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Based on the Hermitian and skew-Hermitian splitting (HSS) iteration technique, we establish a generalized HSS (GHSS) iteration
method for solving large sparse continuous Sylvester equations with non-Hermitian and positive definite/semidefinite matrices.
The GHSS method is essentially a four-parameter iteration which not only covers the standard HSS iteration but also enables us to
optimize the iterative process. An exact parameter region of convergence for themethod is strictly proved and aminimum value for
the upper bound of the iterative spectrum is derived. Moreover, to reduce the computational cost, we establish an inexact variant
of the GHSS (IGHSS) iteration method whose convergence property is discussed. Numerical experiments illustrate the efficiency
and robustness of the GHSS iteration method and its inexact variant.

1. Introduction

Consider the following continuous Sylvester equation:

𝐴𝑋 + 𝑋𝐵 = 𝐶, (1)

where𝐴 ∈ C𝑚×𝑚, 𝐵 ∈ C𝑛×𝑛, and 𝐶 ∈ C𝑚×𝑛 are given complex
matrices. Assume that

(i) 𝐴, 𝐵, and 𝐶 are large and sparse matrices;
(ii) at least one of 𝐴 and 𝐵 is non-Hermitian;
(iii) both 𝐴 and 𝐵 are positive semi-definite, and at least

one of them is positive definite.

Since under assumptions (i)–(iii) there is no common eigen-
value between 𝐴 and −𝐵, we obtain from [1, 2] that the
continuous Sylvester equation (1) has a unique solution.
Obviously, the continuous Lyapunov equation is a special case
of the continuous Sylvester equation (1) with 𝐵 = 𝐴

∗ and
𝐶 Hermitian, where 𝐴

∗ represents the conjugate transpose
of the matrix 𝐴. This continuous Sylvester equation arises
in several areas of applications. For more details about the
practical backgrounds of this class of problems, we refer to
[2–15] and the references therein.

Before giving its numerical scheme, we rewrite the
continuous Sylvester equation (1) in the mathematically
equivalent system of linear equations

A𝑥 = 𝑐, (2)

whereA = 𝐼⊗𝐴+𝐵
𝑇

⊗𝐼; the vectors 𝑥 and 𝑐 contain the con-
catenated columns of thematrices𝑋 and𝐶, respectively, with
⊗ being the Kronecker product symbol and 𝐵

𝑇 representing
the transpose of the matrix 𝐵. However, it is quite expensive
and ill-conditioned to use the iteration method to solve this
variation of the continuous Sylvester equation (1).

There is a large number of numerical methods for solving
the continuous Sylvester equation (1). The Bartels-Stewart
and the Hessenberg-Schur methods [16, 17] are direct algo-
rithms, which can only be applied to problems of reasonably
small sizes. When the matrices 𝐴 and 𝐵 become large and
sparse, iterative methods are usually employed for efficiently
and accurately solving the continuous Sylvester equation (1),
for instance, the Smith’smethod [18], the alternating direction
implicit (ADI) method [19–22], and others [23–26].

Recently, Bai established the Hermitian and skew-
Hermitian splitting (HSS) [4] iterative method for solving
the continuous Sylvester equation (1), which is based on
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the Hermitian and skew-Hermitian splitting of the matrices
𝐴 and 𝐵. This HSS iteration method is a matrix variant of the
original HSS iteration method firstly proposed by Bai et al.
[27] for solving systems of linear equations; see [28–39] for
more detailed descriptions about the HSS iteration method
and its variants.

To further improve the convergence efficiency, in this
paper we present a new generalized Hermitian and skew-
Hermitian splitting (GHSS) method for solving the contin-
uous Sylvester equation (1). It is a four-parameter iteration
which enables the optimization of the iterative process,
thereby achieving high efficiency and robustness. Similar
approaches of using the parameterized acceleration tech-
nique in the algorithmic designs of the iterative methods can
be seen in [34–39].

In the remainder of this paper, a matrix sequence
{𝑌
(𝑘)

}
∞

𝑘=0
⊆ C𝑚×𝑛 is said to be convergent to a matrix 𝑌 ∈

C𝑚×𝑛 if the corresponding vector sequence {𝑦
(𝑘)

}
∞

𝑘=0
⊆ C𝑚𝑛 is

convergent to the corresponding vector 𝑦 ∈ C𝑚𝑛, where the
vectors 𝑦

(𝑘) and 𝑦 contain the concatenated columns of the
matrices 𝑌

(𝑘) and 𝑌, respectively. If {𝑌
(𝑘)

}
∞

𝑘=0
is convergent,

then its convergence factor and convergence rate are defined
as those of {𝑦

(𝑘)

}
∞

𝑘=0
, correspondingly. In addition, we use

𝑠𝑝(𝑉), ‖𝑉‖
2
and ‖𝑉‖

𝐹
to denote the spectrum, the spectral

norm, and the Frobenius norm of the matrix 𝑉 ∈ C𝑚×𝑚,
respectively. Note that ‖ ⋅ ‖

2
is also used to represent the 2-

norm of a vector.
The rest of this paper is organized as follows. In Section 2,

we present the GHSS method for solving the continuous
Sylvester equation (1), in which we use four parameters
instead of two parameters in the HSS method [4]. An exact
parameter region of convergence for the method is strictly
proved and a minimum value for the upper bound of the
iterative spectrum is derived in Section 3. In Section 4, an
inexact variant of the GHSS (IGHSS) iteration method is
presented and its convergence property is studied. Numerical
examples are given to illustrate the theoretical results and the
effectiveness of the GHSS method in Section 5. Finally, we
draw our conclusions.

2. The GHSS Method

Here and in the sequel, we use 𝐻(𝑉) := (1/2)(𝑉 + 𝑉
∗

) and
𝑆(𝑉) := (1/2)(𝑉 − 𝑉

∗

) to denote the Hermitian part and the
skew-Hermitian part of the matrix 𝑉 ∈ C𝑚×𝑛, respectively.
Obviously, the matrix 𝑉 naturally possesses the Hermitian
and skew-Hermitian splitting (HSS):

𝑉 = 𝐻 (𝑉) + 𝑆 (𝑉) ; (3)

see [4, 27, 28].
Similar to the HSS method [4], we obtain the following

splitting of 𝐴 and 𝐵:

𝐴 = (𝛼
1
𝐼 + 𝐻 (𝐴)) − (𝛼

1
𝐼 − 𝑆 (𝐴))

= (𝛽
1
𝐼 + 𝑆 (𝐴)) − (𝛽

1
𝐼 − 𝐻 (𝐴)) ,

𝐵 = (𝛼
2
𝐼 + 𝐻 (𝐵)) − (𝛼

2
𝐼 − 𝑆 (𝐵))

= (𝛽
2
𝐼 + 𝑆 (𝐵)) − (𝛽

2
𝐼 − 𝐻 (𝐵)) ,

(4)

where 𝛼
𝑗
(𝑗 = 1, 2) are given nonnegative constants and

𝛽
𝑗
(𝑗 = 1, 2) are given positive constants and 𝐼 is the identity

matrix of suitable dimension. Then the continuous Sylvester
equation (1) can be equivalently reformulated as

(𝛼
1
𝐼 + 𝐻 (𝐴))𝑋 + 𝑋 (𝛼

2
𝐼 + 𝐻 (𝐵))

= (𝛼
1
𝐼 − 𝑆 (𝐴))𝑋 + 𝑋 (𝛼

2
𝐼 − 𝑆 (𝐵)) + 𝐶,

(𝛽
1
𝐼 + 𝑆 (𝐴))𝑋 + 𝑋 (𝛽

2
𝐼 + 𝑆 (𝐵))

= (𝛽
1
𝐼 − 𝐻 (𝐴))𝑋 + 𝑋 (𝛽

2
𝐼 − 𝐻 (𝐵)) + 𝐶.

(5)

Under assumptions (i)–(iii), we observe that there is no
common eigenvalue between the matrices 𝛼

1
𝐼 + 𝐻(𝐴) and

−(𝛼
2
𝐼 + 𝐻(𝐵)), as well as between the matrices 𝛽

1
𝐼 + 𝑆(𝐴)

and −(𝛽
2
𝐼 + 𝑆(𝐵)), so that the above two fixed-point matrix

equations have unique solutions for all given right-hand side
matrices. This leads to the following generalized Hermitian
and skew-Hermitian splitting (GHSS) iteration method for
solving the continuous Sylvester equation (1).

Algorithm 1 (the GHSS iteration method). Given an initial
guess 𝑋

(0)

∈ C𝑚×𝑛, compute 𝑋
(𝑘+1)

∈ C𝑚×𝑛 for 𝑘 = 0, 1, 2, . . .

using the following iteration scheme until {𝑋(𝑘)}
∞

𝑘=0
satisfies

the stopping criterion:

(𝛼
1
𝐼 + 𝐻 (𝐴))𝑋

(𝑘+1/2)

+ 𝑋
(𝑘+1/2)

(𝛼
2
𝐼 + 𝐻 (𝐵))

= (𝛼
1
𝐼 − 𝑆 (𝐴))𝑋

(𝑘)

+ 𝑋
(𝑘)

(𝛼
2
𝐼 − 𝑆 (𝐵)) + 𝐶,

(𝛽
1
𝐼 + 𝑆 (𝐴))𝑋

(𝑘+1)

+ 𝑋
(𝑘+1)

(𝛽
2
𝐼 + 𝑆 (𝐵))

= (𝛽
1
𝐼 − 𝐻 (𝐴))𝑋

(𝑘+1/2)

+ 𝑋
(𝑘+1/2)

(𝛽
2
𝐼 − 𝐻 (𝐵)) + 𝐶,

(6)

where 𝛼
𝑗
(𝑗 = 1, 2) are given nonnegative constants and

𝛽
𝑗
(𝑗 = 1, 2) are given positive constants and 𝐼 is the identity

matrix of suitable dimension.

Remark 2. The GHSS method has the same algorithmic
structure as the HSS method [4], and thus two methods have
the same computational cost in each iteration step. It is easy
to see that the former reduces to the latter when 𝛼

1
= 𝛽
1
and

𝛼
2
= 𝛽
2
.

Remark 3. When 𝐵 is a zero matrix, and𝑋
(𝑘) and𝐶 reduce to

column vectors, the GHSS iterationmethod becomes the one
for systems of linear equations; see [34–36]. In addition, when
𝐵 = 𝐴

∗ and 𝐶 is Hermitian, it leads to an GHSS iteration
method for the continuous Lyapunov equations.

3. Convergence Analysis of the GHSS Method

Let 𝐻(𝐴), 𝐻(𝐵), and 𝑆(𝐴), 𝑆(𝐵) be the Hermitian and the
skew-Hermitian parts of the matrices 𝐴 and 𝐵, respectively.
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Denote

𝜆
(𝐻(𝐴))

max = max
𝜆𝑗∈𝑠𝑝(𝐻(𝐴))

{𝜆
𝑗
} , 𝜇

(𝐻(𝐵))

max = max
𝜇𝑘∈𝑠𝑝(𝐻(𝐵))

{𝜇
𝑘
} ,

𝜆
(𝐻(𝐴))

min = min
𝜆𝑗∈𝑠𝑝(𝐻(𝐴))

{𝜆
𝑗
} , 𝜇

(𝐻(𝐵))

min = min
𝜇𝑘∈𝑠𝑝(𝐻(𝐵))

{𝜇
𝑘
} ,

𝜉
(𝑆(𝐴))

max = max
𝑖𝜉𝑗∈𝑠𝑝(𝑆(𝐴))

{
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨
} , 𝜁

(𝑆(𝐵))

max = max
𝑖𝜁𝑘∈𝑠𝑝(𝑆(𝐵))

{
󵄨󵄨󵄨󵄨𝜁𝑘

󵄨󵄨󵄨󵄨} ,

𝜉
(𝑆(𝐴))

min = min
𝑖𝜉𝑗∈𝑠𝑝(𝑆(𝐴))

{
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨
} , 𝜁

(𝑆(𝐵))

min = min
𝑖𝜁𝑘∈𝑠𝑝(𝑆(𝐵))

{
󵄨󵄨󵄨󵄨𝜁𝑘

󵄨󵄨󵄨󵄨} ,

(7)

with 𝑖 = √−1 and

Θmax = 𝜆
(𝐻(𝐴))

max + 𝜇
(𝐻(𝐵))

max , Υmax = 𝜉
(𝑆(𝐴))

max + 𝜁
(𝑆(𝐵))

max ,

Θmin = 𝜆
(𝐻(𝐴))

min + 𝜇
(𝐻(𝐵))

min , Υmin = 𝜉
(𝑆(𝐴))

min + 𝜁
(𝑆(𝐵))

min .

(8)

In addition, denote by A = H + S, with

H = 𝐻 (A) = 𝐼 ⊗ 𝐻 (𝐴) + 𝐻(𝐵)
𝑇

⊗ 𝐼,

S = 𝑆 (A) = 𝐼 ⊗ 𝑆 (𝐴) + 𝑆(𝐵)
𝑇

⊗ 𝐼.

(9)

Obviously, Θmax, Υmax and Θmin, Υmin are the upper and the
lower bounds of the eigenvalues of the matrices H and S,
respectively.

By making use of Theorems 2.2 and 2.5 in [35], we
can obtain the following convergence theorem about the
GHSS iteration method for solving the continuous Sylvester
equation (1).

Theorem 4. Assume that 𝐴 ∈ C𝑚×𝑚 and 𝐵 ∈ C𝑛×𝑛 are
positive semi-definite matrices, and at least one of them is
positive definite. Let 𝛼

𝑗
(𝑗 = 1, 2) be nonnegative constants and

𝛽
𝑗
(𝑗 = 1, 2) be positive constants. Denote by

𝑀(𝛼, 𝛽) = (𝛽𝐼 + S)−1 (𝛽𝐼 − H) (𝛼𝐼 + H)
−1

(𝛼𝐼 − S) , (10)

𝛼 = 𝛼
1
+ 𝛼
2
, 𝛽 = 𝛽

1
+ 𝛽
2
. (11)

Then the convergence factor of the GHSS iterationmethod (6) is
given by the spectral radius 𝜌(𝑀(𝛼, 𝛽)) of the matrix 𝑀(𝛼, 𝛽),
which is bounded by

𝜎 (𝛼, 𝛽) := max
Θmin≤Θ≤Θmax

󵄨󵄨󵄨󵄨𝛽 − Θ
󵄨󵄨󵄨󵄨

|𝛼 + Θ|
⋅ max
Υmin≤Υ≤Υmax

√
𝛼
2

+ Υ
2

𝛽2 + Υ2
. (12)

And, if the parameters 𝛼 and 𝛽 satisfy

(𝛼, 𝛽) ∈

4

⋃

ℓ=1

Ω
ℓ
, (13)

where
Ω
1
= {(𝛼, 𝛽) | 𝛼 ≤ 𝛽 < 𝛽

∗

(𝛼)} ,

Ω
2
= {(𝛼, 𝛽) | 𝛽 ≥ max {𝛼, 𝛽

∗

(𝛼)} , 𝜙
1
(𝛼, 𝛽) > 0} ,

Ω
3
= {(𝛼, 𝛽) | 𝛽

∗

(𝛼) ≤ 𝛽 < 𝛼} ,

Ω
4
= {(𝛼, 𝛽) | 𝛽 < min {𝛼, 𝛽

∗

(𝛼)} , 𝜙
2
(𝛼, 𝛽) > 0} ,

(14)

with functions 𝜙
1
(𝛼, 𝛽), 𝜙

2
(𝛼, 𝛽) and 𝛽

∗

(𝛼) denoted by

𝜙
1
(𝛼, 𝛽) = (𝛽 − 𝛼) (Θ

2

min − Υ
2

max) + 2𝛼𝛽Θmin + 2Υ
2

maxΘmin,

𝜙
2
(𝛼, 𝛽) = (𝛽 − 𝛼) (Θ

2

max − Υ
2

min) + 2𝛼𝛽Θmax + 2Υ
2

minΘmax,

𝛽
∗

(𝛼) =
𝛼 (Θmax + Θmin) + 2ΘmaxΘmin

2𝛼 + Θmax + Θmin
∈ [Θmin, Θmax] ,

(15)

then 𝜎(𝛼, 𝛽) < 1; that is, the GHSS iteration method (6) is
convergent to the exact solution 𝑋

⋆

∈ C𝑚×𝑛 of the continuous
Sylvester equation (1).

Proof. By making use of the Kronecker product, we can
reformulate the GHSS iteration (6) as the following matrix-
vector form:

(𝐼 ⊗ (𝛼
1
𝐼 + 𝐻 (𝐴)) + (𝛼

2
𝐼 + 𝐻 (𝐵))

𝑇

⊗ 𝐼) 𝑥
(𝑘+1/2)

= (𝐼 ⊗ (𝛼
1
𝐼 − 𝑆 (𝐴)) + (𝛼

2
𝐼 − 𝑆 (𝐵))

𝑇

⊗ 𝐼) 𝑥
(𝑘)

+ 𝑐,

(𝐼 ⊗ (𝛽
1
𝐼 + 𝑆 (𝐴)) + (𝛽

2
𝐼 + 𝑆 (𝐵))

𝑇

⊗ 𝐼) 𝑥
(𝑘+1)

= (𝐼 ⊗ (𝛽
1
𝐼 − 𝐻 (𝐴)) + (𝛽

2
𝐼 − 𝐻 (𝐵))

𝑇

⊗ 𝐼) 𝑥
(𝑘+(𝑘+1/2))

+ 𝑐,

(16)

which can be arranged equivalently as

(𝛼𝐼 + H) 𝑥
(𝑘+1/2)

= (𝛼𝐼 − S) 𝑥(𝑘) + 𝑐,

(𝛽𝐼 + S) 𝑥(𝑘+1) = (𝛽𝐼 − H) 𝑥
(𝑘+1/2)

+ 𝑐.

(17)

Evidently, the iteration scheme (17) is the GHSS iteration
method for solving the system of linear equations (2), with
A = H + S; see [34, 35]. After concrete operations, the GHSS
iteration (17) can also be expressed as a stationary iteration as
follows:

𝑥
(𝑘+1)

= 𝑀(𝛼, 𝛽) 𝑥
(𝑘)

+ 𝑁 (𝛼, 𝛽) 𝑐, (18)

where𝑀(𝛼, 𝛽) is the iteration matrix defined in (10), withH,
S and 𝛼, 𝛽 being given in (9) and (11), respectively, and

𝑁(𝛼, 𝛽) = (𝛼 + 𝛽) (𝛽𝐼 + S)−1(𝛼𝐼 + H)
−1

. (19)

We can easily verify that H is a Hermitian matrix, S is a
skew-Hermitian matrix, 𝛼 is a nonnegative constant, and 𝛽 is
a positive constant. Moreover, when either 𝐴 ∈ C𝑚×𝑚 or 𝐵 ∈

C𝑛×𝑛 is positive definite, the matrix H is Hermitian positive
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definite. The spectral radius of the iteration matrix 𝑀(𝛼, 𝛽)

clearly satisfies

𝜌 (𝑀 (𝛼, 𝛽)) = 𝜌 ((𝛽𝐼 + S)−1 (𝛽𝐼 − H) (𝛼𝐼 + H)
−1

(𝛼𝐼 − S))

≤
󵄩󵄩󵄩󵄩󵄩
(𝛽𝐼 − H) (𝛼𝐼 + H)

−1
󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
(𝛼𝐼 − S) (𝛽𝐼 + S)−1󵄩󵄩󵄩󵄩󵄩2

= max
𝜆𝑗∈𝑠𝑝(𝐻(𝐴))

𝜇𝑘∈𝑠𝑝(𝐻(𝐵))

󵄨󵄨󵄨󵄨󵄨
𝛽 − 𝜆
𝑗
− 𝜇
𝑘

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝛼 + 𝜆
𝑗
+ 𝜇
𝑘

󵄨󵄨󵄨󵄨󵄨

⋅ max
𝑖𝜉𝑗∈𝑠𝑝(𝑆(𝐴))

𝑖𝜁𝑘∈𝑠𝑝(𝑆(𝐵))

√
𝛼
2

+ (𝜉
𝑗
+ 𝜁
𝑘
)
2

𝛽2 + (𝜉
𝑗
+ 𝜁
𝑘
)
2

≤ max
Θmin≤Θ≤Θmax

󵄨󵄨󵄨󵄨𝛽 − Θ
󵄨󵄨󵄨󵄨

|𝛼 + Θ|
⋅ max
Υmin≤Υ≤Υmax

√
𝛼
2

+ Υ
2

𝛽2 + Υ2
;

(20)

then the bound for 𝜌(𝑀(𝛼, 𝛽)) is given by (12).
Hence, by making use of Theorem 2.2 in [35] we know

that

𝜌 (𝑀 (𝛼, 𝛽)) ≤ 𝜎 (𝛼, 𝛽) < 1, ∀ (𝛼, 𝛽) ∈

4

⋃

ℓ=1

Ω
ℓ
. (21)

Therefore we obtain that if the parameters 𝛼 and 𝛽 satisfy the
condition (13), the GHSS iteration method (17) converges to
the exact solution 𝑥

⋆

∈ C𝑚𝑛 of the system of linear equations
(2).This directly shows that the GHSS iterationmethod (6) is
convergent to the exact solution𝑋

⋆

∈ C𝑚×𝑛 of the continuous
Sylvester equation (1) when 𝛼 and 𝛽 satisfy the condition (13),
with the convergence factor 𝜌(𝑀(𝛼, 𝛽)) being bounded by
𝜎(𝛼, 𝛽). This completes the proof.

Remark 5. When 𝛼
1

= 𝛽
1
and 𝛼

2
= 𝛽
2
, the GHSS

method reduces to theHSSmethod, which is unconditionally
convergent due to 𝛼 = 𝛽.

Theorem 4 gives the convergence conditions of the GHSS
iteration method for the continuous Sylvester equation (1) by
analyzing the upper bound 𝜎(𝛼, 𝛽) of the spectral radius of
the iteration matrix 𝑀(𝛼, 𝛽). Since the optimal parameters 𝛼
and𝛽 thatminimize the spectral radius 𝜌(𝑀(𝛼, 𝛽)) are hardly
obtained, we instead give the parameters 𝛼

⋆ and 𝛽
⋆, which

minimize the upper bound 𝜎(𝛼, 𝛽) of the spectral radius
𝜌(𝑀(𝛼, 𝛽)), in the following corollary.

Corollary 6. The theoretical quasi-optimal parameters that
minimize the upper bound 𝜎(𝛼, 𝛽) are given by

(𝛼
⋆

, 𝛽
⋆

) ≡ arg min
𝛼,𝛽

{𝜎 (𝛼, 𝛽)}

=

{{

{{

{

(𝛾
1
, 𝛽
∗

(𝛾
1
)) , ΘmaxΘmin ≤ Υ

2

min,

(𝛾
2
, 𝛽
∗

(𝛾
2
)) , Υ

2

min < ΘmaxΘmin < Υ
2

max,

(𝛾
3
, 𝛽
∗

(𝛾
3
)) , ΘmaxΘmin ≥ Υ

2

max,

(22)

with

𝛾
1
=

Υ
2

min − ΘmaxΘmin + √(Υ
2

min + Θ2max) (Υ
2

min + Θ
2

min)

Θmax + Θmin
,

𝛾
2
= √ΘmaxΘmin,

𝛾
3
=

Υ
2

max − ΘmaxΘmin + √(Υ2max + Θ2max) (Υ
2

max + Θ
2

min)

Θmax + Θmin
,

(23)

and the corresponding upper bound of the convergence factor is
given by

𝜎 (𝛼
⋆

, 𝛽
⋆

) =

{{

{{

{

𝜎 (𝛾
1
) , ΘmaxΘmin ≤ Υ

2

min,

𝜎 (𝛾
2
) , Υ

2

min < ΘmaxΘmin < Υ
2

max,

𝜎 (𝛾
3
) , ΘmaxΘmin ≥ Υ

2

max,

(24)

where
𝜎 (𝛾) := 𝜎 (𝛾, 𝛽

∗

(𝛾))

=

{{{{{{{

{{{{{{{

{

𝛽
∗

(𝛾) − Θmin
𝛾 + Θmin

⋅ √
𝛾
2

+ Υ
2

min

𝛽∗(𝛾)
2

+ Υ
2

min

, 𝛾 > 𝛾
2
,

𝛽
∗

(𝛾) − Θmin
𝛾 + Θmin

⋅ √
𝛾
2

+ Υ
2

max

𝛽∗(𝛾)
2

+ Υ2max

, 𝛾 ≤ 𝛾
2
.

(25)

Proof. It is straightforward fromTheorem 2.5 of [35].

Remark 7. We observe that 𝛼
⋆

= 𝛽
⋆

= √ΘmaxΘmin
when Υ

2

min < ΘmaxΘmin < Υ
2

max, which means that GHSS
with the theoretical quasi-optimal parameters reduces to
HSS with the theoretical quasi-optimal parameter [4] in this
case. In other cases, the GHSS iteration is superior to the
HSS iteration when both of them use the theoretical quasi-
optimal parameters. This phenomenon is also illustrated in
the numerical results of Section 5.

Remark 8. Theactual iteration parameters 𝛼
𝑖
and 𝛽
𝑖
(𝑖 = 1, 2)

can be chosen as 𝛼
𝑖
= 𝛼
𝑖
and 𝛽

𝑖
= 𝛽
𝑖
(𝑖 = 1, 2) such that

𝛼
1
+ 𝛼
2

= 𝛼
⋆ and 𝛽

1
+ 𝛽
2

= 𝛽
⋆. For example, we may take

𝛼
1
= 𝛼
2
= (1/2)𝛼

⋆ and 𝛽
1
= 𝛽
2
= (1/2)𝛽

⋆.

4. Inexact GHSS Iteration Methods

In the process ofGHSS iteration (6), two subproblems need to
be solved exactly.This is a tough task which is costly and even
impractical in actual implementations. To further improve
computational efficiency of the GHSS iteration, we develop
an inexactGHSS (IGHSS) iteration, which solves the two sub-
problems iteratively [18–24]. We write the IGHSS iteration
scheme in the following algorithm for solving the continuous
Sylvester equation (1).

Algorithm 9 (the IGHSS iteration method). Given an initial
guess 𝑋

(0)

∈ C𝑚×𝑛, then this algorithm leads to the solution
of the continuous Sylvester equation (1):
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Table 1: Numerical results for GHSS and HSS with the experimental optimal iteration parameters.

𝑞 𝑛

Method
GHSS HSS

𝛼1exp 𝛽1exp IT CPU 𝛼exp IT CPU

𝑞 = 0.01

𝑛 = 10 0.01 0.83 2 0.0006 1.66 12 0.0038
𝑛 = 20 0.01 0.90 3 0.0018 0.80 23 0.0148
𝑛 = 40 0.01 0.77 4 0.0141 0.42 43 0.1018
𝑛 = 80 0.01 0.06 8 0.1038 0.24 85 0.9943
𝑛 = 160 0.01 0.03 21 1.5376 0.14 169 11.605

𝑞 = 0.1

𝑛 = 10 0.03 1.00 4 0.0012 1.70 12 0.0036
𝑛 = 20 0.01 0.95 4 0.0025 0.84 24 0.0151
𝑛 = 40 0.01 0.61 6 0.0140 0.48 47 0.1102
𝑛 = 80 0.01 0.21 11 0.1265 0.26 93 1.0787
𝑛 = 160 0.01 0.10 24 1.6567 0.16 181 12.488

𝑞 = 1

𝑛 = 10 0.67 1.00 8 0.0025 1.82 13 0.0039
𝑛 = 20 0.29 0.96 13 0.0081 0.98 23 0.0148
𝑛 = 40 0.29 0.59 24 0.0563 0.62 35 0.0821
𝑛 = 80 0.34 0.43 41 0.4750 0.46 50 0.5885
𝑛 = 160 0.31 0.33 66 4.5142 0.34 70 4.7983

𝑞 = 10

𝑛 = 10 6.70 2.00 11 0.0034 1.88 12 0.0040
𝑛 = 20 8.80 1.90 15 0.0097 1.16 21 0.0135
𝑛 = 40 4.90 1.50 20 0.0477 0.68 37 0.0898
𝑛 = 80 3.60 1.30 29 0.3395 0.90 57 0.6780
𝑛 = 160 2.00 1.00 40 2.7869 0.68 83 5.8003

𝑞 = 100

𝑛 = 10 70.5 2.58 7 0.0021 1.72 12 0.0036
𝑛 = 20 49.0 2.70 8 0.0052 0.90 20 0.0130
𝑛 = 40 16.0 2.45 10 0.0243 0.48 36 0.0885
𝑛 = 80 6.00 1.70 15 0.1782 0.28 64 0.7664
𝑛 = 160 1.70 1.05 32 2.2333 0.16 110 7.6504

𝑘 = 0;

while (not convergent)

𝑅
(𝑘)

= 𝐶 − 𝐴𝑋
(𝑘)

− 𝑋
(𝑘)

𝐵;

approximately solve (𝛼
1
𝐼 + 𝐻(𝐴))𝑍

(𝑘)

+ 𝑍
(𝑘)

(𝛼
2
𝐼 + 𝐻(𝐵)) =

𝑅
(𝑘) by employing an effective iterationmethod, such that the

residual 𝑃(𝑘) = 𝑅
(𝑘)

− (𝛼
1
𝐼 +𝐻(𝐴))𝑍

(𝑘)

−𝑍
(𝑘)

(𝛼
2
𝐼 +𝐻(𝐵)) of

the iteration satisfies ‖𝑃(𝑘)‖
𝐹
≤ 𝜀
𝑘
‖𝑅
(𝑘)

‖
𝐹
;

𝑋
(𝑘+1/2)

= 𝑋
(𝑘)

+ 𝑍
(𝑘);

𝑅
(𝑘+1/2)

= 𝐶 − 𝐴𝑋
(𝑘+1/2)

− 𝑋
(𝑘+1/2)

𝐵;

approximately solve (𝛽
1
𝐼 + 𝑆(𝐴))𝑍

(𝑘+1/2)

+ 𝑍
(𝑘+1/2)

(𝛽
2
𝐼 +

𝑆(𝐵)) = 𝑅
(𝑘+1/2) by employing an effective iteration method,

such that the residual 𝑄
(𝑘+1/2)

= 𝑅
(𝑘+1/2)

− (𝛽
1
𝐼 +

𝑆(𝐴))𝑍
(𝑘+1/2)

− 𝑍
(𝑘+1/2)

(𝛽
2
𝐼 + 𝑆(𝐵)) of the iteration satisfies

‖𝑄
(𝑘+1/2)

‖
𝐹
≤ 𝜂
𝑘
‖𝑅
(𝑘+1/2)

‖
𝐹
;

𝑋
(𝑘+1)

= 𝑋
(𝑘+1/2)

+ 𝑍
(𝑘+1/2);

𝑘 = 𝑘 + 1;

end.

Here, {𝜀
𝑘
} and {𝜂

𝑘
} are prescribed tolerances used to

control the accuracies of the inner iterations. We remark that
when 𝛼

1
= 𝛽
1
and 𝛼

2
= 𝛽
2
, the IGHSS method reduces the

inexact HSS (IHSS) method [4].
The convergence properties for the two-step iteration

have been carefully studied in [27, 31]. By making use of
Theorem 3.1 in [27], we can demonstrate the following
convergence result about the above IGHSS iteration method.

Theorem 10. Let the conditions of Theorem 4 be satisfied. If
{𝑋
(𝑘)

}
∞

𝑘=0
⊆ C𝑚×𝑛 is an iteration sequence generated by the

IGHSS iterationmethod and if𝑋⋆ ∈ C𝑚×𝑛 is the exact solution
of the continuous Sylvester equation (1), then it holds that

󵄩󵄩󵄩󵄩󵄩
𝑋
(𝑘+1)

− 𝑋
⋆
󵄩󵄩󵄩󵄩󵄩𝑆

≤ (𝜎 (𝛼, 𝛽) + 𝜇𝜃𝜀
𝑘
+ 𝜃 (𝜌 + 𝜃]𝜀

𝑘
) 𝜂
𝑘
)

⋅
󵄩󵄩󵄩󵄩󵄩
𝑋
(𝑘)

− 𝑋
⋆
󵄩󵄩󵄩󵄩󵄩𝑆

, 𝑘 = 0, 1, 2, . . . ,

(26)

where the norm ‖ ⋅ ‖
𝑆
is defined as

‖𝑌‖
𝑆
=

󵄩󵄩󵄩󵄩(𝛽1𝐼 + 𝑆 (𝐴)) 𝑌 + 𝑌 (𝛽
2
𝐼 + 𝑆 (𝐵))

󵄩󵄩󵄩󵄩𝐹 (27)
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Table 2: Numerical results for GHSS and HSS with the theoretical quasi-optimal iteration parameters.

𝑞 𝑛

Method
GHSS HSS

𝛼
∗

1
𝛽
∗

1
IT CPU 𝛼

∗ IT CPU

𝑞 = 0.01

𝑛 = 10 0.0001 1.5236 2 0.0007 2.0752 15 0.0282
𝑛 = 20 0.0002 0.4705 3 0.0019 1.0234 27 0.0261
𝑛 = 40 0.0007 0.1294 4 0.0094 0.5147 50 0.1343
𝑛 = 80 0.0028 0.0361 8 0.0938 0.2593 91 1.0901
𝑛 = 160 0.0066 0.0151 21 1.4448 0.1303 169 11.704

𝑞 = 0.1

𝑛 = 10 0.0060 1.5263 4 0.0013 2.0752 15 0.0060
𝑛 = 20 0.0201 0.4861 6 0.0038 1.0234 27 0.0263
𝑛 = 40 0.0555 0.1793 15 0.0353 0.5147 49 0.1291
𝑛 = 80 0.0867 0.1151 47 0.5458 0.2593 93 1.0875
𝑛 = 160 0.0983 0.1017 161 11.069 0.1303 198 13.644

𝑞 = 1

𝑛 = 10 0.5322 1.7300 8 0.0026 2.0752 14 0.0045
𝑛 = 20 0.9733 1.0046 22 0.0142 1.0234 23 0.0342
𝑛 = 40 0.5147 0.5147 41 0.0967 0.5147 41 0.1106
𝑛 = 80 0.2593 0.2593 81 0.9405 0.2593 81 0.9638
𝑛 = 160 0.1303 0.1303 170 11.867 0.1303 170 11.872

𝑞 = 10

𝑛 = 10 2.0752 2.0752 12 0.0039 2.0752 12 0.0040
𝑛 = 20 1.0234 1.0234 23 0.0259 1.0234 23 0.0598
𝑛 = 40 0.5147 0.5147 44 0.1073 0.5147 44 0.1473
𝑛 = 80 0.2593 0.2593 85 1.0074 0.2593 85 1.0354
𝑛 = 160 0.1303 0.1303 169 11.913 0.1303 169 11.928

𝑞 = 100

𝑛 = 10 72.911 2.7778 7 0.0023 2.0752 12 0.0039
𝑛 = 20 26.701 2.0916 9 0.0060 1.0234 20 0.0823
𝑛 = 40 8.6843 1.6894 14 0.0342 0.5147 36 0.1035
𝑛 = 80 3.0610 1.2284 24 0.2858 0.2593 66 0.8051
𝑛 = 160 1.2364 0.7699 44 3.0805 0.1303 126 8.9284

for any matrix 𝑌 ∈ C𝑚×𝑛, and the constants 𝜇, 𝜃, 𝜌, and ] are
given by

𝜇 =
󵄩󵄩󵄩󵄩󵄩
(𝛽𝐼 − H) (𝛼𝐼 + H)

−1
󵄩󵄩󵄩󵄩󵄩2

, 𝜃 =
󵄩󵄩󵄩󵄩󵄩
A(𝛽𝐼 + S)−1󵄩󵄩󵄩󵄩󵄩2,

𝜌 =
󵄩󵄩󵄩󵄩󵄩
(𝛽𝐼 + S) (𝛼𝐼 + H)

−1

(𝛼𝐼 − S) (𝛽𝐼 + S)−1󵄩󵄩󵄩󵄩󵄩2,

] =
󵄩󵄩󵄩󵄩󵄩
(𝛽𝐼 + S) (𝛼𝐼 + H)

−1
󵄩󵄩󵄩󵄩󵄩2

,

(28)

with the matrices H and S being defined in (9) and the
constants 𝛼 and 𝛽 being defined in (11). In particular, when

𝜎 (𝛼, 𝛽) + 𝜇𝜃𝜀max + 𝜃 (𝜌 + 𝜃]𝜀max) 𝜂max < 1, (29)

the iteration sequence {𝑋
(𝑘)

}
∞

𝑘=0
⊆ C𝑚×𝑛 converges to 𝑋

⋆

∈

C𝑚×𝑛, where 𝜀max = max
𝑘
{𝜀
𝑘
} and 𝜂max = max

𝑘
{𝜂
𝑘
}.

Proof. By making use of the Kronecker product and the
notations introduced in Theorem 4, we can reformulate the
above-described IGHSS iteration as the following matrix-
vector form:

(𝛼𝐼 + H) 𝑧
(𝑘)

= 𝑟
(𝑘)

, 𝑥
(𝑘+1/2)

= 𝑥
(𝑘)

+ 𝑧
(𝑘)

,

(𝛽𝐼 + S) 𝑧(𝑘+1/2) = 𝑟
(𝑘+1/2)

, 𝑥
(𝑘+1)

= 𝑥
(𝑘+1/2)

+ 𝑧
(𝑘+1/2)

,

(30)

with 𝑟
(𝑘)

= 𝑐 −A𝑥
(𝑘) and 𝑟

(𝑘+1/2)

= 𝑐 −A𝑥
(𝑘+1/2), where 𝑧

(𝑘) is
such that the residual

𝑝
(𝑘)

= 𝑟
(𝑘)

− (𝛼𝐼 + H) 𝑧
(𝑘) (31)

satisfies ‖𝑝
(𝑘)

‖
2

≤ 𝜀
𝑘
‖𝑟
(𝑘)

‖
2
, and 𝑧

(𝑘+1/2) is such that the
residual

𝑞
(𝑘+1/2)

= 𝑟
(𝑘+1/2)

− (𝛽𝐼 + S) 𝑧(𝑘+1/2) (32)

satisfies ‖𝑞(𝑘+1/2)‖
2
≤ 𝜂
𝑘
‖𝑟
(𝑘+1/2)

‖
2
.

Evidently, the iteration scheme (30) is the inexact GHSS
iteration method for solving the system of linear equations
(2), with A = H + S; see [34, 36]. Hence, by making use of
Theorem 3.1 in [27] we can obtain the estimate

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑘+1)

− 𝑥
⋆
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
≤ (𝜎 (𝛼, 𝛽) + 𝜇𝜃𝜀

𝑘
+ 𝜃 (𝜌 + 𝜃]𝜀

𝑘
) 𝜂
𝑘
)

⋅
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑘)

− 𝑥
⋆
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
, 𝑘 = 0, 1, 2, . . . ,

(33)

where the norm |‖ ⋅ ‖| is defined as follows: for a vector 𝑦 ∈

C𝑚𝑛, |‖𝑦‖| = ‖(𝛽𝐼 + S)𝑦‖
2
; and for a matrix 𝑌 ∈ C𝑚𝑛×𝑚𝑛,
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Table 3: Numerical results for IGHSS and IHSS.

𝑞 𝑛

Method
IGHSS IHSS

IT CPU IT CPU

𝑞 = 0.01

𝑛 = 10 2 0.0006 11 0.0031
𝑛 = 20 3 0.0015 21 0.0106
𝑛 = 40 4 0.0120 38 0.0818
𝑛 = 80 6 0.1005 75 0.8043
𝑛 = 160 18 0.9076 130 6.9022

𝑞 = 0.1

𝑛 = 10 4 0.0010 11 0.0032
𝑛 = 20 4 0.0019 21 0.0105
𝑛 = 40 5 0.0090 41 0.0905
𝑛 = 80 10 0.1065 79 0.9082
𝑛 = 160 20 0.8568 156 7.0812

𝑞 = 1

𝑛 = 10 7 0.0021 12 0.0032
𝑛 = 20 12 0.0075 20 0.0120
𝑛 = 40 21 0.0462 31 0.0691
𝑛 = 80 35 0.4036 45 0.5082
𝑛 = 160 52 2.8140 60 3.5928

𝑞 = 10

𝑛 = 10 10 0.0029 11 0.0035
𝑛 = 20 13 0.0081 20 0.0120
𝑛 = 40 17 0.0401 34 0.0806
𝑛 = 80 24 0.3059 50 0.5889
𝑛 = 160 30 1.5861 72 4.5002

𝑞 = 100

𝑛 = 10 6 0.0019 11 0.0032
𝑛 = 20 7 0.0045 18 0.0111
𝑛 = 40 8 0.0192 32 0.0832
𝑛 = 80 13 0.1579 55 0.6968
𝑛 = 160 27 1.1335 98 5.8509

|‖𝑌‖| = ‖(𝛽𝐼 + S)𝑌(𝛽𝐼 + S)−1‖
2
is the correspondingly

induced matrix norm. Note that
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨 =

󵄩󵄩󵄩󵄩(𝛽𝐼 + S) 𝑦󵄩󵄩󵄩󵄩2

=
󵄩󵄩󵄩󵄩(𝛽1𝐼 + 𝑆 (𝐴)) 𝑌 + 𝑌 (𝛽

2
𝐼 + 𝑆 (𝐵))

󵄩󵄩󵄩󵄩𝐹
= ‖𝑌‖

𝑆
.

(34)

Hence, we can equivalently rewrite the estimate (33) as
󵄩󵄩󵄩󵄩󵄩
𝑋
(𝑘+1)

− 𝑋
⋆
󵄩󵄩󵄩󵄩󵄩𝑆

≤ (𝜎 (𝛼, 𝛽) + 𝜇𝜃𝜀
𝑘
+ 𝜃 (𝜌 + 𝜃]𝜀

𝑘
) 𝜂
𝑘
)

⋅
󵄩󵄩󵄩󵄩󵄩
𝑋
(𝑘)

− 𝑋
⋆
󵄩󵄩󵄩󵄩󵄩𝑆

, 𝑘 = 0, 1, 2, . . . .

(35)

This proves the theorem.

We remark that Theorem 10 gives the choices of the
tolerances {𝜀

𝑘
} and {𝜂

𝑘
} for convergence. In general, Theo-

rem 10 shows that in order to guarantee the convergence of
the IGHSS iteration, it is not necessary for {𝜀

𝑘
} and {𝜂

𝑘
} to

approach to zero as 𝑘 is increasing. All we need is that the
condition (29) be satisfied. However, the theoretical optimal
tolerances {𝜀

𝑘
} and {𝜂

𝑘
} are difficult to be analyzed.

5. Numerical Results

In this section, we perform numerical tests to exhibit the
superiority of GHSS and IGHSS to HSS and IHSS when

they are used as solvers for solving the continuous Sylvester
equation (1), in terms of iteration numbers (denoted as IT)
and CPU times (in seconds, denoted as CPU).

In our implementations, the initial guess is chosen to
be the zero matrix, and the iteration is terminated once the
current iterate 𝑋

(𝑘) satisfies
󵄩󵄩󵄩󵄩󵄩
𝐶 − 𝐴𝑋

(𝑘)

− 𝑋
(𝑘)

𝐵
󵄩󵄩󵄩󵄩󵄩𝐹

‖𝐶‖
𝐹

≤ 10
−6

. (36)

In addition, all sub-problems involved in each step of theHSS
andGHSS iterationmethods are solved exactly by themethod
in [16]. InHSS and IGHSS iterationmethods, we set 𝜀

𝑘
= 𝜂
𝑘
=

0.01, 𝑘 = 0, 1, 2, . . ., and use the Smith’s method [18] as the
inner iteration scheme.

We consider the continuous Sylvester equation (1) with
𝑚 = 𝑛 and the matrices

𝐴 = 𝐵 = 𝑀 + 𝑞𝑁 +
100

(𝑛 + 1)
2
𝐼, (37)

where 𝑀,𝑁 ∈ R𝑛×𝑛 are the tridiagonal matrices given by

𝑀 = tridiag (−1, 2, −1) , 𝑁 = tridiag (0.5, 0, −0.5) ;

(38)

see also [4–6, 27, 40, 41].
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From [4] we known that the HSS iteration method
considerably outperforms the SOR iteration method in both
iteration step and CPU time, so here we just solve this
continuous Sylvester equation by the GHSS and the HSS
iteration methods and their inexact variants.

In Table 1, numerical results for GHSS and HSS with the
experimental optimal iteration parameters are listed, while
𝛼
1 exp (with 𝛼

2 exp = 𝛼
1 exp), 𝛽1 exp (with 𝛽

2 exp = 𝛽
1 exp), and

𝛼exp (with 𝛽exp = 𝛼exp) represent the experimentally found
optimal values of the iteration parameters used for the GHSS
and the HSS iterations, respectively.

In Table 2, numerical results for GHSS and HSS with
the theoretical quasi-optimal iteration parameters are listed,
while 𝛼

⋆

1
(with 𝛼

⋆

2
= 𝛼
⋆

1
), 𝛽⋆
1
(with 𝛽

⋆

2
= 𝛽
⋆

1
) and 𝛼

⋆ (with
𝛽
⋆

= 𝛼
⋆) represent the theoretical quasi-optimal iteration

parameters used for the GHSS and the HSS iterations,
respectively.

In Table 3, numerical results for IGHSS and IHSS are
listed; here we adopt the iteration parameters in Table 1 for
convenience and not the experimental optimal parameters.

From Tables 1–3 we observe that GHSS and IGHSS
methods performs better than HSS and IHSS methods in
terms of iteration numbers and CPU times. Therefore, the
GHSS and IGHSS methods proposed in this work are two
powerful and attractive iterative approaches for solving large
sparse continuous Sylvester equations.

6. Conclusions

As a strategy for accelerating convergence of iteration for
solving a broad class of continuous Sylvester equations, we
have proposed a four-parameter generalized HSS (GHSS)
method. This is obviously a type of generalization of the
classical HSS method [4]. When we take 𝛼

1
= 𝛽
1
and

𝛼
2

= 𝛽
2
, we shall return to the HSS method. In our

work we demonstrate that the iterative series produced by
the GHSS method converge to the unique solution of the
continuous Sylvester equation when the parameters satisfy
some moderate conditions. The GHSS method takes HSS
method as a special case. We also give a possible optimal
upper bound for the iterative spectral radius. Moreover, to
reduce the computational cost, an inexact variant of theGHSS
(IGHSS) iteration method is developed and its convergence
property is analyzed. Numerical results display that the new
GHSS method and its inexact variant are typically more
flexible than HSS and IHSS methods.
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