𝐽
Γ
∗

= min
Γ
∧

1

2

󵄩󵄩󵄩󵄩vec (diag (Σ𝑌 − Γ∧))
󵄩󵄩󵄩󵄩

2

2

+ 𝜇
󵄩󵄩󵄩󵄩vec (diag (Γ∧))

󵄩󵄩󵄩󵄩∞
.

(10)

vec(diag(⋅)) denotes the vector obtained by the rearrangement
of the diagonal elements of the matrix.

Here, we assume 𝑋 = 𝑈
𝑌
Γ𝑉
𝑇

𝑌
directly and set Γ as

any matrix of the same size with Σ
𝑌
and let Γ

∧
denote the

diagonal of the matrix Γ. For the reason that the Frobenius
norm and the spectral norm are invariant under orthogonal
transformation, (9) can be firstly converted into

min
Γ

𝐽 = min
Γ

󵄩󵄩󵄩󵄩Σ𝑌 − Γ
󵄩󵄩󵄩󵄩

2

𝐹
+ 𝜇‖Γ‖2. (11)

On account of the fact that ‖Γ‖
2
= ‖Γ
∧
‖
2
and ‖Σ

𝑌
− Γ‖
2

𝐹
≥

‖Σ
𝑌
− Γ
∧
‖
2

𝐹
, (11) can be further converted into

min 𝐽
Γ

= min
Γ
∧

󵄩󵄩󵄩󵄩Σ𝑌 − Γ∧
󵄩󵄩󵄩󵄩

2

𝐹
+ 𝜇
󵄩󵄩󵄩󵄩Γ∧
󵄩󵄩󵄩󵄩2
. (12)

Finally, rewriting the above function into the vector form can
get (10), which means the minimum of the solution reaches
on the diagonal of the variable matrix.

The problem (10) has already been solved by Fadili and
Peyre in Proposition 2 of his article [25]. To solve the problem,
we introduce a sequence,

𝑑 [1] ≤ 𝑑 [2] ≤ ⋅ ⋅ ⋅ ≤ 𝑑 [𝑁] , (13)

where {𝑑[𝑡]}𝑁
𝑡=1

= {𝜎
𝑌
[𝑖]}
𝑁

𝑖=1
, 𝑁 = min(𝑚, 𝑛), means that the

array {𝑑[𝑡]} is the rearrangement of the singular values of the
matrix 𝑌. And sequence (13) can be extended into

𝑑 [1] ≤ 𝑑 [2] ≤ ⋅ ⋅ ⋅ ≤ 𝑑 [𝑁]

= 𝐷 [𝑁] ≤ 𝐷 [𝑁 − 1] ≤ 𝐷 [𝑁 − 2] ≤ ⋅ ⋅ ⋅ ≤ 𝐷 [2] ≤ 𝐷 [1] ,

(14)

where𝐷[𝑠] = ∑𝑁
𝑡=𝑠
𝑑[𝑡] is the cumulated ordered values.

For 𝜇 ≥ 0 and 𝑌 ∈ R𝑚×𝑛, the optimal solution to the
problem (9) obeys

𝑇
𝜏 (𝑌) = {

0, if 󵄩󵄩󵄩󵄩𝜎𝑌
󵄩󵄩󵄩󵄩1
≤ 𝜇,

𝑈
𝑌
⋅ diag (𝜎

𝑌
− 𝑆
𝜏
(𝜎
𝑌
)) ⋅ 𝑉
𝑇

𝑌
, otherwise,

(15)

where

𝑆
𝜏
(𝜎
𝑌
) [𝑖] = max(1 − 𝜏

󵄨󵄨󵄨󵄨𝜎𝑌 [𝑖]
󵄨󵄨󵄨󵄨

, 0) ⋅ 𝜎
𝑌 [𝑖] , (16)

and 𝜏 > 0 is given by

𝜏 = 𝑑 [𝑡] + (𝑑 [𝑡 + 1] − 𝑑 [𝑡])
𝜇 − 𝐷 [𝑡 + 1]

𝐷 [𝑡] − 𝐷 [𝑡 + 1]
, (17)

where 𝑡 satisfies𝐷[𝑡 + 1] ≤ 𝜇 < 𝐷[𝑡].
Such a threshold could keep most of the small singular

value while changing the larger singular values as a constant,
and the constant changes with the matrix 𝑌. So, the solution
to the problem (8) can be obtained by 𝑇

𝜏
(𝐷 − 𝐿).

2.2.3. Alternating Iterative Algorithm. Based on aforemen-
tioned analysis, we present the alternating iterative method
(AIM) to the minimization problem (5).

(i) Stopping Criterion. We suggest using the following
value to judge whether to end iteration:

min(
󵄩󵄩󵄩󵄩󵄩
𝐿
𝑘
− 𝐿
𝑘−1󵄩󵄩󵄩󵄩󵄩∗

󵄩󵄩󵄩󵄩𝐿
𝑘󵄩󵄩󵄩󵄩∗

,

󵄩󵄩󵄩󵄩󵄩
𝑀
𝑘
−𝑀
𝑘−1󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑀
𝑘󵄩󵄩󵄩󵄩2

,

󵄩󵄩󵄩󵄩󵄩
𝐷 − 𝐿

𝑘
−𝑀
𝑘󵄩󵄩󵄩󵄩󵄩𝐹

‖𝐷‖𝐹

)≤ 𝜀,

(18)

where 𝜀 = 1𝑒 − 5. And if the iterations exceed the
maximum set 𝐾 = 30, the method will also stop.

(ii) Parameter 𝜆. We set the value of 𝜆 according to
different video sequence as 𝜆 = 𝛿

1
√𝑚𝑛, where𝑚 and

𝑛 are the sizes of the data matrix 𝐷 and 𝛿
1
∈ (1, 10)

is a small adjustable constant that ensures the good
performance.

(iii) Parameter 𝜇. We set 𝜇 according to 𝜇 = 𝛿
2
𝑛√𝑚𝑛,

where 𝛿
2
∈ (0, 1) is also a small adjustable constant.

We can see that the selection of parameters is basically
multiplied by 𝑛, which is used to ensure the two reg-
ular items calculate in the same order of magnitude.

The choice of parameter values for the algorithm is very
important, and there has two parameters, 𝜆, and 𝜇, which
can be adjusted in our algorithm. Due to the slightly different
parameter settings for different data, here we can only give
out the setting range of these two parameters.The parameters
will influence each other, thereby affecting the running of
the algorithm. The selection of 𝜆 and 𝜇 cannot be too small;
otherwise, the processing speedwill slow down and the image
will have great losses. The more complex the foreground of
the frames, the greater 𝜆 and 𝜇 needed. A larger 𝜆 brings a
cleaner background, and a larger 𝜇 causes a more complete
extract of portrait. However, the value of the parameters
can not just blindly large, too large 𝜆 will leads to the
failure to extract the background, and too large 𝜇 will extract
background into the foreground. The exact theoretical basis
of the parameters selection will conduct a detailed study in
the follow-up work.

3. Improved Dual Function Model

3.1. Model Creation. In the previous section, we put forward
the preliminary dual model NSMP. And next, we will intro-
duce an improved dual model, weighted function nuclear
norm and spectral norm minimization model. This “low-
rank + dual” model applies the weighted function nuclear
norm to the low-rank background instead of the normal
nuclear norm then find the dual representation to this
weighted function nuclear norm to regular the foreground.
The reason we put forward the improvement is that the
well-known nuclear norm regularized problem is the convex
relaxation of the rank minimization problem, but it is not
a perfect approximation of the rank function. Although the
minimization problem with the weighted function nuclear
norm is nonconvex, fortunately it has a closed form solution
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due to the special choice of the value of weights, and it is
also a better approximation to the rank function. Thus, what
we are going to do next is introduce the weighted function
and optimize our model further. By this way, we can improve
(5) into the following weighted function nuclear norm and
spectral norm minimization problem (WNSMP):

WNSMP : min
𝐿,𝑀

1

2
‖𝐷 − 𝐿 −𝑀‖

2

𝐹
+ 𝜆‖𝑤(𝐿)‖∗ + 𝜇

󵄩󵄩󵄩󵄩󵄩
𝑤
−1
(𝑀)

󵄩󵄩󵄩󵄩󵄩2
,

(19)

where𝑤(⋅) denotes theweighted functionwhich directly adds
theweights onto the singular values of thematrix, and, for any
matrix𝑋 ∈ R𝑚×𝑛, weighted function norm is defined as

‖𝑤(𝑋)‖∗ :=

min(𝑚,𝑛)
∑

𝑖=1

𝑤
𝑖
𝜎
𝑖 (𝑋) , (20)

󵄩󵄩󵄩󵄩󵄩
𝑤
−1
(𝑋)

󵄩󵄩󵄩󵄩󵄩2
:= max
𝑖

(
1

𝑤
𝑖

𝜎
𝑖 (𝑋)) . (21)

If we still rearrange the singular values 𝜎
𝑖
(𝑖 =

1, . . . ,min{𝑚, 𝑛}) of the matrix 𝑋 into a vector 𝜎, then we
will have that ‖𝑤(𝑋)‖

∗
is actually the weighted 𝑙

1
-norm of the

vector 𝜎. For any vector V, there exists

|⟨𝜎, V⟩| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

min(𝑚,𝑛)
∑

𝑖=1

1

𝑤
𝑖

𝜎
𝑖
⋅ 𝑤
𝑖
V
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

min(𝑚,𝑛)
∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑤
𝑖

𝜎
𝑖
⋅ 𝑤
𝑖
V
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑤
𝑖

𝜎
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅

min(𝑚,𝑛)
∑

𝑖=1

󵄨󵄨󵄨󵄨𝑤𝑖V𝑖
󵄨󵄨󵄨󵄨 = max
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑤
𝑖

𝜎
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ ‖V‖𝑤,1.

(22)

So, we can further get

‖𝜎‖
dual
𝑤,1

= sup
‖V‖
𝑤,1
≤1

|⟨𝜎, V⟩| ≤ sup
‖V‖
𝑤,1
≤1

max
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑤
𝑖

𝜎
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ ‖V‖𝑤,1

≤ max
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑤
𝑖

𝜎
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= ‖𝜎‖𝑤−1 ,∞,

(23)

where ‖𝜎‖
𝑤
−1
,∞

is actually the weighted function spectral
norm ‖𝑤

−1
(𝑋)‖
2
. Thus, we finally get that ‖𝑤(𝑋)‖

∗
and

‖𝑤
−1
(𝑋)‖
2
are dual form to each other under the sameweight.

3.2. Algorithm to the Dual Function Model

3.2.1. Weighted Function Nuclear Norm Minimization Prob-
lem. Here, we still use the alternating iterative algorithm to
solve the problem (19). Fix the matrix 𝑀 to get the first
subproblem as

min
𝐿

𝐽
1
= arg min

𝐿

1

2
‖(𝐷 −𝑀) − 𝐿‖

2

𝐹
+ 𝜆‖𝑤(𝐿)‖∗. (24)

For the convenience of discussion, we set𝑍 = 𝐷−𝑀 and
substitute (20) into the functional; then, we can rewrite (24)
as follows:

min
𝐿

𝐽
1
= arg min

𝐿

1

2
‖𝑍 − 𝐿‖

2

𝐹
+ 𝜆

min(𝑚,𝑛)
∑

𝑖=1

𝑤
𝑖
𝜎
𝑖
(𝐿) . (25)

Here, wewould impose increasingweight to ensure the global
solution to (25), although ∑min(𝑚,𝑛)

𝑖=1
𝑤
𝑖
𝜎
𝑖
(𝐿) is no longer a

matrix norm. In our paper, we determine the adaptiveweights
by

𝑤
𝑖
∈

𝛿√𝑛

(𝜎
𝑖 (𝐿) + 𝑐)

, (26)

where 𝛿 = 1𝑒 + 2 is an adjustable constant to ensure the
value range of the weights including 1, 𝑛 is the number of the
frames included in the sample image sequence, 𝜎

𝑖
(𝐿) denotes

the singular values of the low-rank matrix 𝐿, and 𝑐 = 1𝑒 − 16
is to avoid the initial value of zero.

Theorem 4 (Theorem 2.3 in [26]). For any 𝜆 ≥ 0, 𝑍 ∈ R𝑚×𝑛,
and 0 ≤ 𝑤

1
≤ 𝑤
2
≤ ⋅ ⋅ ⋅ ≤ 𝑤min(𝑚,𝑛), a global optimal solution

to the optimization problem (25) is given by the adaptive SVD
soft-thresholding (ASVT) operator 𝐿∗ := 𝑇

𝜆𝑤
(𝑍), where 𝑍 =

𝑈
𝑍
Σ
𝑍
𝑉
𝑇

𝑍
, and

𝑇
𝜆𝑤 (𝑍) := 𝑈𝑍𝑆𝜆𝑤 (Σ𝑍) 𝑉

𝑇

𝑍
,

𝑆
𝜆𝑤
(Σ
𝑍
) := diag {(Σ

𝑍 [𝑖] − 𝜆𝑤𝑖)+
, 𝑖 = 1, . . . ,min (𝑚, 𝑛)} .

(27)

Thus, the solution to the problem (24) is 𝑇
𝜆𝑤
(𝐷 −𝑀).

3.2.2. Weighted Function Spectral Norm Minimization Prob-
lem. Fixing the matrix 𝐿, we can express WNSMP by the
following subproblem:

min
𝑀

𝐽
2
= arg min
𝑀

1

2
‖(𝐷 − 𝐿) −𝑀‖

2

𝐹
+ 𝜇
󵄩󵄩󵄩󵄩󵄩
𝑤
−1
(𝑀)

󵄩󵄩󵄩󵄩󵄩2
. (28)

For any 𝜇 ≥ 0, the solution to the problem (28) is𝑇
𝜏/𝑤
(𝐷−𝐿),

and, for any matrix,𝑋 = 𝑈
𝑋
Σ
𝑋
𝑉
𝑇

𝑋
has

𝑇
𝜏/𝑤 (𝑋) = {

0, if 󵄩󵄩󵄩󵄩𝜎𝑋
󵄩󵄩󵄩󵄩1
≤ 𝜇

𝑈
𝑋
⋅ diag (𝜎

𝑋
− 𝑆
𝜏/𝑤
(𝜎
𝑋
)) ⋅ 𝑉
𝑇

𝑋
, otherwise,

(29)

where 𝑆
𝜏/𝑤
(𝜎
𝑋
)[𝑖] = (𝜎

𝑋
[𝑖] − (𝜏/𝑤

𝑖
))
+
.

3.2.3. Alternating Iterative Algorithm. In order to enable the
values of weights to be updated in each iteration process, we
set𝑤𝑘
𝑖
in the 𝑘th iteration associatedwith the low-rankmatrix

𝐿
𝑘. But the problem is that, in the 𝑘th iterative, thematrix𝐿𝑘 is

not available. So, we need to use thematrixes𝑍𝑘−1 to estimate
the value of the matrix 𝐿̂𝑘 as

Σ
𝑖
(𝐿̂
𝑘
) = Σ
𝑖
(𝑍
𝑘−1
) = Σ
𝑖
(𝐷 −𝑀

𝑘−1
) . (30)

We always rearrange the value included in the set {𝛿√𝑛/
(Σ
𝑖
(𝐷−𝑀

𝑘−1
)+𝑐), 𝑖 = 1, . . . ,min(𝑚, 𝑛)} to ensure the weights

to be nondecreasing. Stopping criterion and parameter set-
ting are the same as in NSMP.
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(a) (b) (c) (d) (e)

Figure 1: Test samples from video sequence: lobby (a), airport (b), shopping mall (c), restaurant (d), and campus (e).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Lobby: (a)–(d) background and (e)–(h) foreground from IALM, GoDec, NSMP, and WNSMP.

4. Experimental Results

In this section, we present the numerical experiments cor-
roborating our main results. We practice IALM, GoDec,
NSMP, and WNSMP in a wide variety of surveillance video
sequences, including five different scenarios: lobby, restau-
rant, airport, shopping mall, and campus, and all the datasets
can be downloaded in http://perception.i2r.a-star.edu.sg/bk
model/bk index.html. We stack each 200 frames from one
scenario to be rearranged as the columns of one data matrix
and use these four algorithms to decompose the data matrix
into different background and foreground. All the selected
frames from the five video sequences are listed in Figure 1.
We can see that the foreground part in Figure 1(a) is just a
single person, while, in Figures 1(b), 1(c), and 1(d), there are
a lot of people in motion; further to Figure 1(e), the moving
foreground is expanded into objects.

Figure 2 shows us the segmentation results in the case
that only one person is moving in the video, and we can see
that the difference of the performance is inconspicuous, four
kinds of methods all doing well.

In the simple situations, the advantage of our algorithm
is not very obvious, but, in a relatively complex case, the
superiority will be immediately apparent. The backgrounds
of IALM in Figures 3(a), 4(a), and 5(a) always exist incom-
plete processed moving shadows in the results. And the
artifacts problem in both foreground and background of

GoDec gets worse. Characterized by three kinds of situations,
backgrounds always have the unnatural artifacts shown in
Figure 4(b); as shown in Figure 5(b), there exist incomplete
processing moving shadows in the processed background
just like IALM in Figure 5(a); Even more worse, due to
the interference by the other frames, unexpected shadow
appears in the results of the current frame, as shown in
Figure 5(f). While, in these processes, our algorithms always
have stable performance with clear background and complete
foreground.

Figure 6 shows the farmore complex situations. Although
the results do not live up to the expectation of greater
progress, our method still has a relatively good processing
results. The backgrounds in our methods are always very
clear, while GoDec has a little artifact, and IALM is even
worse.

We can easily conclude from the observed image, Figures
2–6, that our model can get a better and clearer background
with low-rank. Therefore, in order to show that our model is
actually good enough to model the background, we display
the precision-recall (PR) curves and the receiver operator
characteristic (ROC) curves in Figure 7 to evaluate the binary
decision problem about the decomposition of the foreground
and background. Furthermore, we list the rank of the final
modeling background of the four methods in Table 1.

Under the noiseless situation, “low-rank” is the unique
characteristic of the background in the video sequence,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Airport: (a)–(d) background and (e)–(h) foreground from IALM, GoDec, NSMP, and WNSMP.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Shopping mall: (a)–(d) background and (e)–(h) foreground from IALM, GoDec, NSMP, and WNSMP.

and the small correlation can separate the nonlow-rank
foreground from the background. Thus, our “low-rank +
dual” model not only keeps the background but also extracts
the foreground part of the video. Additionally, the correlation
of the foreground and background images has been given in
Table 1. Here, we adopt the following ways to measure the
correlation of the foreground and background images:

Cor (𝐿,𝑀) = max(
󵄨󵄨󵄨󵄨󵄨
𝑙
𝑇

𝑖
𝑚
𝑖

󵄨󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑙𝑖
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑚𝑖
󵄩󵄩󵄩󵄩2

) , (31)

where 𝑙
𝑖
and 𝑚

𝑖
denote each column in the matrixes 𝐿 and

𝑀, which are the foreground and background images from
the same frame to pull into columns.

Through the observation of the visual and data results,
it is easy to draw the advantages and disadvantages of each
method. IALM has a relatively fast speed, but it offers a

blind separation of the low-rank and sparse data. Therefore,
once the foreground becomes more complex, the detection
of background will be obvious interference by the artifacts.
More importantly, every time the result of the low-rank
approximation matrix basically has reached the rank up to
around 100, which in some sense no longer can be called
a low-rank matrix. GoDec has two adjustable parameters,
“rank” and “card,” in the algorithm. Presetting “rank” can
guarantee the approximation matrix to be necessarily low-
rank, but, as the rank has been fixed already, it can not
adaptively adjust according to the situation of scene. And the
correct selection of “card” is also very important, which has a
great influence on the results. The larger the value of “card”
the greater time the algorithm runs, and the background
would become messy; the smaller the value of “card” the
lower time consumption, but the foreground appears lack
of information. Both our methods can adaptively choose
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Restaurant: (a)–(d) background and (e)–(h) foreground from IALM, GoDec, NSMP, and WNSMP.

Table 1: The data comparison of background modeling and foreground detection.

Method Lobby Airport Shopping mall Restaurant Campus
128 ∗ 160 144 ∗ 176 256 ∗ 320 120 ∗ 160 128 ∗ 160

IALM
Time 30.69 42.55 145.97 30.46 30.98
Iteration 33 35 34 34 34
Rank 111 103 91 103 101
Correlation 0.1822 0.3107 0.1900 0.2166 0.1567

GoDec
Time 40.41 61.30 182.84 56.34 66.59
Iteration max iter max iter max iter max iter max iter
Rank 2 2 2 3 2
Correlation 0.2518 0.3867 0.2485 0.3135 0.2600

NSMP
Time 10.87 18.66 60.21 11.21 12.90
Iteration 6 8 7 7 7
Rank 3 4 5 4 5
Correlation 0.1082 0.1059 0.0935 0.1743 0.0819

WNSMP
Time 9.06 15.79 50.81 11.20 12.63
Iteration 5 7 6 7 7
Rank 3 3 4 4 4
Correlation 0.0895 0.0622 0.0517 0.0917 0.0639

the appropriate low-rank and ensure the most irrelevant
foreground and background to be separated. The parameter
setting of our methods has been already stated in Section 2,
and the parameters of IALM and GoDec are set as in [15, 16].

5. Discussion and Future Work

This paper proposes a “low-rank + dual” model to decom-
pose the static background and the moving foreground in
each frame of the video surveillance sequence. Our model

decomposes the stack data matrix 𝐷 into two parts, 𝐿 low-
rank background and𝑀moving foreground, andwe upgrade
this model further into a reweighted function norm form.
Through the experiment, we can clearly observe that our two
models can not only achieve clearer backgrounds but also
have the lower consumption and correlation. Our “low-rank
+ dual”model is a better choice for the backgroundmodeling,
which can always extract clear and complete background
in any case. However, since the focus of this paper is to
propose the newmodel and show the feasibility of thismodel,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Campus: (a)–(d) background and (e)–(h) foreground from IALM, GoDec, NSMP, and WNSMP.
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Figure 7: PR curves and ROC curves for the background modeling of IALM, GoDec, NSMP, and WNSMP.

the algorithm itself has not been optimized which still uses
singular value decomposition to get the solution. So, the
computation complexity of our algorithm is still 𝑂(𝑛3), and
the space complexity is 𝑂(𝑚2). Using the outstanding fast
SVD method or other effective methods to speed up our
algorithms will be our next work. Also, the further study in
the choice of the optimal parameters and weights can be a
follow-up process.
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