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We first introduce the concept of manageable functions and then prove some new existence theorems related to approximate fixed
point property for manageable functions and 𝛼-admissible multivalued maps. As applications of our results, some new fixed point
theorems which generalize and improve Du’s fixed point theorem, Berinde-Berinde’s fixed point theorem, Mizoguchi-Takahashi’s
fixed point theorem, and Nadler’s fixed point theorem and some well-known results in the literature are given.

1. Introduction and Preliminaries

In 1922, Banach established the most famous fundamental
fixed point theorem (so-called the Banach contraction prin-
ciple [1]) which has played an important role in various fields
of applied mathematical analysis. It is known that the Banach
contraction principle has been extended and generalized in
many various different directions by several authors; see
[2–40] and references therein. An interesting direction of
research is the extension of the Banach contraction principle
to multivalued maps, known as Nadler’s fixed point theo-
rem [2], Mizoguchi-Takahashi’s fixed point theorem [3], and
Berinde-Berinde’s fixed point theorem [5] and references
therein.

Let us recall some basic notations, definitions, and well-
known results needed in this paper. Throughout this paper,
we denote by N and R the sets of positive integers and real
numbers, respectively. Let (𝑋, 𝑑) be a metric space. For each
𝑥 ∈ 𝑋 and 𝐴 ⊆ 𝑋, let 𝑑(𝑥, 𝐴) = inf𝑦∈𝐴𝑑(𝑥, 𝑦). Denote by
N(𝑋) the class of all nonempty subsets of𝑋,C(𝑋) the family
of all nonempty closed subsets of 𝑋, and CB(𝑋) the family
of all nonempty closed and bounded subsets of𝑋. A function

H : CB(𝑋) ×CB(𝑋) → [0,∞) defined by

H (𝐴, 𝐵) = max{sup
𝑥∈𝐵

𝑑 (𝑥, 𝐴) , sup
𝑥∈𝐴

𝑑 (𝑥, 𝐵)} (1)

is said to be the Hausdorff metric onCB(𝑋) induced by the
metric 𝑑 on 𝑋. A point V in 𝑋 is a fixed point of a map 𝑇, if
V = 𝑇V (when 𝑇 : 𝑋 → 𝑋 is a single-valued map) or V ∈ 𝑇V
(when𝑇 : 𝑋 → N(𝑋) is amultivaluedmap).The set of fixed
points of 𝑇 is denoted by F(𝑇). The map 𝑇 is said to have
the approximate fixed point property [29–34] on 𝑋 provided
inf𝑥∈𝑋𝑑(𝑥, 𝑇𝑥) = 0. It is obvious thatF(𝑇) ̸= 0 implies that 𝑇
has the approximate fixed point property, but the converse is
not always true.

Definition 1 (see [6, 13]). A function 𝜑 : [0,∞) →

[0, 1) is said to be an MT-𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (or R-𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) if
lim sup

𝑠→ 𝑡+
𝜑(𝑠) < 1 for all 𝑡 ∈ [0,∞).

It is evident that if 𝜑 : [0,∞) → [0, 1) is a
nondecreasing function or a nonincreasing function, then 𝜑
is aMT-function. So the set ofMT-functions is a rich class.
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Recently, Du [6] first proved the following characteriza-
tions ofMT-functionswhich are quite useful for proving our
main results.

Theorem 2 (see [6]). Let 𝜑 : [0,∞) → [0, 1) be a function.
Then the following statements are equivalent.

(a) 𝜑 is anMT-function.

(b) For each 𝑡 ∈ [0,∞), there exist 𝑟(1)
𝑡

∈ [0, 1) and 𝜀(1)
𝑡

> 0

such that 𝜑(𝑠) ≤ 𝑟
(1)

𝑡
for all 𝑠 ∈ (𝑡, 𝑡 + 𝜀(1)

𝑡
).

(c) For each 𝑡 ∈ [0,∞), there exist 𝑟(2)
𝑡

∈ [0, 1) and 𝜀(2)
𝑡

> 0

such that 𝜑(𝑠) ≤ 𝑟
(2)

𝑡
for all 𝑠 ∈ [𝑡, 𝑡 + 𝜀(2)

𝑡
].

(d) For each 𝑡 ∈ [0,∞), there exist 𝑟(3)
𝑡

∈ [0, 1) and 𝜀(3)
𝑡

> 0

such that 𝜑(𝑠) ≤ 𝑟
(3)

𝑡
for all 𝑠 ∈ (𝑡, 𝑡 + 𝜀(3)

𝑡
].

(e) For each 𝑡 ∈ [0,∞), there exist 𝑟(4)
𝑡

∈ [0, 1) and 𝜀(4)
𝑡

> 0

such that 𝜑(𝑠) ≤ 𝑟
(4)

𝑡
for all 𝑠 ∈ [𝑡, 𝑡 + 𝜀(4)

𝑡
).

(f) For any nonincreasing sequence {𝑥𝑛}𝑛∈N in [0,∞), one
has 0 ≤ sup

𝑛∈N𝜑(𝑥𝑛) < 1.

(g) 𝜑 is a function of contractive factor [15]; that is, for any
strictly decreasing sequence {𝑥𝑛}𝑛∈N in [0,∞), one has
0 ≤ sup

𝑛∈N𝜑(𝑥𝑛) < 1.

In 1989, Mizoguchi and Takahashi [3] proved a famous
generalization of Nadler’s fixed point theorem which gives a
partial answer of Problem 9 in Reich [4].

Theorem 3 (Mizoguchi and Takahashi [3]). Let (𝑋, 𝑑) be a
complete metric space, let 𝜑 : [0,∞) → [0, 1) be an MT-
function, and let 𝑇 : 𝑋 → CB(𝑋) be a multivalued map.
Assume that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) , (2)

for all 𝑥, 𝑦 ∈ 𝑋. ThenF(𝑇) ̸= 0.

In 2007, M. Berinde and V. Berinde [5] proved the
following interesting fixed point theorem which generalized
and extended Mizoguchi-Takahashi’s fixed point theorem.

Theorem 4 (M. Berinde and V. Berinde [5]). Let (𝑋, 𝑑) be a
complete metric space, let 𝜑 : [0,∞) → [0, 1) be an MT-
function, let 𝑇 : 𝑋 → CB(𝑋) be a multivalued map, and
𝐿 ≥ 0. Assume that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥) , (3)

for all 𝑥, 𝑦 ∈ 𝑋. ThenF(𝑇) ̸= 0.

In 2012, Du [6] established the following fixed point
theorem which is an extension of Berinde-Berinde’s fixed
point theorem and hence Mizoguchi-Takahashi’s fixed point
theorem.

Theorem 5 (Du [6]). Let (𝑋, 𝑑) be a complete metric space, let
𝑇 : 𝑋 → CB(𝑋) be a multivalued map, let 𝜑 : [0,∞) →

[0, 1) be a MT-function, and let ℎ : 𝑋 → [0,∞) be
a function. Assume that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦)

+ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋.

(4)

Then 𝑇 has a fixed point in𝑋.

The paper is organized as follows. In Section 2, we first
introduce the concept of manageable function and give
some examples of it. Section 3 is dedicated to the study of
some new existence theorems related to approximate fixed
point property for manageable functions and 𝛼-admissible
multivalued maps. As applications of our results, some new
fixed point theorems which generalize and improve Du’s
fixed point theorem, Berinde-Berinde’s fixed point theorem,
Mizoguchi-Takahashi’s fixed point theorem, and Nadler’s
fixed point theorem and some well-known results in the
literature are given in Section 4. Consequently, some of our
results in this paper are original in the literature, and we
obtain many results in the literature as special cases.

2. Manageable Functions

In this paper, we first introduce the concept of manageable
functions.

Definition 6. A function 𝜂 : R×R → R is calledmanageable
if the following conditions hold:

(𝜂1) 𝜂(𝑡, 𝑠) < 𝑠 − 𝑡 for all 𝑠, 𝑡 > 0;
(𝜂2) for any bounded sequence {𝑡𝑛} ⊂ (0, +∞) and any

nonincreasing sequence {𝑠𝑛} ⊂ (0, +∞), it holds that

lim sup
𝑛→∞

𝑡𝑛 + 𝜂 (𝑡𝑛, 𝑠𝑛)

𝑠𝑛

< 1. (5)

We denote the set of allmanageable functions by ̂Man(R).

Here, we give simple examples of manageable function.

Example A. Let 𝛾 ∈ [0, 1). Then 𝜂𝛾 : R ×R → R defined by

𝜂𝛾 (𝑡, 𝑠) = 𝛾𝑠 − 𝑡 (6)

is a manageable function.

Example B. Let 𝑓 : R × R → R be any function. Then the
function 𝜂 : R ×R → R defined by

𝜂 (𝑡, 𝑠)

=

{

{

{

𝑠

𝑠 + 9

ln (𝑠 + 10) − 𝑡, if (𝑡, 𝑠) ∈ [0, +∞) × [0, +∞) ,

𝑓 (𝑡, 𝑠) , otherwise,
(7)

is a manageable function. Indeed, let

𝑔 (𝑥) =

ln (𝑥 + 10)
𝑥 + 9

∀𝑥 > −9. (8)
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Then 𝑔(𝑠) < 1 for all 𝑠 > 0, and

𝜂 (𝑡, 𝑠) = {

𝑠𝑔 (𝑠) − 𝑡, if (𝑡, 𝑠) ∈ [0, +∞) × [0, +∞) ,

𝑓 (𝑡, 𝑠) , otherwise.
(9)

For any 𝑠, 𝑡 > 0, we have

𝜂 (𝑡, 𝑠) = 𝑠𝑔 (𝑠) − 𝑡 < 𝑠 − 𝑡, (10)

so (𝜂1) holds. Let {𝑡𝑛} ⊂ (0, +∞) be a bounded sequence
and let {𝑠𝑛} ⊂ (0, +∞) be a nonincreasing sequence. Then
lim𝑛→∞𝑠𝑛 = inf𝑛∈N𝑠𝑛 = 𝑎 for some 𝑎 ∈ [0, +∞). Since 𝑔 is
continuous, we get

lim sup
𝑛→∞

𝑡𝑛 + 𝜂 (𝑡𝑛, 𝑠𝑛)

𝑠𝑛

= lim
𝑛→∞

𝑔 (𝑠𝑛) = 𝑔 (𝑎) < 1, (11)

which means that (𝜂2) holds. Hence, 𝜂 ∈ ̂Man(R).

Example C. Let 𝑓 : R × R → R be any function and let
𝜑 : [0,∞) → [0, 1) be an MT-function. Define 𝜂 : R ×

R → R by

𝜂 (𝑡, 𝑠) = {

𝑠𝜑 (𝑠) − 𝑡, if (𝑡, 𝑠) ∈ [0, +∞) × [0, +∞) ,

𝑓 (𝑡, 𝑠) , otherwise.
(12)

Then 𝜂 is amanageable function. Indeed, one can verify easily
that (𝜂1) holds. Next, we verify that 𝜂 satisfies (𝜂2). Let {𝑡𝑛} ⊂
(0, +∞) be a bounded sequence and let {𝑠𝑛} ⊂ (0, +∞) be a
nonincreasing sequence. Then lim𝑛→∞𝑠𝑛 = inf𝑛∈N𝑠𝑛 = 𝑎 for
some𝑎 ∈ [0, +∞). Since𝜑 is anMT-function, byTheorem 2,
there exist 𝑟𝑎 ∈ [0, 1) and 𝜀𝑎 > 0 such that 𝜑(𝑠) ≤ 𝑟a for all
𝑠 ∈ [𝑎, 𝑎 + 𝜀𝑎). Since lim𝑛→∞𝑠𝑛 = inf𝑛∈N𝑠𝑛 = 𝑎, there exists
𝑛𝑎 ∈ N, such that

𝑎 ≤ 𝑠𝑛 < 𝑎 + 𝜀𝑎 ∀𝑛 ∈ N with 𝑛 ≥ 𝑛𝑎. (13)

Hence, we have

lim sup
𝑛→∞

𝑡𝑛 + 𝜂 (𝑡𝑛, 𝑠𝑛)

𝑠𝑛

= lim sup
𝑛→∞

𝜑 (𝑠𝑛) ≤ 𝑟𝑎 < 1, (14)

which means that (𝜂2) holds. So we prove 𝜂 ∈ ̂Man(R).

The following result is quite obvious.

Proposition 7. Let 𝜁 : R × R → R be a function. If there
exists 𝜂 ∈

̂Man (R) such that 𝜁(𝑡, 𝑠) ≤ 𝜂(𝑡, 𝑠) for all 𝑠, 𝑡 > 0,
then 𝜁 ∈ ̂Man (R).

Proposition 8. Let {𝜂𝑖}𝑖∈N ⊂
̂Man (R). Then the following

statements hold.

(a) For each 𝑘 ∈ N, the function 𝜂
min
(𝑘)

: R × R → R,
defined by

𝜂
min
(𝑘)

(𝑡, 𝑠) = min {𝜂1 (𝑡, 𝑠) , 𝜂2 (𝑡, 𝑠) , . . . , 𝜂𝑘 (𝑡, 𝑠)} , (15)

is a manageable function (i.e., 𝜂min
(𝑘)

∈
̂Man (R) for

any 𝑘 ∈ N).

(b) For each 𝑘 ∈ N, the function 𝜂(𝑘) : R×R → R, defined
by

𝜂(𝑘) (𝑡, 𝑠) =

1

𝑘

𝑘

∑

𝑖=1

𝜂𝑖 (𝑡, 𝑠) ,
(16)

is a manageable function (i.e., 𝜂(𝑘) ∈ ̂Man (R) for
any 𝑘 ∈ N).

Proof. Since 𝜂min
(𝑘)

(𝑡, 𝑠) ≤ 𝜂1(𝑡, 𝑠) for all 𝑡, 𝑠 > 0, the conclusion
(a) is a direct consequence of Proposition 7. Next, we prove
the conclusion (b). Let 𝑘 ∈ N be given. It is obvious that
𝜂(𝑘)(𝑡, 𝑠) < 𝑠−𝑡 for all 𝑠, 𝑡 > 0. Let {𝑡𝑛} ⊂ (0, +∞) be a bounded
sequence and let {𝑠𝑛} ⊂ (0, +∞) be a nonincreasing sequence.
For any 𝑛 ∈ N, we have

𝑡𝑛 + 𝜂(𝑘) (𝑡𝑛, 𝑠𝑛)

𝑠𝑛

=

1

𝑠𝑛

(𝑡𝑛 +

1

𝑘

𝑘

∑

𝑖=1

𝜂𝑖 (𝑡, 𝑠))

=

1

𝑘

𝑘

∑

𝑖=1

𝑡𝑛 + 𝜂𝑖 (𝑡𝑛, 𝑠𝑛)

𝑠𝑛

.

(17)

Because each 𝜂𝑖 satisfies (𝜂2), we get

lim sup
𝑛→∞

𝑡𝑛 + 𝜂(𝑘) (𝑡𝑛, 𝑠𝑛)

𝑠𝑛

=

1

𝑘

lim sup
𝑛→∞

(

𝑘

∑

𝑖=1

𝑡𝑛 + 𝜂𝑖 (𝑡𝑛, 𝑠𝑛)

𝑠𝑛

)

≤

1

𝑘

𝑘

∑

𝑖=1

(lim sup
𝑛→∞

𝑡𝑛 + 𝜂𝑖 (𝑡𝑛, 𝑠𝑛)

𝑠𝑛

)

< 1.

(18)

Hence, for each 𝑘 ∈ N, the function 𝜂(𝑘) is a manageable
function.

3. New Existence Results for
Manageable Functions and Approximate
Fixed Point Property

Recall that a multivalued map 𝑇 : 𝑋 → CB(𝑋) is called

(1) a Nadler’s type contraction (or a multivalued 𝑘-
contraction [3, 33]), if there exists a number 0 < 𝑘 < 1

such that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋; (19)

(2) a Mizoguchi-Takahashi’s type contraction [33], if
there exists an MT-function 𝛼 : [0,∞) → [0, 1)

such that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋; (20)

(3) A multivalued (𝜃, 𝐿)-almost contraction [28, 29, 33],
if there exist two constants 𝜃 ∈ (0, 1) and 𝐿 ≥ 0 such
that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝜃𝑑 (𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋; (21)
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(4) a Berinde-Berinde’s type contraction [33] (or a gener-
alized multivalued almost contraction [28, 29, 33]), if
there exists an MT-function 𝛼 : [0,∞) → [0, 1)

and 𝐿 ≥ 0 such that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦)

+ 𝐿𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋;

(22)

(5) a Du’s strong type contraction, if there exist anMT-
function 𝛼 : [0,∞) → [0, 1) and a function ℎ :

𝑋 → [0,∞) such that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦)

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋;

(23)

(6) a Du’s weak type contraction, if there exist an MT-
function 𝛼 : [0,∞) → [0, 1) and a function ℎ :

𝑋 → [0,∞) such that

𝑑 (𝑦, 𝑇𝑦) ≤ 𝛼 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) ∀𝑦 ∈ 𝑇𝑥. (24)

Definition 9 (see [36–39]). Let (𝑋, 𝑑) be a metric space and
let 𝑇 : 𝑋 → N(𝑋) be a multivalued map. One says that 𝑇 is
𝛼-admissible, if there exists a function 𝛼 : 𝑋 ×𝑋 → [0, +∞)

such that for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑇𝑥 with 𝛼(𝑥, 𝑦) ≥ 1, one
has 𝛼(𝑦, 𝑧) ≥ 1 for all 𝑧 ∈ 𝑇𝑦.

The following existence theorem is one of themain results
of this paper.

Theorem 10. Let (𝑋, 𝑑) be a metric space, let 𝑇 : 𝑋 → N(𝑋)

be an 𝛼-admissible multivalued map, and 𝜂 ∈ ̂Man (R). Let

Ω = {(𝛼 (𝑥, 𝑦) 𝑑 (𝑦, 𝑇𝑦) , 𝑑 (𝑥, 𝑦)) ∈ [0, +∞)

× [0, +∞) : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑇𝑥} .

(25)

If 𝜂(𝑡, 𝑠) ≥ 0 for all (𝑡, 𝑠) ∈ Ω and there exist 𝑥0 ∈ 𝑋 and
𝑥1 ∈ 𝑇𝑥0 such that 𝛼(𝑥0, 𝑥1) ≥ 1, then the following statements
hold.

(a) There exists a Cauchy sequence {𝑤𝑛}𝑛∈N in𝑋 such that

(i) 𝑤𝑛+1 ∈ 𝑇𝑤𝑛 for all 𝑛 ∈ N,
(ii) 𝛼(𝑤𝑛, 𝑤𝑛+1) ≥ 1 for all 𝑛 ∈ N,
(iii) lim𝑛→∞𝑑(𝑤𝑛, 𝑤𝑛+1) = inf𝑛∈N𝑑(𝑤𝑛, 𝑤𝑛+1) = 0.

(b) inf𝑥∈𝑋𝑑(𝑥, 𝑇𝑥) = 0; that is, 𝑇 has the approximate
fixed point property on 𝑋.

Proof. By our assumption, there exist 𝑥0 ∈ 𝑋 and 𝑥1 ∈ 𝑇𝑥0

such that 𝛼(𝑥0, 𝑥1) ≥ 1. If 𝑥1 = 𝑥0, then 𝑥0 ∈ 𝑇𝑥0 and

inf
𝑥∈𝑋

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥0, 𝑇𝑥0) ≤ 𝑑 (𝑥0, 𝑥0) = 0, (26)

which implies inf𝑥∈𝑋𝑑(𝑥, 𝑇𝑥) = 0. Let 𝑤𝑛 = 𝑥0 for all 𝑛 ∈ N.
Then {𝑤𝑛}𝑛∈N is a Cauchy sequence in 𝑋 and

lim
𝑛→∞

𝑑 (𝑤𝑛, 𝑤𝑛+1) = inf
𝑛∈N

𝑑 (𝑤𝑛, 𝑤𝑛+1) = 𝑑 (𝑥0, 𝑥0) = 0. (27)

Clearly, 𝛼(𝑤𝑛, 𝑤𝑛+1) = 𝛼(𝑥0, 𝑥1) ≥ 1 for all 𝑛 ∈ N. Hence, the
conclusions (a) and (b) hold in this case. Assume 𝑥1 ∉ 𝑥0 or
𝑑(𝑥0, 𝑥1) > 0. If 𝑥1 ∈ 𝑇𝑥1, then, following a similar argument
as above, we can prove the conclusions (a) and (b) by taking
a Cauchy sequence {𝑤𝑛}𝑛∈N with 𝑤1 = 𝑥0 and 𝑤𝑛 = 𝑥1 for
all 𝑛 ≥ 2. Suppose 𝑥1 ∉ 𝑇𝑥1. Thus 𝑑(𝑥1, 𝑇𝑥1) > 0. Define
𝜆 : R ×R → R by

𝜆 (𝑡, 𝑠) =

{

{

{

𝑡 + 𝜂 (𝑡, 𝑠)

𝑠

, if (𝑡, 𝑠) ∈ Ω \ {(0, 0)} ,

0, otherwise.
(28)

By (𝜂1), we know that

0 < 𝜆 (𝑡, 𝑠) < 1 ∀ (𝑡, 𝑠) ∈ Ω \ {(0, 0)} . (29)

Since 𝜂 ∈ ̂Man(R) and 𝜂(𝑡, 𝑠) ≥ 0 for all (𝑡, 𝑠) ∈ Ω, we have

0 < 𝑡 ≤ 𝑠𝜆 (𝑡, 𝑠) ∀ (𝑡, 𝑠) ∈ Ω \ {(0, 0)} . (30)

Clearly, (𝛼(𝑥0, 𝑥1)𝑑(𝑥1, 𝑇𝑥1), 𝑑(𝑥0, 𝑥1)) ∈ Ω \ {(0, 0)}. So, by
(29), we obtain

0 < 𝜆 (𝛼 (𝑥0, 𝑥1) 𝑑 (𝑥1, 𝑇𝑥1) , 𝑑 (𝑥0, 𝑥1)) < 1. (31)

Let

𝜖1 = (

𝛼 (𝑥0, 𝑥1)

√𝜆 (𝛼 (𝑥0, 𝑥1) 𝑑 (𝑥1, 𝑇𝑥1) , 𝑑 (𝑥0, 𝑥1))

− 1)

× 𝑑 (𝑥1, 𝑇𝑥1) .

(32)

Taking into account 𝛼(𝑥0, 𝑥1) ≥ 1, 𝑑(𝑥1, 𝑇𝑥1) > 0, and the
last inequality, we get 𝜖1 > 0. Since

𝑑 (𝑥1, 𝑇𝑥1) < 𝑑 (𝑥1, 𝑇𝑥1) + 𝜖1

=

𝛼 (𝑥0, 𝑥1)

√𝜆 (𝛼 (𝑥0, 𝑥1) 𝑑 (𝑥1, 𝑇𝑥1) , 𝑑 (𝑥0, 𝑥1))

× 𝑑 (𝑥1, 𝑇𝑥1) ,

(33)

there exists 𝑥2 ∈ 𝑇𝑥1 such that 𝑥2 ̸= 𝑥1 and

𝑑 (𝑥1, 𝑥2) <

𝛼 (𝑥0, 𝑥1)

√𝜆 (𝛼 (𝑥0, 𝑥1) 𝑑 (𝑥1, 𝑇𝑥1) , 𝑑 (𝑥0, 𝑥1))

× 𝑑 (𝑥1, 𝑇𝑥1) .

(34)

If 𝑥2 ∈ 𝑇𝑥2, then the proof can be finished by a similar
argument as above. Otherwise, we have 𝑑(𝑥2, 𝑇𝑥2) > 0. Since
𝑇 is 𝛼 -admissible, we obtain 𝛼(𝑥1, 𝑥2) ≥ 1. By taking

𝜖2 = (

𝛼 (𝑥1, 𝑥2)

√𝜆 (𝛼 (𝑥1, 𝑥2) 𝑑 (𝑥2, 𝑇𝑥2) , 𝑑 (𝑥1, 𝑥2))

− 1)

× 𝑑 (𝑥2, 𝑇𝑥2) ,

(35)
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then there exists 𝑥3 ∈ 𝑇𝑥2 with 𝑥3 ̸= 𝑥2 such that

𝑑 (𝑥2, 𝑥3) <

𝛼 (𝑥1, 𝑥2)

√𝜆 (𝛼 (𝑥1, 𝑥2) 𝑑 (𝑥2, 𝑇𝑥2) , 𝑑 (𝑥1, 𝑥2))

× 𝑑 (𝑥2, 𝑇𝑥2) .

(36)

By induction, if 𝑥𝑘−1, 𝑥𝑘, 𝑥𝑘+1 ∈ 𝑋 is known satisfying 𝑥𝑘−1 ∈
𝑇𝑥𝑘, 𝑥𝑘+1 ∈ 𝑇𝑥𝑘+2, 𝑑(𝑥𝑘, 𝑇𝑥𝑘) > 0, 𝛼(𝑥𝑘−1, 𝑥𝑘) ≥ 1, and

0 < 𝑑 (𝑥𝑘, 𝑥𝑘+1)

<

𝛼 (𝑥𝑘−1, 𝑥𝑘)

√𝜆 (𝛼 (𝑥𝑘−1, 𝑥𝑘) 𝑑 (𝑥𝑘, 𝑇𝑥𝑘) , 𝑑 (𝑥𝑘−1, 𝑥𝑘))

× 𝑑 (𝑥𝑘, 𝑇𝑥𝑘) , 𝑘 ∈ N,

(37)

then, by taking

𝜖𝑘 = (

𝛼 (𝑥𝑘−1, 𝑥𝑘)

√𝜆 (𝛼 (𝑥𝑘−1, 𝑥𝑘) 𝑑 (𝑥𝑘, 𝑇𝑥𝑘) , 𝑑 (𝑥𝑘−1, 𝑥𝑘))

− 1)

× 𝑑 (𝑥𝑘, 𝑇𝑥𝑘) ,

(38)

one can obtain 𝑥𝑘+2 ∈ 𝑇𝑥𝑘+1 with 𝑥𝑘+2 ̸= 𝑥𝑘+1 such that

𝑑 (𝑥𝑘+1, 𝑥𝑘+2)

<

𝛼 (𝑥𝑘, 𝑥𝑘+1)

√𝜆 (𝛼 (𝑥𝑘, 𝑥𝑘+1) 𝑑 (𝑥𝑘+1, 𝑇𝑥𝑘+1) , 𝑑 (𝑥𝑘, 𝑥𝑘+1))

× 𝑑 (𝑥𝑘+1, 𝑇𝑥𝑘+1) .

(39)

Hence, by induction, we can establish sequences {𝑥𝑛} in 𝑋

satisfying, for each 𝑛 ∈ N,

𝑥𝑛 ∈ 𝑇𝑥𝑛−1,

𝑑 (𝑥𝑛−1, 𝑥𝑛) > 0,

𝑑 (𝑥𝑛, 𝑇𝑥𝑛) > 0,

𝛼 (𝑥𝑛−1, 𝑥𝑛) ≥ 1,

𝑑 (𝑥𝑛, 𝑥𝑛+1) <

𝛼 (𝑥𝑛−1, 𝑥𝑛)

√𝜆 (𝛼 (𝑥𝑛−1, 𝑥𝑛) 𝑑 (𝑥𝑛, 𝑇𝑥𝑛) , 𝑑 (𝑥𝑛−1, 𝑥𝑛))

× 𝑑 (𝑥𝑛, 𝑇𝑥𝑛) .

(40)

By (30), we have

𝛼 (𝑥𝑛−1, 𝑥𝑛) 𝑑 (𝑥𝑛, 𝑇𝑥𝑛)

≤ 𝑑 (𝑥𝑛−1, 𝑥𝑛) 𝜆 (𝛼 (𝑥𝑛−1, 𝑥𝑛) 𝑑 (𝑥𝑛, 𝑇𝑥𝑛) , 𝑑 (𝑥𝑛−1, 𝑥𝑛))

for each 𝑛 ∈ N.

(41)

Hence, for each 𝑛 ∈ N, by combining (40) and (41), we get

𝑑 (𝑥𝑛, 𝑥𝑛+1) <
√𝜆 (𝛼 (𝑥𝑛−1, 𝑥𝑛) 𝑑 (𝑥𝑛, 𝑇𝑥𝑛) , 𝑑 (𝑥𝑛−1, 𝑥𝑛))

× 𝑑 (𝑥𝑛−1, 𝑥𝑛) ,

(42)

which means that the sequence {𝑑(𝑥𝑛−1, 𝑥𝑛)}𝑛∈N is strictly
decreasing in (0, +∞). So

𝛾 := lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑥𝑛+1) = inf
𝑛∈N

𝑑 (𝑥𝑛, 𝑥𝑛+1) ≥ 0 exists. (43)

By (41), we have

𝛼 (𝑥𝑛−1, 𝑥𝑛) 𝑑 (𝑥𝑛, 𝑇𝑥𝑛) ≤ 𝑑 (𝑥𝑛−1, 𝑥𝑛) ∀𝑛 ∈ N, (44)

which means that {𝛼(𝑥𝑛−1, 𝑥𝑛)𝑑(𝑥𝑛, 𝑇𝑥𝑛)}𝑛∈N is a bounded
sequence. By (𝜂2), we have

lim sup
𝑛→∞

𝜆 (𝛼 (𝑥𝑛−1, 𝑥𝑛) 𝑑 (𝑥𝑛, 𝑇𝑥𝑛) , 𝑑 (𝑥𝑛−1, 𝑥𝑛)) < 1. (45)

Now, we claim 𝛾 = 0. Suppose 𝛾 > 0.Then, by (45) and taking
lim sup in (42), we get

𝛾 ≤ √lim sup
𝑛→∞

𝜆 (𝛼 (𝑥𝑛−1, 𝑥𝑛) 𝑑 (𝑥𝑛, 𝑇𝑥𝑛) , 𝑑 (𝑥𝑛−1, 𝑥𝑛))𝛾 < 𝛾,

(46)

a contradiction. Hence we prove

lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑥𝑛+1) = inf
𝑛∈N

𝑑 (𝑥𝑛, 𝑥𝑛+1) = 0. (47)

To complete the proof of (a), it suffices to show that {𝑥𝑛}𝑛∈N
is a Cauchy sequence in 𝑋. For each 𝑛 ∈ N, let

𝜌𝑛 :=
√𝜆 (𝛼 (𝑥𝑛−1, 𝑥𝑛) 𝑑 (𝑥𝑛, 𝑇𝑥𝑛) , 𝑑 (𝑥𝑛−1, 𝑥𝑛)).

(48)

Then 𝜌𝑛 ∈ (0, 1) for all 𝑛 ∈ N. By (42), we obtain

𝑑 (𝑥𝑛, 𝑥𝑛+1) < 𝜌𝑛𝑑 (𝑥𝑛−1, 𝑥𝑛) ∀𝑛 ∈ N. (49)

From (45), we have lim sup
𝑛→∞

𝜌𝑛 < 1, so there exist 𝑐 ∈

[0, 1) and 𝑛0 ∈ N, such that

𝜌𝑛 ≤ 𝑐 ∀𝑛 ∈ N with 𝑛 ≥ 𝑛0. (50)
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For any 𝑛 ≥ 𝑛0, since 𝜌𝑛 ∈ (0, 1) for all 𝑛 ∈ N and 𝑐 ∈ [0, 1),
taking into account (49) and (50) concludes that

𝑑 (𝑥𝑛, 𝑥𝑛+1) < 𝜌𝑛𝑑 (𝑥𝑛−1, 𝑥𝑛)

< ⋅ ⋅ ⋅ < 𝜌𝑛𝜌𝑛−1𝜌𝑛−2 ⋅ ⋅ ⋅ 𝜌𝑛
0

𝑑 (𝑥0, 𝑥1)

≤ 𝑐
𝑛−𝑛
0
+1
𝑑 (𝑥0, 𝑥1) .

(51)

Put 𝛼𝑛 = (𝑐
𝑛−𝑛
0
+1
/(1 − 𝑐)) 𝑑(𝑥0, 𝑥1), 𝑛 ∈ N. For𝑚, 𝑛 ∈ N with

𝑚 > 𝑛 ≥ 𝑛0, we have from the last inequality that

𝑑 (𝑥𝑛, 𝑥𝑚) ≤

𝑚−1

∑

𝑗=𝑛

𝑑 (𝑥𝑗, 𝑥𝑗+1) < 𝛼𝑛. (52)

Since 𝑐 ∈ [0, 1), lim𝑛→∞𝛼𝑛 = 0. Hence

lim
𝑛→∞

sup {𝑑 (𝑥𝑛, 𝑥𝑚) : 𝑚 > 𝑛} = 0. (53)

So {𝑥𝑛} is a Cauchy sequence in𝑋. Let𝑤𝑛 = 𝑥𝑛−1 for all 𝑛 ∈ N.
Then {𝑤𝑛}𝑛∈N is the desired Cauchy sequence in (a).

To see (b), since 𝑥𝑛 ∈ 𝑇𝑥𝑛−1 for each 𝑛 ∈ N, we have

inf
𝑥∈𝑋

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥𝑛, 𝑇𝑥𝑛) ≤ 𝑑 (𝑥𝑛, 𝑥𝑛+1) ∀𝑛 ∈ N. (54)

Combining (47) and (54) yields

inf
𝑥∈𝑋

𝑑 (𝑥, 𝑇𝑥) = 0. (55)

The proof is completed.

Applying Theorem 10, we can establish the following
new existence theorem related to approximate fixed point
property for 𝛼-admissible multivalued maps.

Theorem 11. Let (𝑋, 𝑑) be a metric space and let 𝑇 : 𝑋 →

N(𝑋) be an 𝛼-admissible multivalued map. Suppose that there
exists anMT-function 𝜑 : [0,∞) → [0, 1) such that

𝛼 (𝑥, 𝑦) 𝑑 (𝑦, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) ∀𝑦 ∈ 𝑇𝑥. (56)

If there exist 𝑥0 ∈ 𝑋 and 𝑥1 ∈ 𝑇𝑥0 such that 𝛼(𝑥0, 𝑥1) ≥ 1,
then the following statements hold.

(a) There exists 𝜂 ∈ ̂Man (R) such that 𝜂(𝑡, 𝑠) ≥ 0 for all
(𝑡, 𝑠) ∈ Ω, where

Ω = {(𝛼 (𝑥, 𝑦) 𝑑 (𝑦, 𝑇𝑦) , 𝑑 (𝑥, 𝑦)) ∈ [0, +∞)

× [0, +∞) : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑇𝑥} .

(57)

(b) There exists a Cauchy sequence {𝑤𝑛}𝑛∈N in𝑋 such that

(i) 𝑤𝑛+1 ∈ 𝑇𝑤𝑛 for all 𝑛 ∈ N,
(ii) 𝛼(𝑤𝑛, 𝑤𝑛+1) ≥ 1 for all 𝑛 ∈ N,
(iii) lim𝑛→∞𝑑(𝑤𝑛, 𝑤𝑛+1) = inf𝑛∈N𝑑(𝑤𝑛, 𝑤𝑛+1) = 0.

(c) inf𝑥∈𝑋𝑑(𝑥, 𝑇𝑥) = 0; that is, 𝑇 has the approximate
fixed point property on 𝑋.

Proof. Define 𝜂 : R ×R → R by

𝜂 (𝑡, 𝑠) = {

𝑠𝜑 (𝑠) − 𝑡, if (𝑡, 𝑠) ∈ [0, +∞) × [0, +∞) ,

0, otherwise.
(58)

By Example C, we know 𝜂 ∈
̂Man(R). By (56), we obtain

𝜂(𝑡, 𝑠) ≥ 0 for all (𝑡, 𝑠) ∈ Ω. Therefore (a) is proved. It is
obvious that the desired conclusions (b) and (c) follow from
Theorem 10 immediately.

The following interesting results are immediate from
Theorem 11.

Corollary 12. Let (𝑋, 𝑑) be a metric space and let 𝑇 : 𝑋 →

CB(𝑋) be an 𝛼-admissible multivaluedmap. Assume that one
of the following conditions holds.

(L1) there exist an MT-function 𝜑 : [0,∞) → [0, 1)

and a function ℎ : 𝑋 → [0,∞) such that

𝛼 (𝑥, 𝑦)H (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦)

+ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋;

(59)

(L2) there exist an MT-function 𝜑 : [0,∞) → [0, 1)

and 𝐿 ≥ 0 such that

𝛼 (𝑥, 𝑦)H (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦)

+𝐿𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋;

(60)

(L3) there exist two constants 𝜃 ∈ (0, 1) and 𝐿 ≥ 0 such that

𝛼 (𝑥, 𝑦)H (𝑇𝑥, 𝑇𝑦) ≤ 𝜃𝑑 (𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋;

(61)

(L4) there exists an MT-function 𝜑 : [0,∞) → [0, 1)

such that

𝛼 (𝑥, 𝑦)H (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋;

(62)

(L5) there exists a number 0 < 𝑘 < 1 such that

𝛼 (𝑥, 𝑦)H (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋. (63)

If there exist 𝑥0 ∈ 𝑋 and 𝑥1 ∈ 𝑇𝑥0 such that 𝛼(𝑥0, 𝑥1) ≥ 1,
then the following statements hold.

(a) There exists 𝜂 ∈
̂Man(R) such that 𝜂(𝑡, 𝑠) ≥ 0 for all

(𝑡, 𝑠) ∈ Ω, where

Ω = {(𝛼 (𝑥, 𝑦) 𝑑 (𝑦, 𝑇𝑦) , 𝑑 (𝑥, 𝑦)) ∈ [0, +∞)

× [0, +∞) : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑇𝑥} .

(64)

(b) There exists a Cauchy sequence {𝑤𝑛}𝑛∈N in𝑋 such that

(i) 𝑤𝑛+1 ∈ 𝑇𝑤𝑛 for all 𝑛 ∈ N,
(ii) 𝛼(𝑤𝑛, 𝑤𝑛+1) ≥ 1 for all 𝑛 ∈ N,
(iii) lim𝑛→∞𝑑(𝑤𝑛, 𝑤𝑛+1) = inf𝑛∈N𝑑(𝑤𝑛, 𝑤𝑛+1) = 0.
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(c) inf𝑥∈𝑋𝑑(𝑥, 𝑇𝑥) = 0; that is, 𝑇 has the approximate
fixed point property on 𝑋.

Proof. It suffices to verify the conclusion under (L1). Note first
that, for each 𝑥 ∈ 𝑋, 𝑑(𝑦, 𝑇𝑥) = 0 for all 𝑦 ∈ 𝑇𝑥. So, for each
𝑥 ∈ 𝑋, by (L1), we obtain

𝛼 (𝑥, 𝑦) 𝑑 (𝑦, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) ∀𝑦 ∈ 𝑇𝑥, (65)

which means (56) holds. Therefore, the conclusion follows
fromTheorem 11.

In Corollary 12, if we take 𝛼 : 𝑋 × 𝑋 → [0, +∞) by
𝛼(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋, then we obtain the following
existence theorem.

Corollary 13. Let (𝑋, 𝑑) be a metric space and let 𝑇 :

𝑋 → CB(𝑋) be a multivalued map. Assume that one of the
following conditions holds.

(1) 𝑇 is a Du’s weak type contraction;
(2) 𝑇 is a Du’s strong type contraction;
(3) 𝑇 is a Berinde-Berinde’s type contraction;
(4) 𝑇 is a multivalued (𝜃, 𝐿)-almost contraction;
(5) 𝑇 is a Mizoguchi-Takahashi’s type contraction;
(6) 𝑇 is a Nadler’s type contraction.

Then the following statements hold.

(a) There exists 𝜂 ∈
̂Man(R) such that 𝜂(𝑡, 𝑠) ≥ 0 for all

(𝑡, 𝑠) ∈ D, where

D = {(𝑑 (𝑦, 𝑇𝑦) , 𝑑 (𝑥, 𝑦)) ∈ [0, +∞)

× [0, +∞) : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑇𝑥} .

(66)

(b) There exists a Cauchy sequence {𝑤𝑛}𝑛∈N in𝑋 such that

(i) 𝑤𝑛+1 ∈ 𝑇𝑤𝑛 for all 𝑛 ∈ N,
(ii) lim𝑛→∞𝑑(𝑤𝑛, 𝑤𝑛+1) = inf𝑛∈N𝑑(𝑤𝑛, 𝑤𝑛+1) = 0.

(c) inf𝑥∈𝑋𝑑(𝑥, 𝑇𝑥) = 0; that is, 𝑇 has the approximate
fixed point property on 𝑋.

4. Some Applications to Fixed Point Theory

Definition 14 (see [36–39]). Let (𝑋, 𝑑) be a metric space and
let 𝛼 : 𝑋 × 𝑋 → [0, +∞) be a function. 𝛼 is said to have the
property (𝐵) if any sequence {𝑥𝑛} in 𝑋 with 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥ 1

for all 𝑛 ∈ N and lim𝑛→∞𝑥𝑛 = V, we have 𝛼(𝑥𝑛, V) ≥ 1 for all
𝑛 ∈ N.

Theorem 15. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :

𝑋 → CB(𝑋) be an 𝛼-admissible multivalued map. Suppose
that there exists anMT-function 𝜑 : [0,∞) → [0, 1) such
that

𝛼 (𝑥, 𝑦) 𝑑 (𝑦, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) ∀𝑦 ∈ 𝑇𝑥. (67)

If there exist 𝑥0 ∈ 𝑋 and 𝑥1 ∈ 𝑇𝑥0 such that 𝛼(𝑥0, 𝑥1) ≥ 1, and
one of the following conditions is satisfied:

(H1) 𝑇 is H-continuous (i.e., 𝑥𝑛 → V implies H(𝑇𝑥𝑛, 𝑇V)
→ 0 as 𝑛 → ∞);

(H2) 𝑇 is closed (i.e.,𝐺𝑟𝑇 := {(𝑥, 𝑦) ∈ 𝑋×𝑋 : 𝑦 ∈ 𝑇𝑥}; the
graph of 𝑇 is a closed subset of𝑋 × 𝑋);

(H3) the map 𝑔 : 𝑋 → [0,∞) defined by 𝑔(𝑥) = 𝑑(𝑥, 𝑇𝑥)

is l.s.c.;
(H4) for any sequence {𝑧𝑛} in 𝑋 with 𝛼(𝑧𝑛, 𝑧𝑛+1) ≥ 1,

𝑧𝑛+1 ∈ 𝑇𝑧𝑛, 𝑛 ∈ N, and lim𝑛→∞𝑧𝑛 = 𝑐, one has
lim𝑛→∞𝑑(𝑧𝑛, 𝑇𝑐) = 0,

then 𝑇 admits a fixed point in𝑋.

Proof. Applying Theorem 11, there exists a Cauchy sequence
{𝑤𝑛}𝑛∈N in𝑋 such that

𝑤𝑛+1 ∈ 𝑇𝑤𝑛,

𝛼 (𝑤𝑛, 𝑤𝑛+1) ≥ 1 ∀𝑛 ∈ N.
(68)

By the completeness of𝑋, there exists V ∈ 𝑋 such that 𝑤𝑛 →
V as 𝑛 → ∞.

Now, we verify V ∈ F(𝑇). If (H1) holds, since 𝑇 is H-
continuous on 𝑋, 𝑤𝑛+1 ∈ 𝑇𝑤𝑛 for each 𝑛 ∈ N, and 𝑤𝑛 → V
as 𝑛 → ∞, we get

𝑑 (V, 𝑇V) = lim
𝑛→∞

𝑑 (𝑤𝑛+1, 𝑇V) ≤ lim
𝑛→∞

H (𝑇𝑤𝑛, 𝑇V) = 0,

(69)

which implies 𝑑(V, 𝑇V) = 0. By the closeness of 𝑇V, we have
V ∈ 𝑇V. If (H2) holds, since 𝑇 is closed, 𝑤𝑛+1 ∈ 𝑇𝑤𝑛 for each
𝑛 ∈ N, and 𝑤𝑛 → V as 𝑛 → ∞, we have V ∈ F(𝑇). Suppose
that (H3) holds. Since {𝑤𝑛}𝑛∈N is convergent in𝑋, we have

lim
𝑛→∞

𝑑 (𝑤𝑛, 𝑤𝑛+1) = 0. (70)

Since

𝑑 (V, 𝑇V) = 𝑔 (V) ≤ lim inf
𝑛→∞

𝑔 (𝑤𝑛) ≤ lim
𝑛→∞

𝑑 (𝑤𝑛, 𝑤𝑛+1) = 0,

(71)

we obtain 𝑑(V, 𝑇V) = 0, and hence V ∈ F(𝑇). Finally, assume
(H4) holds. Then we obtain

𝑑 (V, 𝑇V) = lim
𝑛→∞

𝑑 (𝑤𝑛, 𝑇V) = 0. (72)

Hence V ∈ 𝑇V. Therefore, in any case, we prove V ∈ F(𝑇).
This completes the proof.

Theorem 16. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :

𝑋 → CB(𝑋) be an 𝛼-admissible multivalued map. Suppose
that there exist anMT-function 𝜑 : [0,∞) → [0, 1) and a
function ℎ : 𝑋 → [0,∞) such that

𝛼 (𝑥, 𝑦)H (𝑇x, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦)

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋.

(73)

If there exist 𝑥0 ∈ 𝑋 and 𝑥1 ∈ 𝑇𝑥0 such that 𝛼(𝑥0, 𝑥1) ≥ 1, and
one of the following conditions is satisfied:

(S1) 𝑇 isH-continuous;
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(S2) 𝑇 is closed;
(S3) the map 𝑔 : 𝑋 → [0,∞) defined by 𝑔(𝑥) = 𝑑(𝑥, 𝑇𝑥)

is l.s.c.;
(S4) the function 𝛼 has the property (𝐵),

then 𝑇 admits a fixed point in𝑋.

Proof. It is obvious that (73) implies (67). If one of the
conditions (S1), (S2), and (S3) is satisfied, then the desired
conclusion follows from Theorem 15 immediately. Suppose
that (S4) holds. We claim that (H4) as in Theorem 15 is
satisfied. Let {𝑧𝑛} be in 𝑋 with 𝛼(𝑧𝑛, 𝑧𝑛+1) ≥ 1, 𝑧𝑛+1 ∈ 𝑇𝑧𝑛,
𝑛 ∈ N, and lim𝑛→∞𝑧𝑛 = 𝑐. Since 𝛼 has the property (𝐵),
𝛼(𝑧𝑛, 𝑐) ≥ 1 for all 𝑛 ∈ N. So, it follows from (73) that

lim
𝑛→∞

𝑑 (𝑧𝑛+1, 𝑇𝑐) ≤ lim
𝑛→∞

H (𝑇𝑧𝑛, 𝑇𝑐)

≤ lim
𝑛→∞

𝛼 (𝑧𝑛, 𝑐)H (𝑇𝑧𝑛, 𝑇𝑐)

≤ lim
𝑛→∞

{𝜑 (𝑑 (𝑧𝑛, 𝑐)) 𝑑 (𝑧𝑛, 𝑐)

+ℎ (𝑐) 𝑑 (𝑐, 𝑧𝑛+1)} = 0,

(74)

which implies lim𝑛→∞𝑑(𝑧𝑛, 𝑇𝑐) = 0. Hence (H4) holds. By
Theorem 15, we also proveF(𝑇) ̸= 0. The proof is completed.

Applying Theorem 16, we can give a short proof of Du’s
fixed point theorem.

Corollary 17 (Du [[6]). Let (𝑋, 𝑑) be a complete metric space,
let𝑇 : 𝑋 → CB(𝑋) be a multivalued map, let 𝜑 : [0,∞) →

[0, 1) be a MT-function, let and ℎ : 𝑋 → [0,∞) be a
function. Assume that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦)

+ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋.

(75)

ThenF(𝑇) ̸= 0.

Proof. Take 𝛼 : 𝑋 × 𝑋 → [0, +∞) by 𝛼(𝑥, 𝑦) = 1

for all 𝑥, 𝑦 ∈ 𝑋. Then (75) implies (73). Moreover, 𝑇 is
an 𝛼-admissible multivalued map and the function 𝛼 has
the property (𝐵). Therefore the conclusion follows from
Theorem 16.

Remark 18. Theorems 15 and 16 and Corollary 17 all gen-
eralize and improve Berinde-Berinde’s fixed point theorem,
Mizoguchi-Takahashi’s fixed point theorem, Nadler’s fixed
point theorem, and Banach contraction principle.
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