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The stochastic ®-method is extended to solve nonlinear stochastic Volterra integro-differential equations. The mean-square
convergence and asymptotic stability of the method are studied. First, we prove that the stochastic ®-method is convergent of
order 1/2 in mean-square sense for such equations. Then, a sufficient condition for mean-square exponential stability of the true
solution is given. Under this condition, it is shown that the stochastic ®-method is mean-square asymptotically stable for every
stepsize if 1/2 < 6 < 1 and when 0 < 0 < 1/2, the stochastic ®-method is mean-square asymptotically stable for some small
stepsizes. Finally, we validate our conclusions by numerical experiments.

1. Introduction

In this paper we study the numerical solution of the d-
dimensional nonlinear stochastic Volterra integro-differ-
ential equation (SVIDE) with convolution kernels

dx (t) = f(x(t),J(jG(t—s)x(s)ds)dt
1)

t
+g<x(t),J H(t—s)x(s)ds)dW(t),
0
with initial data x(0) = x,. Here W(¢) is a scalar Brownian
motion, and f, g, G, and H are given functions which map
fiR*xRT — R, gR'xR! —RY,
2

dxd

G: R — R*4, dxd,

H:R— R

In particular, (1) can be regarded as a stochastically per-
turbed problem of the deterministic nonlinear Volterra inte-
gro-differential equation (VIDE)

X' (t) = f(x(t),JtG(t - s)x(s)ds). (3)

0

In the last decades, VIDEs have received a great deal of atten-
tion. A well-known example of this type is the Volterra pop-
ulation equation

X (t) = ax (t) = bx> (t) + x (t) Jt G({t-s)x(s)ds. (4)
0

For a general theory of VIDEs, we refer the reader to the
classical book by Burton [1]. Also, many efficient numerical
methods such as linear multistep methods, Runge-Kutta
methods, and collocation methods have been constructed for
VIDE:s (see [2-4] and the extensive bibliography therein).

However, many real-world phenomena are subject to
some random environmental effects. In recent years, the
study of stability for SVIDEs has attracted the attention
of many authors. For example, in 2000, Mao [5] studied
the stability of the stochastic integro-differential equation as
follows:

dx (t) :f(x(t),t)+g<LtG(t—s)x(s)ds,t>dW(t),
(5)

and several criteria on mean-square exponential stability and
L2—stability have been obtained. Later, Mao and Riedle [6]
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extended these results to a more general type of equation.
Appleby [7] studied the almost sure asymptotic stability and
integrability of the zero solution of a finite dimensional It6-
Volterra equation.

Since the majority of stochastic differential equations
cannot be solved analytically, numerical methods are adopted
for obtaining approximate solutions. In recent years, a large
number of numerical methods are constructed for stochastic
ordinary differential equations (SODEs), such as stochastic
linear multistep methods, stochastic Runge-Kutta methods,
and stochastic Taylor methods. For more details, we refer
the reader to the papers [8-11], the Ph.D. thesis by Burrage
[12], and the book by Kloeden and Platen [13]. But for
SVIDEs, up to now, there are only few results about the
numerical approximation in the existing literatures. In [14,
15], Golec and Sathananthan studied the convergence of
Euler-Maruyama scheme for SVIDEs under some different
assumptions. And in [16], the analytical asymptotic stability
and numerical asymptotic stability have been considered for
a class of linear stochastic functional differential equation.
The areas of the regions of asymptotic stability for some
numerical methods are derived. However we have not found
any stability results for numerical methods for SVIDE:s (1).

Stochastic ®-method is a widely used method with strong
convergence order 1/2 for SODEs. If ® = 0, it is the
classical Euler-Maruyama method, and it is the Backward
Euler method when ® = 1. Similar to deterministic A-
stability, Higham [17, 18] introduced stochastic A-stability
which means that the problem stability implies the numerical
method stability for any stepsize, and it is shown that the
stochastic ®@-method is stochastic A-stableif 1/2 <0 < 1.

In this paper, we apply the stochastic ®-method to SVIDE
(1). The mean-square convergence and stability of the method
are considered. It is proved that the stochastic ®-method
for SVIDE has mean-square convergence order 1/2. For the
numerical stability analysis, first we extend the stability result
in [5] to the case of SVIDE (1), and a sufficient condition
for the mean-square exponential stability of the true solution
is obtained. Under this condition, we then show that the
stochastic ®-method is mean-square asymptotically stable
for any stepsize if 1/2 < 6 < 1, and when 0 < 8 < 1/2, the
stochastic ®-method is mean-square asymptotically stable
for some small stepsizes.

This paper is organized as follows. In Section 2, we
study the mean-square convergence of the stochastic ©-
method for SVIDEs. In Section 3, we investigate the mean-
square stability of the method. In Section 4, some numerical
experiments are given to validate our conclusions.

2. Mean-Square Convergence of the
Stochastic ©-Method

Throughout this paper, we use the following notations. Let
(Q, F,{F } ;50> P) be a complete probability space with a fil-
tration {#,},., satisfying normal conditions, namely, {#,},5,
is increasing and right continuous with %, containing all P-
null sets. And let W(t) be a scalar Brownian motion defined
on the probability space. Let (-,-) be the Euclidean inner
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product in space R? and | - | be the corresponding norm. The
matrix norm is denoted by || - |, and AT denotes the transpose
of a matrix A. E(-) stands for the mathematical expectation

operator. For any vectors x, y € RY, we denote (x, y) = x - y.

For the mean-square convergence analysis, we consider
the autonomous d-dimensional nonlinear SVIDE on [0, T]
where T' < 00

dx (t) = f(x(t),rG(t—s)x(s)ds>dt
0
t (©)
+g(x(t),J H(t—s)x(s)ds)dW(t),
0
with initial data x(0) = x,. We assume that the functions f

and g are globally Lipschitz continuous in all variables and
satisfy linear growth condition, that is, there exist positive

constants L and K, such that for all x,%, y,7 € RY,
1 o 3) = fF @I Vg (xy) - g &)
<L(lx-%+|y-3);

[f o) V]g @) s K(1+1x+[yf),  ®)

where a v b denotes the maximum of a and b. Also, we assume
that the functions G and H are continuous and satisfy

IG@) -GOIVIH @) -H$)I<Llt-sl, €
for all ¢, s € [0, T], which implies
IG®OIVIH O] < M < oo, (10)

where M and L are positive constants. The above conditions
(7)-(9) can guarantee that SVIDE (6) has a unique solution
x(t).

The following lemma will be used in our convergence
analysis.

Lemma 1. Under conditions (8)-(9), the solution of SVIDE (6)
has the property

E (OSS?STM (t)|2) <C, (11)
with
C,:= <§ + 3E|x0|2> e(6T+24)KET, (12)
where
f:max{l,TzMz}. (13)

Moreover, forany0 <r <t <T,
Elx(t) - x> <C,(t-71), (14)
where C, = 2KK(T + 1)(1 + 2C)).

Proof. The proof of this lemma is similar to that of
Lemma 5.5.2 in [19], and that of Theorem 2.3 in [20]. O
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Now we apply the stochastic ®-method to SVIDE (6) and
obtain the following numerical scheme:

Xp+1

=Xy + h [ef ('xn+1’zn+1) + (1 - 6) f (‘xn’ Zn)] (15)
+ 9 (x,2,) AW,

where h > 0 is a given stepsize, and x,, is an approximation
to x(t,) with t, = nh,n = 1,...,N = T/h. The increment
AW, = W(t,,,) — W(t,) is an N(0, h)-distributed Gaussian
random variable. And the arguments z, and Zz, denote
approximations to

J’tn G(t,—s)x(s)ds, Jtﬂ H(t,—s)x(s)ds. (16)
0 0

In this paper, we choose the composite left rectangular for-
mula to discretize the integral terms and obtain the follow-
ing schemes

n-1 n-1
z,=hY G(t,—t;)x; Z,=hY H(t,~t;)x;. (17)
Jj=0 j=0

Moreover we denote that

() =h3 G (6, 1) (1),

B (18)
z(t,) = hZH (t,—t;)x(t;)-

In this section, without loss of generality, we assume 0 < /1 <
1.

Lemma 2. Under conditions (8)-(9), there exist positive con-
stants C5, C, such that

2

E Jtn G(t,-s)x(s)ds—z(t,)| <Csh, 19)
0
t, 2
E J H(t,-s)x(s)ds-z(t,)| <Csh. (20)
0
Proof. By (18), we have
t, 2
E J G(t,—s)x(s)ds—z(t,)
0
n-1 2
=Ej G(t,-s)x()ds—hY G(t, ~ ;) x(t;)
j=0
n—1 tin 2
:EZL [G(t, - ) x(s) -G (1, —t,) x(t;)] ds
=0 7t

2

n—-1
< nZE
j=0

[ (6950 -G (6 -1) x(t)] s

< ZTZE J "G (t,—s)-G (tn - tj)“zlx (s)|*ds

j=0 £

oS [ 6 ()P - (e
j=0

j
(21)
Therefore, by (9) and Lemma 1, we obtain

2

E jtnG(tn —s)x(s)ds—z(t,)
0

fgj (s—t) N

I/\

(22)

n—-1

t‘+1
+ 2TM2CZZ J J (s - tj)ds
j=0 7
2T2C L
3 = 2R+ TPMPC,h.

Since 0 < h < 1, thus, there exists a constant C; which does
not depend on A, such that (19) holds. Similar to the above
proof, (20) also holds. O

For the convergence analysis, the local truncation error is
defined by

8n+1 =X (tn+1)

- {X (tn) +h [0f (.X (tn+l) »Z (tn+1))

23)
+(1=0) f (x(t,) 2 ()]
+9 (x (t,), 2 (£,)) AW,},
and the global error is defined by
€, = x(t,) — x,,. (24)

It is obvious that €, is &, -measurable since both x(¢,) and
x, are F, measurable random variables.

Definition 3. 'The stochastic ®-method (15)-(17) is said to be
consistent with order p, in the mean and with order p, in
the mean-square sense if the following estimations hold with
p, 2 1/2and p; > p, + (1/2):

max (E(B(8,0 17, )) <cn, ash—o

0<n<N-1

max (E|8n+1| ) <Chp2,

0<n<N-1

ash — 0,
(25)

where the constant C does not depend on 4 but may depend
on T and the initial data.

Lemma 4. Under conditions (7)-(9), the stochastic ®-method
(15)-(17) is consistent with order p, = 3/2 in the mean and
with order p, = 1 in the mean-square sense.



Proof. Note that

X (tn+1) —-X (tn)

= J;tm f <x (s), LS G(s—-r)x(r) dr) ds

+ J'tﬁ1 g (x (s), JS H(s—1)x(r) dr> dw (s),
t, 0

then we have

E(|E (8, 1%,.))

= E( ’E(J;:m f(x(s),JOSG(s -1r)x(r) dr) ds

—h(0f (x(ty1) 2 (t31))

-0 f (x(6),2 (1)) | 7, )

o

J:n f <x ), Ls G(s—1)x(r) d1’> ds
~h(0f (x (t1) 2 (t41))

+(1-0) f (x(t,), 2 (£.)))

Ltm f (x (s), LS G(s—r)x(r) dr> ds

)

-h (Bf (x (tn+1) »Z (tn+1))

+(1-0) f (x(t,),2(t,)))

<21, +2I,

where

I

j:m_e)h (f (x ©.[ 66-nxw dr)

)\

F(x ()52 (8,)) ) ds

I

:E(

,E::lg)h <f (x (tner) > 2 (tr1)

—f<x(s),LSG(s—r)x(r)dr)>d

)

1)

S
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By Holder inequality and condition (7), we obtain

t,+(1-0)h

113(1—9)hj

tVl

E|f<x(s),J:G@—r)x(r)dr)

(26)

_f (X (tn) »Z (tn)) ds

<(1-6)hL
t,+(1-0)h
X J 1 (E|x (s) —x (tn)|2
b

+E JSG(s—r)x(r)dr—z(tn)
0

2
) ds.

(29)

By (9)-(11) and Lemma 2, we get

2

JS G(s—-r)x(r)ydr-2z(t,)
0

<2E

r (G(s=r)x(r)dr
0

2

- Ltn (G(t,—1))x(r)dr

2

(30)

+2F Lt (Gt - ) x () dr—z(t)

2

< 4E Jt" (G(s—1)-G(t, - 1)) x(r)dr
0

2

+4E +2Csh

r (G(s=r)x(r)dr

<4T?C,I*(s—t,)" +4C,M*(s - t,,)* + 2C;h.
(27) Therefore, by (14), we have

I <(1-0)hL
t,+(1-0)h
N CERS
tYl
+4C, (T°L* + M?) (s - t,) +2Csh)ds
- (%czu _0) +2C,(1 - 9)2> LK

ac, (T?1? + M?) L
+ 1 ] )(1—9)4h4.

(31

Since 0 < h < 1, there exists a constant C; which does not
2
) depend on A, such that

(28) I, <Gk (32)
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We can also prove that there exists a constant Cg which does
not depend on h, such that

I, < Cgi, (33)

then we have

E(|E (6n+1 | 9tn)|2)1/2 = VZ(CS +Co)l™?. (34)

Now we prove that the stochastic ®-method is consistent
with order 1 in the mean-square sense. Using the inequality

(a+b+c) < 3a®+3b% +3c%, Holder’s inequality, and Doob’s
martingale inequality, we have

E (|6n+1 |2)

<3(1-0)h

X Ltn+(16)h E If (x (s), LS G(s—r)x(r) dr)

n

2
—f(x(t,),2(t,)) | ds
w300 [ B|f (x(0). 2 (00)
t,+(1-6)h
s 2
—f(x(s),J G(s—r)x(r)dr> ds
0
+3L E|g<x(s),LH(S—r)x(f)d7>
2
-9 (x(t,),z(t,)) | ds
2 3(1 - 0) kI, + 30hI, + 31;.
(35)

By (7), (14), and (30), we get

Hl,

t,+(1-0)h )
< LhJ (E|x(s) - x(t,)]
t,

n

+E

2
)ds

JSG(s—r)x(r)dr—z(tn)
0

t,+(1-0)h R 5
<Lh j (Cy (s—1,) +4T°C2T(s - 1,)
t

+ACIT M (s - t,) + 2C§h2) ds
1
= SLCy(1 - 0)°’h’ + C K,
(36)
where C, is independent of 4. Similarly, we can obtain

hI, < Cgh’ + Coh', I, < C,i* +CH°,  (37)

where C¢g—C,; are independent of h. Since 0 < h < 1, we
obtain

E(|8,1]") < Cl, (38)

where C,, depends on C,, C,—C,;. The proof of the lemma is
completed. O

Definition 5. The stochastic ®-method (15)-(17) is said to be
convergent in mean-square sense with order p, if

12
Orgrilqag](E|en|2) <Ch’ ash—o0. (39)

Theorem 6. Under conditions (7)-(9), the numerical solution
produced by the stochastic ©-method (15)-(17) converges to the
exact solution of (6) with order 1/2 in the mean-square sense.

Proof. Using the definition of the global error, we have

€n+1

=% (t1) = X1

= x (tyy) = x (t,)
=h[0f (x (tyer) 2 (tper) + (1= 0) f (x(8,) 2 (£,))]
=g (x(t,),2 () AW, +x (t,)
+h[0f (x (1) 2 () + (1= 0) f (x(8,) 2 (£,))]
+9(x(t,),Z (t,) AW, - x,
= h[0f (%1 Zper) + (1= 0) f (x,,2,)]
- 9 (x2,) AW,

= 6n+1 + en + un’
(40)

where
Uy, = h [Qf (x (tn+1) »Z (tn+l))
+(1=0) f (x(t,),2 ()]
+9(x(t,),Z () AW,
—h [ef (xn+1’zn+1) + (1 - 6) f (xn’ Zn)]

-9 (xn’zn) AWn'
(41)

Squaring both sides of (40), taking expectation and absolute
values, yields

E(|€n+1|2)
< 2E(|8,1") + E(Jeu*) + 2E (Ju,[)  (42)

+2|E (&, ,p1)| + 2|E (€, - 1,)] -
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We now estimate the separate terms in (42) individually and ~ Due to properties of conditional expectation and the consis-
in sequence. Due to the consistency condition in the mean-  tency condition in the mean sense,
square sense of the method, we have

2 |E (en : 6n+1)|

E(|8,.]") < C,1. (43)
(18,]") <G, = 2|E (60 E(8,1 |97tn))|

By using the inequality (@ + b + ¢)* < 3a® + 3b* + 3¢* and < Z(E (lenlz))lﬂ ) (E ('E (5,%1 |, )|2))1/2 (47)
condition (7), we obtain "
< Gyl + hE (Je,|*).
E(|u,|*) < 30*6°LE (|1 [*)
Using the Lipschtiz condition (7) and properties of condi-

22 2
+3WG°LE (|Z (tus1) = 2| ) tional expectation, we obtain

+31°(1 - 0)’LE (Je,|*) (44)
5 ) 5 2 |E (en : un)|
+31h°(1 - 0’LE (|2 (t,) - z,|")
N <25(0al- [ o1 7)
+3hLE ([e,|") + 3hLE (|2 (t,) - 2| ).
< ZheE( |€n| -|E (f (x (tn+1) % (tn+1))
Note that —f (%115 201 | ytn)')
E(1 () - 20 Ao
) , x (lea] - |f (x (t0) 2 (t,) = f (% 2,)])
:E( hZG(th —tj)ej > ghE(|en|2)+9LhE(|en+1|2)
j=0

+ 9LhE(|z (ther) — zn+1|2)

< hzg |G (t,1 - 1) §|G (tner —1))| E ('€j|2) (45) +(1-0) LhE (Je, ) o
_ hMZTiE('eJ-'Z), +(1-0)LhE (jz (t,) - z,[)
) J‘_° 2 e < hE(le,|*) + 6LKE (|e,,[)
E(jz(t,) - z,[) <hM T]ZOE(|ej| ) . GLthZTiE('Ej'Z)
=
then we have +(1-0) LhE (|6, )
E(Ju,|*) < 30°6°LE (Je,.|") +(1-6) LthzTniE (lef)-
+30°0°LM°T -
. Zn:E (|€j|2) + 311 - 0)°LE (|€n|2) Substituting (43) and (46)-(48) into (42), we have
=
2
+3H(1 - e)ZLMZTniE () oL Elfl) ;
<E(laf’)+Ce () +C e (ef)

CE () + TS B (). n
h (46) " 65}13;)5 (|€i|2) +(2C, +G,) 1,
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where
Cy;=2+6L+(1-0)L,
C, = 6(1 —0)’L + 7LMT, (50)
Cs = 60°LM°T +6(1 — )’ LM"T.

Since 0 < 0 < 1, for sufficiently small stepsize h, there exists
a constant x € (0, 1), such that

1 - 6H*0°L — hOL > 1 - 2h6OL > «,

_ _ _ (51)
C,i* + Csh® < 2C, 1.
Let
2
R, = max (E(|¢[)), (52)
then we have
1+C;h 2C,Th 2C, +C, ,
R ., < + + h
LT _2hOL™"  1-2hOL " 1-2h6L
- _ (53)
<l1s 20L + C5 +2C4Th R, + 2C, +C2h2.
K K
Denote
o 26L+C3+2C4T) (54)

K

and note that R, = 0, thus we obtain

R, < (1 +6h) R, + 25116—+(72h2
< (1+On)" Ry S (14 )
=0

_2%+G ((1 +Ch)™ - 1)h

- 261 + 62 (eéh(nﬂ) _ l)h < M (eéT — ])h
=T - Cxk
(55)

From the above, the theorem is proved. O

3. Stability Analysis

In this section, we will discuss the analytical stability and
numerical stability of SVIDE (1). First, the analytical stability
is derived by the technique in [5]. We extend the exponential
stability result to a more general type. And then the mean-
square asymptotic stability of the stochastic ®-method is
investigated.

Let us give the definition of the mean-square exponential
stability (see Mao [19]).

Definition 7. The solution x(t) of SVIDE (1) is said to be
mean-square exponentially stable if there exists a pair of pos-
itive constants A and C such that

E |x(t) I < GE'xolze_}U ont>0 (56)

for all initial data x, € R?.

Definition 8. The solution x(t) of SVIDE (1) is said to be
mean-square asymptotically stable if

. 2
tlingoElx ®)]° =0, (57)
for all initial data x, € RY.

Obviously, (56) implies (57).

Theorem 9. Assume that there exist six positive constants A,
Ay Ay Ay, B, and y such that

2x" f (x,0) < =A, |x]%, (58)
|f (6 9) = £ (x,0)] <Ay ]y, (59)
g (e 2)I” < Al + Mgyl (60)

for all x,y € R%. And the convolution kernel functions G and
H decay exponentially fast, that is

IGOIVIH @] < pe™, t>o0. (61)

I

2

-, +A2+A3+()L2+/\4)'8—2 <0, (62)
4

then for any given initial data x,, there exists a pair of positive
constants p and C such that the solution x(t) of SVIDE (1) has
property that

Elx (1)]* < CE|x,[’e*', Vit >0, (63)
which implies (57).

Proof. The proof of this theorem is similar to that of
Theorem 2.1 in [5] by choosing the Lyapunov function
V(e x) = Ml O

Remark 10. If we apply Theorem 9 to problem (5), then the
corresponding mean-square stability condition is

AP < Ay (64)

This condition is in accordance with the assumption of
Theorem 2.1 in Mao’s papaer [5].

In the following, we study the mean-square asymptotic
stability of the stochastic ®-method for SVIDE (1).



Definition 11. The numerical solution {x,},, to SVIDE (1) is
said to be mean-square asymptotically stable if the numerical
solution has the property that

. 2
nlgréoElxnl =0, (65)
for any initial data x,,.
Theorem 12. Under conditions (58)-(62), the stochastic ®-
method is mean-square asymptotically stable for any stepsize

h>0if1/2<0<1.

Proof. By (15), we have

F( n+1) F (xn) + hf( n) + g (xwzn) AWn’ (66)
where
F (xn) =Xp = ehf (xn’Zn) . (67)
Consequently
IF n+1 lz

= |F (x,) + (1 = 20) K*|f (%, 2,) [
+ lg (xn’zn) AWnlz + 2 <xn’hf (xn’ zn)>

+ 2 <F (xn) + hf ('xn’ ZTI) > g ('xﬂ’ EH) AWH) *

Taking expectation on both sides of (68) andby1/2 <0< 1,
it follows that

(68)

E|F (x1)|” < EIF (x,)[" + hE|g (x,,Z,)["

+ 2E (x,, hf (x,,2,)) -
By conditions (58)-(60), we have

(69)

E|F (xn+1)|2

<E|F(x,)| +h(-A, + A, + A,) Elx, |0 (70)

+ hA,Elz,|” + hALE[Z,| .

n-1

And by (61) and the Jensen inequality, we derive that
Y Gt~ t;)

2 1 2
xj < /32<hnze_w"_tj ) 'xj|>
=0 =0

n-1 n-1
<p <hzew"tf)> : <hzey(t”tj)|x"2>
j=0 Jj=0 '
2 -1
< /3_ <h§e_y(t"_tf)|xj|2>,
Y =0
2 -1
el (hﬂZeV““”Ilez> |
Y =0

el =

(71)
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Substituting (71) into (70), we have

E|F (xnﬂ)lz

< E|F (x,)|" + h(=A, + A, + A3) E|x, |

ﬂZ n—-1 2
+h(dy+A) = [ hY e Ex | ),
r\ =

which implies

(72)

E|F (xn+1)|2

< E|F (xo)| +h(=Ay + Ay + A3) Y E|x,|*

i=0

Fh(h, +Ay) Z<hz e E|xj|2>

i=0

< E|F ()" + h(=Ay + Ay + A3) Y E|x|*

i=0

+h(dy+Ay) anl<hze(“E|x|> (73)

j=0 i=j+1

< E|F (x)]” + B (=A; + Ay + A3)

ZEl %[

XZE|x| +h(, +A4)

2

2
< E|F (x,)| +h <—/\1 + A+ A+ (A, +4,) ﬁ—)

-

X ZE |xi|2.
i=0
Therefore by condition (62), we have
< 2 2
D Elx[” < CE|F (x))| (74)
i=0

for any n > 0, where C = —-1/h(-A; + A, + A; + (A, +
/\4)([32/)12)). Let n — 00, we find that the infinite series
¥ Elx;|* is bounded, then we have

Jim Elx,[* =0 (75)

which shows that the stochastic ®-method is mean-square
asymptotically stable. The proof of the theorem is com-
pleted. O

Theorem 13. Assume that conditions (58)—-(62) hold and that
function f satisfies the linear growth condition; namely, there
exists a constant K > 0 such that

|f (x, y)|2 <K (|x|2 + |y|2). (76)
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If0 < 0 < 1/2, then the stochastic ®-method is mean-square
asymptotically stable when the stepsize h € (0, h,), where

B A=A = A= (A, +Ay) (ﬁz/)’z)
(1-20)K (1+(B*/y?))
Proof. By (68) and the linear growth condition (76), we have

(77)

0

E|F(xn+1)|2
< E|F (x,)f
- 78)
+[R(=A, + 2, + A35) + (1-20) K] Elx,|’

+ [, + (1 - 20) K] Elz,|* + hAE|Z, |,
which implies
EIF (xn+l)l2

< E|F (x,)|°

+[R(=Ay + 2, + A5) + (1 -20) K] iE|xi|2

i=0

. /32 n—1 2
+[hA, + (1-20) K] FZE|xj|
j=0

+ h/\4ﬁ—zn§E'xj|2
Y j=0

2
< E|F (x,)|” + [h (—/\1 +A+ A+ (A, +4y) %)

2 n
+H (1 - 26)1?(1 + ’8—2)] ZE|xi|2.
Y i=0
(79)
By condition (62), 0 < 0 < 1/2 and h € (0, h;), we receive

ﬁZ
h(—/ll +/\2+/\3+(A2+A4)—2)
! (80)
_ B
+h2(1—26)K<1+F> <0.

Therefore we conclude that
. 2
Jim Elx,|" =o0. (81)
The proof of the theorem is completed. O

Remark 14. In recent years, there are so many valuable results
on the stability analysis of numerical methods for stochastic
delay integro-differential equations. However, these results
can not be applied to stochastic Volterra integro-differential
equations directly since they have essential differences. More-
over, for the deterministic cases, these two issues are studied
separately in the past few decades; please refer to the book [2]
by Brunner.

4. Numerical Experiments

In this section, some numerical examples are given to vali-
date our conclusions. First we illustrate the theoretical con-
vergence order of stochastic @-method. Here we consider the
following linear SVIDE:

dx (t)

= <ax ) +b J: e x (s) ds ) dt
(82)
+ <cx ) +d J e 2% () ds )dW ®,
0

te[0,T],

with the initial data x(0) = 1. And we choose the parameters
a=-1,b=05¢=054d =05 and T = 1. Since the
true solution of (82) can not be obtained, thus we compute a
reference solution with the trapezoidal rule (6 = 0.5) under
a very small stepsize h = 27'°. The mean-square error is
denoted as follows:

err:= max (i]\i |x(t w-)—x (w-)'2>1/2
" 1=meN M].:1 w AT

(83)

where N denotes the number of steps and M is the number
of sample paths. In our experiments, we choose M = 500.
Here we choose four different numerical methods with 6 = 0
(classical Euler-Maruyama method), 6 = 0.3, 0 = 0.7, and
60 = 1 (Backward Euler method), and the numerical results
are presented in Table 1. From the table, one can easily receive
that the mean-square convergence order of the stochastic ®-
method for SVIDEs is 1/2. Also, we illustrate the convergence
result by Figure 1, where the reference dotted curve has a slope
1/2.

In the rest of this section, some numerical experiments
are given to validate our stability results. Consider the fol-
lowing nonlinear SVIDE:

dx (t)

_ (ax (t) + bsin (E ey () ds)) dt 0

+ (cx () + d sin (Jt e x (s) ds)) dw (),
0

t>0,

with the initial data x(0) = 1. We choose the parameters a =
-10, b = 3, ¢ = 2,and d = 1. By conditions (58)-(61), we
have
A, =20, Ay=6, A, =3
(85)

A, =3,
K=130, p-=1,
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TABLE 1: Mean-square errors of the four methods for (82).
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60=0 0=03 0=0.7 0=1
h=2"* 0.03366846 0.03079402 0.02981565 0.03126486
h=27 0.02200355 0.02111309 0.02098438 0.02167162
h=27 0.01594512 0.01560370 0.01551390 0.01572048
h=27 0.01064680 0.01058695 0.01064387 0.01078690
h=27% 0.00726183 0.00724734 0.00727678 0.00733495
10° . 10° .
107! St : 107! et
& g
1072 1 1072
1073 . 1073 :
107° 1072 107! 107 1072 107!
log(h) log(h)
—— 0=0 —— 0=03
(a) (b)
10° ; 10° ,
107"} e 107} /,/"/ 1
5 5
g E
1072 1072} 1
107 : 1073 :
1073 1072 107! 1073 1072 107!
log(h) log(h)
—— 0 =07 —— Q=1
(c) (d)

FIGURE 1: Mean-square error plots of the four methods for (82).
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x10%8

551 N
5r i
45+ 1
4r i

351 b

3r i

E(x,)

251 1
2r ]
151 1
1F ]

0s| | | J\ -

Time: ¢

— 0=0,h=1/4
()

FIGURE 2: Numerical simulation with 6 = 0

E(x,)
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E(x,)
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()
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09 1

0.8 b

0.7 b
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0.1 4

Time: t

— 0=0,h=1/16
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under different stepsizes h = 1/4and h = 1/16.

09+t

0.8}

0.7

0.6

Elx,)’

0.5

0.4

0.3

0.2

0.1

Time: t
— 0=03,h=1/8
(b)

FIGURE 3: Numerical simulation with 6 = 0.3 under different stepsizes h = 1/2 and h = 1/8.

Therefore,

g 31
A +A,+A A +A,) =S =-—= <0,
A A+ (A, 4)))2 3<

(86)
which implies that the true solution of (84) is mean-square
asymptotically stable.

In the following numerical experiments, we will show the
numerical mean-square asymptotic stability of the stochastic

©-method with different parameters. Here we choose 6 = 0,
0=0.3,0=0.8,and 0 = 1 where 0,0.3 € [0,1/2) and 0.8,1 ¢
[1/2,1]. By Theorem 13, we have

(i)if @ = 0, hy = 93/1300. When the stepsize h ¢
(0,93/1300), the Euler-Maruyama method is mean-
square asymptotically stable;
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10 15 20
Time: t

()
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FIGURE 4: Numerical simulation with 6 = 0.8 and 6 = 1 under even large stepsizes h = 2 and h = 3.

(i) if 6 = 0.3, hy = 93/520. When the stepsize h €
(0,93/520), the method is mean-square asymptoti-
cally stable.

In Figures 2 and 3, one can find that when the stepsize h €
(0, hy), Elxnl2 tends to zero, but it tends to infinity when
the stepsize is even large. Since the stability conditions are
sufficient, one may find that the restriction of the stepsize in
Theorem 13 is not optimal.

Theorem 12 says that when 0 € [1/2, 1], the stochastic ®-
method is mean-square asymptotically stable for any stepsize,
and the following numerical experiments demonstrate this
for a selection stepsize (see Figure 4).

5. Conclusions

In this paper, we first studied the mean-square convergence
the stochastic ®-method for stochastic Volterra integro-
differential equations and proved that the stochastic ©-
method has mean-square convergence order 1/2 when the
functions f and g in (1) are globally Lipschitz continuous in
all variables and satisfy linear growth condition. And then the
mean-square stability of such method has been considered.
It should be mentioned that the assumptions of the mean-
square convergence in the paper are slightly strong. In the
future, we will look for more relaxed conditions to establish
new convergence results. In addition, as we mentioned in
the introduction section, there are many efficient numerical
methods to solve stochastic ordinary differential equations
in the existing literature, such as stochastic linear multistep
method and stochastic Runge-Kutta methods. Therefore, the
adaptation of such methods for stochastic Volterra integro-
differential equations is worth studying in the future.
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