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A patch model for echinococcosis due to dogs migration is proposed to explore the effect of dogs migration among patches on the
spread of echinococcosis. We firstly define the basic reproduction number 𝑅

0
. The mathematical results show that the dynamics

of the model can be completely determined by 𝑅
0
. If 𝑅
0
< 1, the disease-free equilibrium is globally asymptotically stable. When

𝑅
0
> 1, the model is permanence and endemic equilibrium is globally asymptotically stable. According to the simulations, it is

shown that the larger diffusion of dogs from the lower epidemic areas to the higher prevalence areas can intensify the spread of
echinococcosis. However, the larger diffusion of dogs from the higher prevalence areas to the lower epidemic areas can reduce the
spread and is beneficial for disease control.

1. Introduction

Echinococcosis, which is often referred to as hydatid disease,
is a parasitic disease that affects both humans and other
mammals, such as sheep, dogs, rodents, and horses [1]. The
two most clinically relevant species are Echinococcus granu-
losus and Echinococcus multilocularis, which cause cystic and
alveolar echinococcosis respectively. Humans are incidental
hosts and, in most cases, do not contribute to continuance of
the parasite life cycle, except under unique circumstances [2].

The prevalent scope of echinococcosis inChina is approx-
imately 420 square kilometers, accounting for about 41.7%
of the territory. The rate of incidence of echinococcosis has
increased in the past decade.The operability of echinococco-
sis exceeds 10/100000 in each year. High-risk group subject
to echinococcosis reaches up to 50 million, and the number
of domestic animal amount being faced with the infection of
echinococcosis is more than one hundred million, in which
the amount of dogs is at least 5 million [3].

Mathematical modeling has become an important tool
in analyzing the epidemiological characteristics of infectious
disease and can provide useful control measures. Vari-
ous models have been used to study different aspects of

echinococcosis [4–16].Themodels included varied primarily
on the basis of six key features that were differentially
incorporated in their design [17]. These are (1) the inclusion
of a “latent” class (with time delay from host exposure to
infectiousness); (2) an age structure for definitive and/or
intermediate hosts; (3) the presence of density dependent
constraints; (4) accounting for seasonality; (5) stochastic
parameters; (6) inclusion of a spatial and risk structures.

In [18], in order to explore effective control and pre-
vention measures authors proposed a deterministic model
to study the transmission dynamics of echinococcosis in
Xinjiang. The results showed that the dynamics of the model
was completely determined by the basic reproductive number
𝑅
0
. The model provided an approximate estimate of the basic

reproduction number 𝑅
0
= 1.67.

Many epidemic models with population dispersal among
patches have been proposed and studied (see [19–28]). Wang
and Zhao [19] proposed an epidemic model to describe the
dynamics of disease spread among patches due to population
dispersal. The effect of population dispersal among 𝑛 patches
on the spread of a disease was investigated by Jin and
Wang in [20]. To understand the effect of transport-related
infection on disease spread, an epidemic model for several
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regions which are connected by transportation of individuals
has been proposed by Cui et al. in [21]. In [23], an SIS
patch model with nonconstant transmission coefficients was
formulated to investigate the effect of media coverage and
humanmovement on the spread of infectious diseases among
patches. Qiu [26] developed amathematical model to explore
the effect of host migration between two patches on the
spread of a vector-host disease.

To date, few scholars have researched the echinococcosis
transmission models with dogs migration among patches.
Considering an increasing number of stray dogs, the dispersal
is an essential trait for dogs population. Therefore, we expect
to explore the effect of dogs migration among patches on the
spread of echinococcosis.

The purpose of this paper is to model the transmission
dynamics of echinococcosis spread between two patches due
to dogs migration and describe the dynamics of the model.
The remaining part of this paper is organized as follows.
The model is presented in Section 2. The basic properties on
the positivity and boundedness of solutions computing the
basic reproduction number are in Section 3. In Section 4, we
establish the global stability of the disease-free equilibrium
for the model. In Section 5, we will apply the theory of
permanence to obtain the permanence of the model. The
global stability theorem of endemic equilibrium is stated and
proved in Section 6. In Section 7, we give some examples
to illustrate how the dogs migration affects the dynamics of
echinococcosis. A brief discussion is given in Section 8.

2. Model Formulation

In this section, we mainly formulate an epidemic model to
describe the transmission dynamics of echinococcosis spread
between two discrete patches due to dogs diffusion.

We firstly formulate a model for the spread of echinococ-
cosis in the 𝑖th patch. It follows from [18] that the parameters
of humans do not affect dynamical behaviors of echinococ-
cosis model. Hence in the paper we only consider dogs,
livestock, and Echinococcus eggs in our model. We divide
the dogs population in the 𝑖th patch into two classes: the
susceptible population and the infected population denoted
by 𝑆
𝐷𝑖
(𝑡) and 𝐼

𝐷𝑖
(𝑡), respectively. For livestock population,

we divide the total livestock population in the 𝑖th patch
into two classes: susceptible and infectious denoted by 𝑆

𝐿𝑖
(𝑡)

and 𝐼
𝐿𝑖
(𝑡), respectively. The density of Echinococcus eggs in

the 𝑖th patch is denoted by 𝑥
𝑖
(𝑡). Our assumptions on the

dynamical transmission of echinococcosis in the 𝑖th patch are
demonstrated in the flowchart (Figure 1).

If there is no dogs migration among patches, that is,
the patches are isolated, we suppose that the echinococcosis
dynamics in 𝑖th patch is governed by

̇𝑆
𝐷𝑖

= 𝐴
1𝑖
− 𝛽
1𝑖
𝑆
𝐷𝑖
𝐼
𝐿𝑖
− 𝑑
1𝑖
𝑆
𝐷𝑖

+ 𝜎
𝑖
𝐼
𝐷𝑖
,

̇𝐼
𝐷𝑖

= 𝛽
1𝑖
𝑆
𝐷𝑖
𝐼
𝐿𝑖
− (𝑑
1𝑖
+ 𝜎
𝑖
) 𝐼
𝐷𝑖
,

̇𝑆
𝐿𝑖
= 𝐴
2𝑖
− 𝛽
2𝑖
𝑆
𝐿𝑖
𝑥
𝑖
− 𝑑
2𝑖
𝑆
𝐿𝑖
,

̇𝐼
𝐿𝑖
= 𝛽
2𝑖
𝑆
𝐿𝑖
𝑥
𝑖
− 𝑑
2𝑖
𝐼
𝐿𝑖
,

𝑥̇
𝑖
= 𝑎
𝑖
𝐼
𝐷𝑖

− 𝑑
𝑖
𝑥
𝑖
.
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Figure 1: Transmission diagram for echinococcosis among dogs,
livestock.

All parameters are assumed positive. For the dog population
in the 𝑖th patch, 𝐴

1𝑖
describes the annual recruitment rate;

𝑑
1𝑖

is the natural death rate; 𝜎
𝑖
denotes the recovery rate

of transition from infected to noninfected dogs, including
natural recovery rate and recovery due to anthelmintic treat-
ment; 𝛽

1𝑖
𝑆
𝐷𝑖
𝐼
𝐿𝑖
describes the transmission of echinococcosis

between susceptible dogs and infectious livestock after the
ingestion of cyst-containing organs of the infected livestock.
For the livestock population in the 𝑖th patch,𝐴

2𝑖
is the annual

recruitment rate; 𝑑
2𝑖
is the death rate; 𝛽

2𝑖
𝑆
𝐿𝑖
𝑥
𝑖
describes the

transmission of echinococcosis to livestock by the ingestion
of Echinococcus eggs in the environment. For Echinococcus
eggs in the 𝑖th patch, 𝑎

𝑖
denotes released rate from infected

dogs; 𝑑
𝑖
is the mortality rate of eggs.

When two patches are connected, we assume that suscep-
tible and infected dogs of every patch 𝑖 leave for patch 𝑗 at
a per capita rate 𝐷

𝑖
. Then the dynamics of echinococcosis is

governed by the following model:

̇𝑆
𝐷𝑖

= 𝐴
1𝑖
− 𝛽
1𝑖
𝑆
𝐷𝑖
𝐼
𝐿𝑖
− 𝑑
1𝑖
𝑆
𝐷𝑖

+ 𝜎
𝑖
𝐼
𝐷𝑖

− 𝐷
𝑖
𝑆
𝐷𝑖

+ 𝐷
𝑗
𝑆
𝐷𝑗
,

̇𝐼
𝐷𝑖

= 𝛽
1𝑖
𝑆
𝐷𝑖
𝐼
𝐿𝑖
− (𝑑
1𝑖
+ 𝜎
𝑖
) 𝐼
𝐷𝑖

− 𝐷
𝑖
𝐼
𝐷𝑖

+ 𝐷
𝑗
𝐼
𝐷𝑗
,

̇𝑆
𝐿𝑖
= 𝐴
2𝑖
− 𝛽
2𝑖
𝑆
𝐿𝑖
𝑥
𝑖
− 𝑑
2𝑖
𝑆
𝐿𝑖
, 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗.

̇𝐼
𝐿𝑖
= 𝛽
2𝑖
𝑆
𝐿𝑖
𝑥
𝑖
− 𝑑
2𝑖
𝐼
𝐿𝑖
,

𝑥̇
𝑖
= 𝑎
𝑖
𝐼
𝐷𝑖

− 𝑑
𝑖
𝑥
𝑖
.

(2)

Motivated by biological background of model (2), we
always assume that all solutions of model (2) satisfy the
following positive initial conditions:

𝑆
𝐷𝑖
(0) = 𝑆

𝐷𝑖0
> 0, 𝐼

𝐷𝑖
(0) = 𝐼

𝐷𝑖0
> 0,

𝑆
𝐿𝑖 (0) = 𝑆

𝐿𝑖0
> 0, 𝐼

𝐿𝑖 (0) = 𝐼
𝐿𝑖0

> 0,

𝑥
𝑖
(0) = 𝑥

𝑖0
> 0.

(3)

We can easily prove that the solution of model (2) with
initial conditions (3) satisfies 𝑆

𝐷𝑖
(𝑡) > 0, 𝐼

𝐷𝑖
(𝑡) > 0, 𝑆

𝐿𝑖
(𝑡) > 0,

and 𝐼
𝐿𝑖
(𝑡) > 0 for all 𝑡 > 0. Here, we omit the proof.
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3. Basic Properties and Basic Reproduction
Number of the Model

In this section, we mainly present the preliminary results
and derive reproduction number for model (2). In order to
investigate the dynamics of model (2), we begin with stating
some results on model (1). Model (1) has been analyzed
in [18]. Model (1) admits a disease-free equilibrium 𝐸

0𝑖
=

(𝑆
0

𝐷𝑖
, 0, 𝑆
0

𝐿𝑖
, 0, 0) and a unique positive equilibrium 𝐸

∗

𝑖
=

(𝑆
∗

𝐷𝑖
, 𝐼
∗

𝐷𝑖
, 𝑆
∗

𝐿𝑖
, 𝐼
∗

𝐿𝑖
, 𝑥
∗

𝑖
), where

𝑆
0

𝐷𝑖
=
𝐴
1𝑖

𝑑
1𝑖

, 𝑆
0

𝐿𝑖
=
𝐴
2𝑖

𝑑
2𝑖

,

𝑆
∗

𝐷𝑖
=
𝑑
2𝑖
(𝑑
1𝑖
+ 𝜎
𝑖
) (𝐴
1𝑖
𝛽
2𝑖
𝑎
𝑖
+ 𝑑
1𝑖
𝑑
2𝑖
𝑑
𝑖
)

𝑎
𝑖
𝛽
2𝑖
𝑑
1𝑖
(𝛽
1𝑖
𝐴
2𝑖
+ 𝑑
1𝑖
𝑑
2𝑖
+ 𝑑
2𝑖
𝜎
𝑖
)
,

𝐼
∗

𝐷𝑖
=
𝑎
𝑖
𝛽
1𝑖
𝛽
2𝑖
𝐴
1𝑖
𝐴
2𝑖
− (𝑑
1𝑖
+ 𝜎
𝑖
) 𝑑
1𝑖
𝑑
2

2𝑖
𝑑
𝑖

𝑎
𝑖
𝑑
1𝑖
𝛽
2𝑖
(𝛽
1𝑖
𝐴
2𝑖
+ 𝑑
1𝑖
𝑑
2𝑖
+ 𝑑
2𝑖
𝜎
𝑖
)

,

𝑆
∗

𝐿𝑖
=
𝑑
𝑖
𝑑
1𝑖
(𝛽
1𝑖
𝐴
2𝑖
+ 𝑑
1𝑖
𝑑
2𝑖
+ 𝑑
2𝑖
𝜎
𝑖
)

𝛽
1𝑖
(𝑎
𝑖
𝐴
1𝑖
𝛽
2𝑖
+ 𝑑
𝑖
𝑑
1𝑖
𝑑
2𝑖
)

,

𝐼
∗

𝐿𝑖
=
𝑎
𝑖
𝛽
1𝑖
𝛽
2𝑖
𝐴
1𝑖
𝐴
2𝑖
− (𝑑
1𝑖
+ 𝜎
𝑖
) 𝑑
1𝑖
𝑑
2

2𝑖
𝑑
𝑖

𝑑
2𝑖
𝛽
1𝑖
(𝐴
1𝑖
𝛽
2𝑖
𝑎
𝑖
+ 𝑑
1𝑖
𝑑
2𝑖
𝑑
𝑖
)

,

𝑥
∗

𝑖
=
𝑎
𝑖
𝛽
1𝑖
𝛽
2𝑖
𝐴
1𝑖
𝐴
2𝑖
− (𝑑
1𝑖
+ 𝜎
𝑖
) 𝑑
1𝑖
𝑑
2

2𝑖
𝑑
𝑖

𝑑
1𝑖
𝛽
2𝑖
𝑑 (𝛽
1𝑖
𝐴
2𝑖
+ 𝑑
1𝑖
𝑑
2𝑖
+ 𝑑
2𝑖
𝜎
𝑖
)

.

(4)

The reproduction number of model (1) is established in [18],
which can be expressed as

𝑅
0𝑖
=
3
√

𝛽
1𝑖
𝛽
2𝑖
𝐴
1𝑖
𝐴
2𝑖
𝑎
𝑖

(𝑑
1𝑖
+ 𝜎
𝑖
) 𝑑
1𝑖
𝑑
2

2𝑖
𝑑
𝑖

. (5)

From Theorems 3 and 5 in [18], we can obtain the following
lemma.

Lemma 1. Considering model (1), one has that
(a) if 𝑅

0𝑖
< 1, then disease-free equilibrium 𝐸

0𝑖
is globally

asymptotically stable;
(b) if 𝑅

0𝑖
> 1, then positive equilibrium 𝐸

∗

𝑖
is globally

asymptotically stable.

In order to obtain ourmain results, we need the following
lemma. Consider the following linear equation:

𝑁̃
󸀠

𝐷1
(𝑡) = 𝐴

11
− 𝑑
11
𝑁̃
𝐷1 (𝑡) − 𝐷

1
𝑁̃
𝐷1 (𝑡) + 𝐷

2
𝑁̃
𝐷2 (𝑡) ,

𝑁̃
󸀠

𝐷2
(𝑡) = 𝐴

12
− 𝑑
12
𝑁̃
𝐷2

(𝑡) − 𝐷
2
𝑁̃
𝐷2

(𝑡) + 𝐷
1
𝑁̃
𝐷1

(𝑡) .

(6)

We have the following result on system (6).

Lemma2. System (6)has a unique equilibrium𝑁
0

𝐷
(𝑁
0

𝐷1
, 𝑁
0

𝐷2
)

which is globally stable, where

𝑁
0

𝐷1
=
𝐴
11
(𝑑
12
+ 𝐷
2
) + 𝐴
12
𝐷
2

𝑑
11
𝑑
12
+ 𝑑
11
𝐷
2
+ 𝑑
12
𝐷
1

,

𝑁
0

𝐷2
=
𝐴
12
(𝑑
11
+ 𝐷
1
) + 𝐴
11
𝐷
1

𝑑
11
𝑑
12
+ 𝑑
11
𝐷
2
+ 𝑑
12
𝐷
1

.

(7)

Proof. The Jacobian matrix of (6) at (𝑁0
𝐷1
, 𝑁
0

𝐷2
) is

𝐽 (𝑁
0

𝐷
) = (

− (𝑑
11
+ 𝐷
1
) 𝐷

2

𝐷
1

− (𝑑
12
+ 𝐷
2
)
) . (8)

By simple calculations, the corresponding characteristic
equation is

Φ (𝜆) = 𝜆
2
+ 𝑎
1
𝜆 + 𝑎
0
= 0, (9)

where

𝑎
1
= 𝑑
11
+ 𝑑
12
+ 𝐷
1
+ 𝐷
2
> 0,

𝑎
0
= 𝑑
11
𝑑
12
+ 𝑑
11
𝐷
2
+ 𝑑
12
𝐷
1
> 0.

(10)

Therefore, all roots ofΦ(𝜆)have negative real parts, andhence
𝑁
0
(𝑁
0

𝐷1
, 𝑁
0

𝐷2
) is globally stable.

For any 𝜀 > 0, we define region Γ
𝜀
as follows:

Γ
𝜀
= {(𝑆

𝐷1
, 𝐼
𝐷1
, 𝑆
𝐿1
, 𝐼
𝐿1
, 𝑥
1
, 𝑆
𝐷2
, 𝐼
𝐷2
, 𝑆
𝐿2
, 𝐼
𝐿2
, 𝑥
2
) ∈ R
10

+
,

𝑆
𝐷𝑖

+ 𝐼
𝐷𝑖

≤ 𝑁
0

𝐷𝑖
+ 𝜀, 𝑆
𝐿𝑖
+ 𝐼
𝐿𝑖
≤ 𝑆
0

𝐿𝑖
+ 𝜀,

𝑥
𝑖
≤

𝑎
𝑖

𝑑
𝑖

𝑁
0

𝐷𝑖
+ (1 +

𝑎
𝑖

𝑑
𝑖

) 𝜀, 𝑖 = 1, 2} .

(11)

On the ultimate boundedness of solutions for model (2), we
have the following result.

Lemma 3. All solutions of model (2) with initial condition (3)
ultimately turn into region Γ

𝜀
as 𝑡 → ∞.

Proof. Let (𝑆
𝐷1
(𝑡), 𝐼
𝐷1
(𝑡), 𝑆
𝐿1
(𝑡), 𝐼
𝐿1
(𝑡), 𝑥
1
(𝑡), 𝑆
𝐷2
(𝑡), 𝐼
𝐷2
(𝑡),

𝑆
𝐿2
(𝑡), 𝐼
𝐿2
(𝑡), 𝑥
2
(𝑡)) be any solution of model (2) with initial

conditions (3) and let𝑁
𝐷𝑖
(𝑡) = 𝑆

𝐷𝑖
(𝑡) + 𝐼

𝐷𝑖
(𝑡), 𝑖 = 1, 2. From

model (2) we have

𝑁̇
𝐷1 (𝑡) = 𝐴

11
− 𝑑
11
𝑁
𝐷1 (𝑡) − 𝐷

1
𝑁
𝐷1 (𝑡) + 𝐷

2
𝑁
𝐷2 (𝑡) ,

𝑁̇
𝐷2

(𝑡) = 𝐴
12
− 𝑑
12
𝑁
𝐷2

(𝑡) − 𝐷
2
𝑁
𝐷2

(𝑡) + 𝐷
1
𝑁
𝐷1

(𝑡) ,

(12)

and then from Lemma 2 we have lim
𝑡→∞

𝑁
𝐷𝑖
(𝑡) = 𝑁

0

𝐷𝑖
, 𝑖 =

1, 2. Hence, for any 𝜀 > 0, there is a 𝑡
1
> 0 such that

𝑆
𝐷𝑖
(𝑡) + 𝐼

𝐷𝑖
(𝑡) ≤ 𝑁

0

𝐷𝑖
+ 𝜀, 𝑖 = 1, 2, ∀𝑡 ≥ 𝑡

1
. (13)

From the third and fourth equations of model (2), we have

𝑑 (𝑆
𝐿𝑖
(𝑡) + 𝐼

𝐿𝑖
(𝑡))

𝑑𝑡
= 𝐴
2𝑖
− 𝑑
2𝑖
(𝑆
𝐿𝑖 (𝑡) + 𝐼

𝐿𝑖 (𝑡)) ,
(14)

and therefore, there exists a 𝑡
2
> 0 such that

𝑆
𝐿𝑖 (𝑡) + 𝐼

𝐿𝑖 (𝑡) ≤ 𝑆
0

𝐿𝑖
+ 𝜀, 𝑖 = 1, 2, ∀𝑡 ≥ 𝑡

2
. (15)

Finally, from the fifth equation of model (2), we have

𝑥̇
𝑖 (𝑡) ≤ 𝑎

𝑖
(𝑁
0

𝐷𝑖
+ 𝜀) − 𝑑

𝑖
𝑥
𝑖 (𝑡) , 𝑖 = 1, 2, ∀𝑡 ≥ 𝑡

1
, (16)
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and then there is a 𝑡
3
> 𝑡
1
such that

𝑥
𝑖
(𝑡) ≤

𝑎
𝑖

𝑑
𝑖

(𝑁
0

𝐷𝑖
+ 𝜀) + 𝜀

=
𝑎
𝑖

𝑑
𝑖

𝑁
0

𝐷𝑖
+ (1 +

𝑎
𝑖

𝑑
𝑖

) 𝜀, 𝑖 = 1, 2, ∀𝑡 ≥ 𝑡
3
.

(17)

Let 𝑡∗ = max{𝑡
2
, 𝑡
3
}, and then for all 𝑡 > 𝑡

∗ we have

((𝑆
𝐷1 (𝑡) , 𝐼𝐷1 (𝑡) , 𝑆𝐿1 (𝑡) , 𝐼𝐿1 (𝑡) , 𝑥1 (𝑡) , 𝑆𝐷2 (𝑡) ,

𝐼
𝐷2

(𝑡) , 𝑆
𝐿2
(𝑡) , 𝐼
𝐿2
(𝑡) , 𝑥
2
(𝑡))) ∈ Γ

𝜀
.

(18)

This completes the proof of Lemma 3.

According to Lemma 3, all feasible solutions of model (2)
enter or remain in the region Γ

𝜀
as 𝑡 becomes large enough.

In what follows, the dynamics of model (2) can be considered
only in Γ

𝜀
.

Simple algebraic calculation shows that model (2) always
has a unique disease-free equilibrium 𝐸

0
(𝑁
0

𝐷1
, 0, 𝑆
0

𝐿1
, 0, 0,

𝑁
0

𝐷2
, 0, 𝑆
0

𝐿2
, 0, 0). According to the concepts of next genera-

tion matrix and reproduction number presented in [29, 30],
we define

F =

(
(
(
(
(

(

𝛽
11
𝑆
𝐷1
𝐼
𝐿1

𝛽
21
𝑆
𝐿1
𝑥
1

𝑎
1
𝐼
𝐷1

𝛽
12
𝑆
𝐷2
𝐼
𝐿2

𝛽
22
𝑆
𝐿2
𝑥
2

𝑎
2
𝐼
𝐷2

)
)
)
)
)

)

,

V =

(
(
(
(
(

(

(𝑑
11
+ 𝜎
1
) 𝐼
𝐷1

+ 𝐷
1
𝐼
𝐷1

− 𝐷
2
𝐼
𝐷2

𝑑
21
𝐼
𝐿1

𝑑
1
𝑥
1

(𝑑
12
+ 𝜎
2
) 𝐼
𝐷2

+ 𝐷
2
𝐼
𝐷1

− 𝐷
1
𝐼
𝐷1

𝑑
22
𝐼
𝐿2

𝑑
2
𝑥
2

)
)
)
)
)

)

.

(19)

Noting that the disease-free equilibrium of model (2) is 𝐸
0
,

then

𝐹 = (

𝐹
11

0

0 𝐹
22

) , (20)

where

𝐹
11
= (

0 𝛽
11
𝑁
0

𝐷1
0

0 0 𝛽
21
𝑆
0

𝐿1

𝑎
1

0 0

) ,

𝐹
22
= (

0 𝛽
12
𝑁
0

𝐷2
0

0 0 𝛽
22
𝑆
0

𝐿2

𝑎
2

0 0

) ,

𝑉 =

(
(
(
(
(

(

𝑑
11
+ 𝜎
1
+ 𝐷
1

0 0 −𝐷
2

0 0

0 𝑑
21

0 0 0 0

0 0 𝑑
1

0 0 0

−𝐷
1

0 0 𝑑
12
+ 𝜎
2
+ 𝐷
2

0 0

0 0 0 0 𝑑
22

0

0 0 0 0 0 𝑑
2

)
)
)
)
)

)

.

(21)

Denote Δ = 𝑑
1
𝑑
2
𝑑
21
𝑑
22
[𝑑
11
(𝑑
12
+ 𝜎
2
+ 𝐷
2
) + 𝜎
1
(𝑑
12
+ 𝜎
2
+

𝐷
2
)+𝐷
1
(𝑑
12
+𝜎
2
)]. After extensive algebraic calculations, we

can obtain

𝐹𝑉
−1

=
1

Δ
(

𝑀
11

𝑀
12

𝑀
21

𝑀
22

) , (22)

where

𝑀
11
= (

0
Δ (𝐴
11
𝑑
12
+ 𝐴
11
𝐷
2
+ 𝐴
12
𝐷
2
)

𝑑
21
(𝑑
11
𝑑
12
+ 𝑑
11
𝐷
2
+ 𝑑
12
𝐷
1
)

0

0 0
Δ𝛽
21
𝐴
21

𝑑
21
𝑑
1

𝑑
1
𝑑
2
𝑑
21
𝑑
22
𝑎
1
(𝑑
12
+ 𝜎
2
+ 𝐷
2
) 0 0

),

𝑀
12
= (

0 0 0

0 0 0

𝑑
1
𝑑
2
𝑑
21
𝑑
22
𝑎
1
𝐷
2
0 0

) , 𝑀
21
= (

0 0 0

0 0 0

𝑑
1
𝑑
2
𝑑
21
𝑑
22
𝑎
2
𝐷
1
0 0

) ,

𝑀
22
= (

0
Δ𝛽
12
(𝐴
11
𝐷
1
+ 𝐴
12
𝑑
11
+ 𝐴
12
𝐷
1
)

𝑑
22
(𝑑
11
𝑑
12
+ 𝑑
11
𝐷
2
+ 𝑑
12
𝐷
1
)

0

0 0
Δ𝛽
22
𝐴
22

𝑑
22
𝑑
2

𝑑
1
𝑑
2
𝑑
21
𝑑
22
𝑎
2
(𝑑
11
+ 𝜎
1
+ 𝐷
1
) 0 0

).

(23)
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From the proof of Theorem 2 in [30], it follows that

𝑅
0
< 1 (𝑅

0
= 1, 𝑅

0
> 1) ⇐⇒ 𝑠 (𝐽) < 1 (𝑠 (𝐽) = 0, 𝑠 (𝐽) > 0) ,

(24)

where

𝐽 = 𝐹 − 𝑉

= (

(

−(𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝛽
11
𝑁
0

𝐷1
0 𝐷

2
0 0

0 −𝑑
21

𝛽
21
𝑆
0

𝐿1
0 0 0

𝑎
1

0 −𝑑
1

0 0 0

𝐷
1

0 0 − (𝑑
12
+ 𝜎
2
+ 𝐷
2
) 𝛽
21
𝑁
0

𝐷2
0

0 0 0 0 −𝑑
22

𝛽
22
𝑆
0

𝐿2

0 0 0 𝑎
2

0 −𝑑
2

)

)

(25)

and 𝑠(𝐽) is themaximum real part of the eigenvalues ofmatrix
𝐽.

Using Theorem 2 in [30], we can easily obtain the
following stability result.

Theorem 4. For model (2), one has that

(a) if 𝑅
0
< 1, then disease-free equilibrium 𝐸

0
is locally

asymptotically stable;

(b) if 𝑅
0
> 1, then disease-free equilibrium 𝐸

0
is unstable.

4. Global Stability of the
Disease-Free Equilibrium

We start by considering the global stability of disease-free
equilibrium 𝐸

0
when 𝑅

0
< 1.

Theorem 5. The disease-free equilibrium 𝐸
0
of model (2) is

globally asymptotically stable in Γ
𝜀
if 𝑅
0
< 1.

Proof. FromTheorem 4 we find that disease-free equilibrium
𝐸
0
is locally asymptotically stable if 𝑅

0
< 1. In the following

we only need to prove the global attractiveness of 𝐸
0
. From

(24) we can see that if 𝑅
0
< 1, then 𝑠(𝐽) < 0. Hence, there

is a small enough number 𝜀 > 0 such that 𝑠(𝐽
𝜀
) < 0, where

𝐽
𝜀
= 𝐽 + 𝜀𝐽

1
and

𝐽
1
= (

(

0 𝛽
11

0 0 0 0

0 0 𝛽
21

0 0 0

0 0 0 0 0 0

0 0 0 0 𝛽
12

0

0 0 0 0 0 𝛽
22

0 0 0 0 0 0

)

)

. (26)

Let (𝑆
𝐷1
(𝑡), 𝐼
𝐷1
(𝑡), 𝑆
𝐿1
(𝑡), 𝐼
𝐿1
(𝑡), 𝑥
1
(𝑡), 𝑆
𝐷2
(𝑡), 𝐼
𝐷2
(𝑡), 𝑆
𝐿2
(𝑡),

𝐼
𝐿2
(𝑡), 𝑥
2
(𝑡)) be any solution of model (2) in Γ

𝜀
, then

𝑆
𝐷𝑖
(𝑡) ≤ 𝑁

0

𝐷𝑖
+ 𝜀, 𝑆

𝐿𝑖
(𝑡) ≤ 𝑆

0

𝐿𝑖
+ 𝜀, 𝑖 = 1, 2, ∀𝑡 ≥ 0.

(27)

From model (2), it follows that
̇𝐼
𝐷1

≤ 𝛽
11
(𝑁
0

𝐷1
+ 𝜀) 𝐼
𝐿1
− (𝑑
11
+ 𝜎
1
) 𝐼
𝐷1

− 𝐷
1
𝐼
𝐷1

+ 𝐷
2
𝐼
𝐷2
,

̇𝐼
𝐿1

≤ 𝛽
21
(𝑆
0

𝐿1
+ 𝜀) 𝑥

1
− 𝑑
21
𝐼
𝐿1
,

𝑥̇
1
≤ 𝑎
1
𝐼
𝐷1

− 𝑑
1
𝑥
1
,

̇𝐼
𝐷2

≤ 𝛽
12
(𝑁
0

𝐷2
+ 𝜀) 𝐼
𝐿2
− (𝑑
12
+ 𝜎
2
) 𝐼
𝐷2

− 𝐷
2
𝐼
𝐷2

+ 𝐷
1
𝐼
𝐷1
,

̇𝐼
𝐿2

≤ 𝛽
22
(𝑆
0

𝐿2
+ 𝜀) 𝑥

2
− 𝑑
22
𝐼
𝐿2
,

𝑥̇
2
≤ 𝑎
2
𝐼
𝐷2

− 𝑑
2
𝑥
2
.

(28)

Define an auxiliary linear system:

𝐼
󸀠

𝐷1
= 𝛽
11
(𝑁
0

𝐷1
+ 𝜀) 𝐼

𝐿1
− (𝑑
11
+ 𝜎
1
) 𝐼
𝐷1

− 𝐷
1
𝐼
𝐷1

+ 𝐷
2
𝐼
𝐷2
,

𝐼
󸀠

𝐿1
= 𝛽
21
(𝑆
0

𝐿1
+ 𝜀) 𝑥

1
− 𝑑
21
𝐼
𝐿1
,

𝑥
󸀠

1
= 𝑎
1
𝐼
𝐷1

− 𝑑
1
𝑥
1
,

𝐼
󸀠

𝐷2
= 𝛽
12
(𝑁
0

𝐷2
+ 𝜀) 𝐼

𝐿2
− (𝑑
12
+ 𝜎
2
) 𝐼
𝐷2

− 𝐷
2
𝐼
𝐷2

+ 𝐷
1
𝐼
𝐷1
,

𝐼
󸀠

𝐿2
= 𝛽
22
(𝑆
0

𝐿2
+ 𝜀) 𝑥

2
− 𝑑
22
𝐼
𝐿2
,

𝑥
󸀠

2
= 𝑎
2
𝐼
𝐷2

− 𝑑
2
𝑥
2
.

(29)

Since system (29) is a linear system, the globally stability of
origin is determined by the stability of matrix 𝐽

𝜀
. Since 𝑠(𝐽

𝜀
) <

0, then all the eigenvalues ofmatrix 𝐽
𝜀
have negative real parts.

It then follows that each solution of (29) satisfies

lim
𝑡→+∞

𝐼
𝐷𝑖
(𝑡) = 0, lim

𝑡→+∞

𝐼
𝐿𝑖
(𝑡) = 0,

lim
𝑡→+∞

𝑥
𝑖
(𝑡) = 0, 𝑖 = 1, 2.

(30)

By the comparison principle we have

lim
𝑡→+∞

𝐼
𝐷𝑖 (𝑡) = 0, lim

𝑡→+∞

𝐼
𝐿𝑖 (𝑡) = 0,

lim
𝑡→+∞

𝑥
𝑖 (𝑡) = 0, 𝑖 = 1, 2.

(31)
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Then the limiting system of model (2) is
̇𝑆
𝐷1

= 𝐴
11
− 𝑑
11
𝑆
𝐷1

− 𝐷
1
𝑆
𝐷1

+ 𝐷
2
𝑆
𝐷2
,

̇𝑆
𝐷2
= 𝐴
12
− 𝑑
12
𝑆
𝐷2

− 𝐷
2
𝑆
𝐷2

+ 𝐷
1
𝑆
𝐷1
,

̇𝑆
𝐿1

= 𝐴
21
− 𝑑
21
𝑆
𝐿1
,

̇𝑆
𝐿2

= 𝐴
22
− 𝑑
22
𝑆
𝐿2
.

(32)

By Lemma 2 we find that there is a unique equilibrium
(𝑁
0

𝐷1
, 𝑁
0

𝐷2
, 𝑆
0

𝐿1
, 𝑆
0

𝐿2
) of system (32), which is globally asymp-

totically stable. Thus, according to the theory of asymptotic
autonomous systems [31], we finally obtain that disease-free
equilibrium 𝐸

0
is globally asymptotically stable for model (2)

when 𝑅
0
< 1. This completes the proof of Theorem 5.

5. Permanence

We now turn to the case where 𝑅
0
> 1. We first establish the

permanence for model (2).

Theorem 6. Let 𝐷
𝑖
> 0, 𝑖 = 1, 2. If 𝑅

0
> 1, then model (2) is

permanent. Furthermore, model (2) also has at least one posi-
tive equilibrium𝐸

∗
(𝑆
∗

𝐷1
, 𝐼
∗

𝐷1
, 𝑆
∗

𝐿1
, 𝐼
∗

𝐿1
, 𝑥
∗

1
, 𝑆
∗

𝐷2
, 𝐼
∗

𝐷2
, 𝑆
∗

𝐿2
, 𝐼
∗

𝐿2
, 𝑥
∗

2
).

Proof. Define

𝑋 = {(𝑆
𝐷1
, 𝐼
𝐷1
, 𝑆
𝐿1
, 𝐼
𝐿1
, 𝑥
1
, 𝑆
𝐷2
, 𝐼
𝐷2
, 𝑆
𝐿2
, 𝐼
𝐿2
, 𝑥
2
) :

𝑆
𝐷𝑖

≥ 0, 𝐼
𝐷𝑖

≥ 0, 𝑆
𝐿𝑖
≥ 0, 𝐼
𝐿𝑖
≥ 0, 𝑥

𝑖
≥ 0, 𝑖 = 1, 2} ,

𝑋
0
= {(𝑆
𝐷1
, 𝐼
𝐷1
, 𝑆
𝐿1
, 𝐼
𝐿1
, 𝑥
1
, 𝑆
𝐷2
, 𝐼
𝐷2
, 𝑆
𝐿2
, 𝐼
𝐿2
, 𝑥
2
) :

𝑆
𝐷𝑖

> 0, 𝐼
𝐷𝑖

> 0, 𝑆
𝐿𝑖
> 0, 𝐼
𝐿𝑖
> 0, 𝑥

𝑖
> 0, 𝑖 = 1, 2} ,

𝜕𝑋
0
= 𝑋 \ 𝑋

0
,

𝑀
𝜕
= {(𝑆
𝐷1

(0) , 𝐼
𝐷1

(0) , 𝑆
𝐿1
(0) , 𝐼
𝐿1
(0) , 𝑥

1
(0) ,

𝑆
𝐷2 (0) , 𝐼𝐷2 (0) , 𝑆𝐿2 (0) , 𝐼𝐿2 (0) , 𝑥2 (0)) :

(𝑆
𝐷1

(𝑡) , 𝐼
𝐷1

(𝑡) , 𝑆
𝐿1
(𝑡) , 𝐼
𝐿1
(𝑡) , 𝑥
1
(𝑡) ,

𝑆
𝐷2

(𝑡) , 𝐼
𝐷2

(𝑡) , 𝑆
𝐿2
(𝑡) , 𝐼
𝐿2
(𝑡) , 𝑥
2
(𝑡))

(33)

satisfies model (2),

(𝑆
𝐷1

(𝑡) , 𝐼
𝐷1

(𝑡) , 𝑆
𝐿1
(𝑡) , 𝐼
𝐿1
(𝑡) , 𝑥
1
(𝑡) , 𝑆
𝐷2

(𝑡) ,

𝐼
𝐷2 (𝑡) , 𝑆𝐿2 (𝑡) , 𝐼𝐿2 (𝑡) , 𝑥2 (𝑡)) ∈ 𝜕𝑋

0
, ∀𝑡 ≥ 0} .

(34)

In order to prove Theorem 6, it suffices to show that 𝜕𝑋
0

repels uniformly the solutions of𝑋
0
.

Firstly, by the form of model (2), it is easy to see that both
𝑋 and 𝑋

0
are positively invariant. Clearly, 𝜕𝑋

0
is relatively

closed in 𝑋. Furthermore, model (2) is point dissipative (see
Lemma 3).

We now show that if𝐷
𝑖
> 0, 𝑖 = 1, 2, then

𝑀
𝜕
= {(𝑆

𝐷1
, 0, 𝑆
𝐿1
, 0, 0, 𝑆

𝐷2
, 0, 𝑆
𝐿2
, 0, 0) :

𝑆
𝐷𝑖

≥ 0, 𝑆
𝐿𝑖
≥ 0, 𝑖 = 1, 2} .

(35)

Assume

(𝑆
𝐷1 (0) , 𝐼𝐷1 (0) , 𝑆𝐿1 (0) , 𝐼𝐿1 (0) , 𝑥1 (0) ,

𝑆
𝐷2

(0) , 𝐼
𝐷2

(0) , 𝑆
𝐿2
(0) , 𝐼
𝐿2
(0) , 𝑥

2
(0)) ∈ 𝑀

𝜕
.

(36)

It suffices to show that

𝐼
𝐷1

(𝑡) = 𝐼
𝐿1
(𝑡) = 𝑥

1
(𝑡) = 𝐼

𝐷2
(𝑡)

= 𝐼
𝐿2 (𝑡) = 𝑥

2 (𝑡) = 0, ∀𝑡 ≥ 0.

(37)

Suppose not, then there exists a 𝑡
0
≥ 0 such that at least one of

𝐼
𝐷1
(𝑡
0
), 𝐼
𝐿1
(𝑡
0
), 𝑥
1
(𝑡
0
), 𝐼
𝐷2
(𝑡
0
), 𝐼
𝐿2
(𝑡
0
), or 𝑥

2
(𝑡
0
) is greater than

zero. Here we only consider the case 𝐼
𝐷1
(𝑡
0
) > 0, 𝐼

𝐷2
(𝑡
0
) = 0,

𝑆
𝐷𝑖
(𝑡
0
) = 0, 𝑆

𝐿𝑖
(𝑡
0
) = 0, 𝐼

𝐿𝑖
(𝑡
0
) = 0, and 𝑥

𝑖
(𝑡
0
) = 0, 𝑖 = 1, 2.

The other case can be deduced in the same way. Since

̇𝑆
𝐷𝑖
(𝑡
0
) = 𝐴

1𝑖
− 𝛽
1𝑖
𝑆
𝐷𝑖
(𝑡
0
) 𝐼
𝐿𝑖
(𝑡
0
) − 𝑑
1𝑖
𝑆
𝐷𝑖
(𝑡
0
) + 𝜎
𝑖
𝑆
𝐷𝑖
(𝑡
0
)

+ 𝐷
𝑖
𝑆
𝐷𝑖
(𝑡
0
) − 𝐷
𝑗
𝑆
𝐷𝑗

(𝑡
0
) ≥ 𝐴

1𝑖
> 0,

̇𝑆
𝐿𝑖
(𝑡
0
) = 𝐴

2𝑖
− 𝛽
2𝑖
𝑆
𝐿𝑖
(𝑡
0
) 𝑥
𝑖
(𝑡
0
) − 𝑑
2𝑖
𝑆
𝐿𝑖
(𝑡
0
) = 𝐴

2𝑖
> 0,

𝑥̇
1
(𝑡
0
) = 𝑎𝐼

𝐷1
(𝑡
0
) − 𝑑
1
𝑥
1
(𝑡
0
) = 𝑎𝐼

𝐷1
(𝑡
0
) > 0,

̇𝐼
𝐷1 (𝑡) ≥ − (𝑑

11
+ 𝜎
1
+ 𝐷
1
) 𝐼
𝐷1 (𝑡) , 𝑖 = 1, 2, 𝑖 ̸= 𝑗,

(38)

it follows that there is an 𝜖
0

> 0 small enough such that
𝑆
𝐷𝑖
(𝑡) > 0, 𝑆

𝐿𝑖
(𝑡) > 0, 𝑥

1
(𝑡) > 0, and 𝐼

𝐷1
(𝑡) > 0, 𝑖 = 1, 2,

for all 𝑡
0
< 𝑡 < 𝑡

0
+ 𝜖
0
. If 𝐼
𝐿1
(𝑡
0
+ (𝜖
0
/2)) > 0, then we have

̇𝐼
𝐿1
(𝑡) ≥ −𝑑

21
𝐼
𝐿1
(𝑡) . (39)

This means that 𝐼
𝐿1
(𝑡) > 0 for all 𝑡 ≥ 𝑡

0
+ (𝜖
0
/2). If 𝐼

𝐿1
(𝑡
0
+

(𝜖
0
/2)) = 0, it then follows from model (2) that

̇𝐼
𝐿1
(𝑡
0
+
𝜖
0

2
) = 𝛽

21
𝑆
𝐿1
(𝑡
0
+
𝜖
0

2
) 𝑥
1
(𝑡
0
+
𝜖
0

2
) > 0. (40)

It then follows that there exists an 𝜖
1
< (𝜖
0
/2) such that

𝐼
𝐿1 (𝑡) > 0, ∀𝑡

0
+
𝜖
0

2
< 𝑡 < 𝑡

0
+
𝜖
0

2
+ 𝜖
1
. (41)

By the same way we can obtain that there exists an 𝜖
2
< 𝜖
1

such that

𝐼
𝐷2 (𝑡) > 0, ∀𝑡

0
+
𝜖
0

2
< 𝑡 < 𝑡

0
+
𝜖
0

2
+ 𝜖
2
. (42)

If 𝑥
2
(𝑡
0
+ (𝜖
0
/2) + (𝜖

2
/2)) > 0, then we have

𝑥̇
2
(𝑡) ≥ 𝑑

2
𝑥
2
(𝑡) . (43)

This means that 𝑥
2
(𝑡) > 0 for all 𝑡 > 𝑡

0
+ (𝜖
0
/2) + (𝜖

2
/2); if

𝑥
2
(𝑡
0
+ (𝜖
0
/2) + (𝜖

2
/2)) = 0, it then follows from model (2)

that

𝑥̇
2
(𝑡
0
+
𝜖
0

2
+
𝜖
2

2
) = 𝑎
2
𝐼
𝐷2

(𝑡
0
+
𝜖
0

2
+
𝜖
2

2
) > 0. (44)

It then follows that there exists an 𝜖
3
< (𝜖
2
/2) such that

𝑥
2 (𝑡) > 0, ∀𝑡

0
+
𝜖
0

2
+
𝜖
2

2
< 𝑡 < 𝑡

0
+
𝜖
0

2
+
𝜖
2

2
+ 𝜖
3
. (45)
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By the same way we can obtain that there exists an 𝜖
4
< (𝜖
3
/2)

such that

𝐼
𝐿2
(𝑡) > 0,

∀𝑡
0
+
𝜖
0

2
+
𝜖
2

2
+
𝜖
3

2
< 𝑡 < 𝑡

0
+
𝜖
0

2
+
𝜖
2

2
+
𝜖
3

2
+ 𝜖
4
.

(46)

Thus for all 𝑡 ∈ (𝑡
0
+ (𝜖
0
/2) + (𝜖

2
/2) + (𝜖

3
/2), 𝑡
0
+ (𝜖
0
/2)

+ (𝜖
2
/2) + (𝜖

3
/2) + 𝜖

4
) we have 𝑆

𝐷𝑖
(𝑡) > 0, 𝐼

𝐷𝑖
(𝑡) > 0,

𝑆
𝐿𝑖
(𝑡) > 0, 𝐼

𝐿𝑖
(𝑡) > 0, and 𝑥

𝑖
(𝑡) > 0, 𝑖 = 1, 2. This con-

tradicts the assumption that (𝑆
𝐷1
(0), 𝐼
𝐷1
(0), 𝑆
𝐿1
(0), 𝐼
𝐿1
(0),

𝑥
1
(0), 𝑆
𝐷2
(0), 𝐼
𝐷2
(0), 𝑆
𝐿2
(0), 𝐼
𝐿2
(0), 𝑥
2
(0)) ∈ 𝑀

𝜕
. This proves

(35).
From (24) we can see that if 𝑅

0
> 1, then 𝑠(𝐽) > 0. Hence,

there is a small enough number 𝜃 > 0 such that 𝑠(𝐽
𝜃
) > 0,

where 𝐽
𝜃
= 𝐽 − 𝜃𝐽

1
and 𝐽
1
is given by (26). Let

𝑔 (𝑥) = (

𝑔
1
(𝑥)

𝑔
2
(𝑥)

𝑔
3
(𝑥)

𝑔
4
(𝑥)

)

=

(
(
(
(
(
(
(

(

𝐴
11
(𝑑
12
+ 𝐷
2
+ 𝛽
12
𝑥) + 𝐴

12
𝐷
2

(𝛽
11
𝑥 + 𝑑
11
) (𝛽
12
𝑥 + 𝑑
12
) + 𝐷
1
(𝛽
12
𝑥 + 𝑑
12
) + 𝐷
2
(𝛽
11
+ 𝑑
11
)

𝐴
12
(𝑑
11
+ 𝐷
1
+ 𝛽
11
𝑥) + 𝐴

11
𝐷
1

(𝛽
11
𝑥 + 𝑑
11
) (𝛽
12
𝑥 + 𝑑
12
) + 𝐷
1
(𝛽
12
𝑥 + 𝑑
12
) + 𝐷
2
(𝛽
11
+ 𝑑
11
)

𝐴
12

𝑑
21
+ 𝛽
21
𝑥

𝐴
22

𝑑
22
+ 𝛽
22
𝑥

)
)
)
)
)
)
)

)

,

(47)

and we can see the fact that lim
𝑥→0

𝑔(𝑥) = (𝑁
0

𝐷1
, 𝑁
0

𝐷2
,

𝑆
0

𝐿1
, 𝑆
0

𝐿2
)
𝑇. Hence we can choose 𝛿 > 0 small enough such

that

𝑔
1
(𝛿) = (𝐴

11
(𝑑
12
+ 𝐷
2
+ 𝛽
12
𝛿) + 𝐴

12
𝐷
2
)

× ((𝛽
11
𝛿 + 𝑑
11
) (𝛽
12
𝛿 + 𝑑
12
) + 𝐷
1
(𝛽
12
𝛿 + 𝑑
12
)

+𝐷
2
(𝛽
11
+ 𝑑
11
))
−1

> 𝑁
0

𝐷1
− 𝜃,

𝑔
2 (𝛿) = (𝐴

12
(𝑑
11
+ 𝐷
1
+ 𝛽
11
𝛿) + 𝐴

11
𝐷
1
)

× ((𝛽
11
𝛿 + 𝑑
11
) (𝛽
12
𝛿 + 𝑑
12
) + 𝐷
1
(𝛽
12
𝛿 + 𝑑
12
)

+𝐷
2
(𝛽
11
+ 𝑑
11
))
−1

> 𝑁
0

𝐷2
− 𝜃,

𝑔
3
(𝛿) =

𝐴
12

𝑑
21
+ 𝛽
21
𝛿
> 𝑆
0

𝐿1
− 𝜃,

𝑔
4
(𝛿) =

𝐴
22

𝑑
22
+ 𝛽
22
𝛿
> 𝑆
0

𝐿2
− 𝜃.

(48)

Suppose (𝑆
𝐷1
(𝑡), 𝐼
𝐷1
(𝑡), 𝑆
𝐿1
(𝑡), 𝐼
𝐿1
(𝑡),𝑥
1
(𝑡), 𝑆
𝐷2
(𝑡), 𝐼
𝐷2
(𝑡), 𝑆
𝐿2
(𝑡),

𝐼
𝐿2
(𝑡), 𝑥
2
(𝑡)) is a solution of model (2) with (𝑆

𝐷1
(0), 𝐼
𝐷1
(0),

𝑆
𝐿1
(0), 𝐼
𝐿1
(0), 𝑥
1
(0), 𝑆
𝐷2
(0), 𝐼
𝐷2
(0), 𝑆
𝐿2
(0), 𝐼
𝐿2
(0), 𝑥
2
(0)) ∈ 𝑋

0
.

We now claim that

lim sup
𝑡→∞

max {𝐼
𝐷1

(𝑡) , 𝐼
𝐿1
(𝑡) , 𝑥
1
(𝑡) , 𝐼
𝐷2

(𝑡) ,

𝐼
𝐿2
(𝑡) , 𝑥
2
(𝑡)} > 𝛿.

(49)

Suppose, for the sake of contradiction, that there exists a 𝑇 >

0 such that 𝐼
𝐷𝑖

≤ 𝛿, 𝐼
𝐿𝑖

≤ 𝛿, and 𝑥
𝑖
(𝑡) ≤ 𝛿, 𝑖 = 1, 2, for all

𝑡 ≥ 𝑇. Then by model (2) we have

̇𝑆
𝐷1

(𝑡) ≥ 𝐴
11
− (𝛽
11
𝛿 + 𝑑
11
) 𝑆
𝐷1

− 𝐷
1
𝑆
𝐷1

+ 𝐷
2
𝑆
𝐷2
,

̇𝑆
𝐷2 (𝑡) ≥ 𝐴

12
− (𝛽
12
𝛿 + 𝑑
12
) 𝑆
𝐷2

− 𝐷
2
𝑆
𝐷2

+ 𝐷
1
𝑆
𝐷1
,

̇𝑆
𝐿1
(𝑡) ≥ 𝐴

21
− (𝛽
21
𝛿 + 𝑑
21
) 𝑆
𝐿1
,

̇𝑆
𝐿2 (𝑡) ≥ 𝐴

22
− (𝛽
22
𝛿 + 𝑑
22
) 𝑆
𝐿2

(50)

for 𝑡 ≥ 𝑇. Consider the following auxiliary system:

̇̃
𝑆
𝐷1 (𝑡) = 𝐴

11
− (𝛽
11
𝛿 + 𝑑
11
) 𝑆
𝐷1

− 𝐷
1
𝑆
𝐷1

+ 𝐷
2
S̃
𝐷2
,

̇̃
𝑆
𝐷2

(𝑡) = 𝐴
12
− (𝛽
12
𝛿 + 𝑑
12
) 𝑆
𝐷2

− 𝐷
2
𝑆
𝐷2

+ 𝐷
1
𝑆
𝐷1
,

̇̃
𝑆
𝐿1
(𝑡) = 𝐴

21
− (𝛽
21
𝛿 + 𝑑
21
) 𝑆
𝐿1
,

̇̃
𝑆
𝐿2
(𝑡) = 𝐴

22
− (𝛽
22
𝛿 + 𝑑
22
) 𝑆
𝐿2
.

(51)

As in our analysis in Lemma 2, system (51) has a unique pos-
itive equilibrium (𝑔

1
(𝛿), 𝑔
2
(𝛿), 𝑔
3
(𝛿), 𝑔
4
(𝛿))which is globally

stable. By (48) and comparison principle, there is a 𝜏 > 0 such
that 𝑆

𝐷1
(𝑡) ≥ 𝑁

0

𝐷1
− 𝜃, 𝑆
𝐷2
(𝑡) ≥ 𝑁

0

𝐷2
− 𝜃, 𝑆
𝐿1
(𝑡) ≥ 𝑆

0

𝐿1
− 𝜃, and

𝑆
𝐿2
(𝑡) ≥ 𝑆

0

𝐿2
− 𝜃 for all 𝑡 ≥ 𝑇 + 𝜏. Consequently, for 𝑡 ≥ 𝑇 + 𝜏,

we have

̇𝐼
𝐷1

(𝑡) ≥ 𝛽
11
(𝑁
0

𝐷1
− 𝜃) 𝐼

𝐿1
− (𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝐼
𝐷1

+ 𝐷
2
𝐼
𝐷2
,

̇𝐼
𝐿1
(𝑡) ≥ 𝛽

21
(𝑆
0

𝐿1
− 𝜃) 𝑥

1
− 𝑑
21
𝐼
𝐿1
,
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Figure 2: Time series of echinococcosis disease 𝐼
𝐿𝑖
, 𝑖 = 1, 2, when the two patches are isolated for the parameters given in Example 8.
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Figure 3: Surface plot of 𝑅
0
as a function of 𝐷

1
and 𝐷

2
for the

parameters given in Example 8.

𝑥̇
1
(𝑡) ≥ 𝑎

1
𝐼
𝐷1

− 𝑑
1
𝑥
1
,

̇𝐼
𝐷2 (𝑡) ≥ 𝛽

12
(𝑁
0

𝐷2
− 𝜃) 𝐼

𝐿2
− (𝑑
12
+ 𝜎
2
+ 𝐷
2
) 𝐼
𝐷2

+ 𝐷
1
𝐼
𝐷1
,

̇𝐼
𝐿2 (𝑡) ≥ 𝛽

22
(𝑆
0

𝐿2
− 𝜃) 𝑥

2
− 𝑑
22
𝐼
𝐿2
,

𝑥̇
2
(𝑡) ≥ 𝑎

2
𝐼
𝐷2

− 𝑑
2
𝑥
2
.

(52)

Consider an auxiliary system

̇̃
𝐼
𝐷1

(𝑡) = 𝛽
11
(𝑁
0

𝐷1
− 𝜃) 𝐼

𝐿1
− (𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝐼
𝐷1

+ 𝐷
2
𝐼
𝐷2
,

̇̃
𝐼
𝐿1
(𝑡) = 𝛽

21
(𝑆
0

𝐿1
− 𝜃) 𝑥

1
− 𝑑
21
𝐼
𝐿1
,

̇̃𝑥
1 (𝑡) = 𝑎

1
𝐼
𝐷1

− 𝑑
1
𝑥
1
,

̇̃
𝐼
𝐷2

(𝑡) = 𝛽
12
(𝑁
0

𝐷2
− 𝜃) 𝐼

𝐿2
− (𝑑
12
+ 𝜎
2
+ 𝐷
2
) 𝐼
𝐷2

+ 𝐷
1
𝐼
𝐷1
,

̇̃
𝐼
𝐿2 (𝑡) = 𝛽

22
(𝑆
0

𝐿2
− 𝜃) 𝑥

2
− 𝑑
22
𝐼
𝐿2
,

̇̃𝑥
2
(𝑡) = 𝑎

2
𝐼
𝐷2

− 𝑑
2
𝑥
2
.

(53)

The coefficient matrix of the right hand of (53) is 𝐽
𝜃
. Since

matrix 𝐽
𝜃
has a positive eigenvalues 𝑠(𝐽

𝜃
) with a positive

eigenvector, it follows from a comparison principle that
𝐼
𝐷𝑖
(𝑡) → ∞, 𝐼

𝐿𝑖
(𝑡) → ∞, and 𝑥

𝑖
(𝑡) → ∞ as 𝑡 → ∞, 𝑖 =

1, 2, which leads to a contradiction. This proves (49). Hence
𝑊
𝑠
(𝐸
0
)∩𝑋
0
= 0. Clearly, every forward orbit in𝑀

𝜕
converges

to 𝐸
0
. By Theorem 4.6 in [32] we are able to conclude that

model (2) is uniformly persistent with respect to (𝑋
0
, 𝜕𝑋
0
).

Thus, by a well-known result in persistence theory in [33]
we know that model (2) has at least one positive equilibrium
𝐸
∗
(𝑆
∗

𝐷1
, 𝐼
∗

𝐷1
, 𝑆
∗

𝐿1
, 𝐼
∗

𝐿1
, 𝑥
∗

1
, 𝑆
∗

𝐷2
, 𝐼
∗

𝐷2
, 𝑆
∗

𝐿2
, 𝐼
∗

𝐿2
, 𝑥
∗

2
). This completes

the proof of Theorem 6.

6. Global Stability of 𝐸∗

We further have the following result on the stability of the
endemic equilibrium.

Theorem7. If𝑅
0
> 1, thenmodel (2) admits a unique equilib-

rium 𝐸
∗
(𝑆
∗

𝐷1
, 𝐼
∗

𝐷1
, 𝑆
∗

𝐿1
, 𝐼
∗

𝐿1
, 𝑥
∗

1
, 𝑆
∗

𝐷2
, 𝐼
∗

𝐷2
, 𝑆
∗

𝐿2
, 𝐼
∗

𝐿2
, 𝑥
∗

2
), which is

globally asymptotically stable.

Proof. In Lemma 3, we have proved that 𝑆
𝐷𝑖
(𝑡) + 𝐼

𝐷𝑖
(𝑡) →

𝑁
0

𝐷𝑖
and 𝑆
𝐿𝑖
(𝑡) + 𝐼

𝐿𝑖
(𝑡) → 𝑆

0

𝐿𝑖
as 𝑡 → ∞, 𝑖 = 1, 2. Therefore,

in model (2) we can represent 𝑆
𝐷𝑖

and 𝑆
𝐿𝑖
by𝑁0
𝐷𝑖
− 𝐼
𝐷𝑖
(𝑡) and
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Figure 4: Time series of echinococcosis disease 𝐼
𝐿𝑖
, 𝑖 = 1, 2, when the two patches are connected with𝐷

1
= 0.8,𝐷

2
= 0.2.

𝑆
0

𝐿𝑖
− 𝑆
𝐿𝑖
(𝑡), 𝑖 = 1, 2, respectively, and the model (2) will

degenerate into the following system with six equations:

̇𝐼
𝐷1

(𝑡) = − (𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝐼
𝐷1

+ 𝛽
11
(𝑁
0

𝐷1
− 𝐼
𝐷1
) 𝐼
𝐿1

+ 𝐷
2
𝐼
𝐷2
,

̇𝐼
𝐿1
(𝑡) = −𝑑

21
𝐼
𝐿1
+ 𝛽
21
(𝑆
0

𝐿1
− 𝐼
𝐿1
) 𝑥
1
,

𝑥̇
1
(𝑡) = 𝑎

1
𝐼
𝐷1

− 𝑑
1
𝑥
1
,

̇𝐼
𝐷2 (𝑡) = 𝐷

1
𝐼
𝐷1

− (𝑑
12
+ 𝜎
2
+ 𝐷
2
) 𝐼
𝐷2

̇𝐼
𝐷1

(𝑡) = +𝛽
12
(𝑁
0

𝐷2
− 𝐼
𝐷2
) 𝐼
𝐿2
,

̇𝐼
𝐿2 (𝑡) = −𝑑

22
𝐼
𝐿2
+ 𝛽
22
(𝑆
0

𝐿2
− 𝐼
𝐿2
) 𝑥
2
,

𝑥̇
2 (𝑡) = 𝑎

2
𝐼
𝐷2

− 𝑑
2
𝑥
2
.

(54)

By Lemma 3, the dynamics of system (54) can be focused on
the following region:

Ω = {(𝐼
𝐷1
, 𝐼
𝐿1
, 𝑥
1
, 𝐼
𝐷2
, 𝐼
𝐿2
, 𝑥
2
) : 0 ≤ 𝐼

𝐷𝑖
≤ 𝑁
0

𝐷𝑖
,

0 ≤ 𝐼
𝐿𝑖
≤ 𝑆
0

𝐿𝑖
, 0 ≤ 𝑥

𝑖
≤

𝑎
𝑖

𝑑
𝑖

𝑁
0

𝐷𝑖
, 𝑖 = 1, 2} .

(55)

We will use the theory of cooperate system to prove the
global stability of system (54). Therefore, we only verify the
assumption in Corollary 3.2 [34] for system (54). Let

𝑓 (𝑢) =
(
(
(

(

𝑓
1
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
)

𝑓
2
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
)

𝑓
3
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
)

𝑓
4
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
)

𝑓
5
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
)

𝑓
6
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
)

)
)
)

)

=

(
(
(
(
(
(
(

(

−(𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝑢
1
+ 𝛽
11
(𝑁
0

𝐷1
− 𝑢
1
) 𝑢
2
+ 𝐷
2
𝑢
4

−𝑑
21
𝑢
2
+ 𝛽
21
(𝑆
0

𝐿1
− 𝑢
2
) 𝑢
3

𝑎
1
𝑢
1
− 𝑑
1
𝑢
3

𝐷
1
𝑢
1
− (𝑑
12
+ 𝜎
2
+ 𝐷
2
) 𝑢
4
+ 𝛽
12
(𝑁
0

𝐷2
− 𝑢
4
) 𝑢
5

−𝑑
22
𝑢
5
+ 𝛽
22
(𝑆
0

𝐿2
− 𝑢
5
) 𝑢
6

𝑎
2
𝑢
4
− 𝑑
2
𝑢
6

)
)
)
)
)
)
)

)

,

(56)

and then 𝑓 : R6
+
→ R6
+
is a continuously differentiable map.

Clearly 𝑓(0) = 0 and 𝑓
𝑖
(𝑢) ≥ 0 for all 𝑢 ∈ Ω with 𝑢

𝑖
= 0,

𝑖 = 1, 2, . . . , 6. Since 𝜕𝑓
𝑖
/𝜕𝑢
𝑗
≥ 0 (𝑖 ̸= 𝑗) for 𝑢 ∈ Ω, we have

that 𝑓 is cooperative on Ω. For every 𝑝 ∈ (0, 1) and 𝑢 ∈ Ω,
we have

𝑓
1
(𝑝𝑢
1
, 𝑝𝑢
2
, 𝑝𝑢
3
, 𝑝𝑢
4
, 𝑝𝑢
5
, 𝑝𝑢
6
)

= − (𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝑝𝑢
1
+ 𝛽
11
(𝑁
0

𝐷1
− 𝑝𝑢
1
) 𝑝𝑢
2
+ 𝐷
2
𝑝𝑢
4

≥ − (𝑑
11
+ 𝜎
1
+ 𝐷
1
) 𝑝𝑢
1
+ 𝛽
11
(𝑁
0

𝐷1
− 𝑢
1
) 𝑝𝑢
2
+ 𝐷
2
𝑝𝑢
4

= 𝑝𝑓
1
(𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
) .

(57)

Using the same argument, we can show that 𝑓 is strictly
sublinear on Ω. By computing𝐷𝑓(𝑢), we have

(
𝜕𝑓
𝑖

𝜕𝑢
𝑗

)

1≤𝑖,𝑗≤6

= (

𝑓
11 (𝑢) 𝑓

12 (𝑢)

𝑓
21
(𝑢) 𝑓

22
(𝑢)

) , (58)
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Figure 5: Time series of echinococcosis disease 𝐼
𝐿𝑖
, 𝑖 = 1, 2, when the two patches are connected with𝐷

1
= 0.2,𝐷

2
= 0.8.
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Figure 6: Time series of echinococcosis disease 𝐼
𝐿𝑖
, 𝑖 = 1, 2, when the two patches are isolated for the parameters given in Example 9.

where

𝑓
11 (𝑢) = (

− (𝑑
11
+ 𝜎
1
+ 𝐷
1
) − 𝛽
11
𝑢
2
𝛽
11
(𝑁
0

𝐷1
− 𝑢
1
) 0

0 −𝑑
21
− 𝛽
21
𝑢
3

𝛽
21
(𝑆
0

𝐿1
− 𝑢
3
)

𝑎
1

0 −𝑑
1

),

𝑓
12
(𝑢) = (

𝐷
2
0 0

0 0 0

0 0 0

) , 𝑓
21
(𝑢) = (

𝐷
1
0 0

0 0 0

0 0 0

) ,

𝑓
22
(𝑢) = (

− (𝑑
12
+ 𝜎
2
+ 𝐷
2
) − 𝛽
12
𝑢
5
𝛽
12
(𝑁
0

𝐷2
− 𝑢
4
) 0

0 −𝑑
22
− 𝛽
22
𝑢
6

𝛽
22
(𝑆
0

𝐿2
− 𝑢
5
)

𝑎
2

0 −𝑑
2

).

(59)
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Figure 7: Surface plot of 𝑅
0
as a function of 𝐷

1
and 𝐷

2
for the

parameters given in Example 9.

Clearly, 𝐷𝑓(𝑢) is irreducible for 𝑢 ∈ Ω. From (24) we can
see that if 𝑅

0
> 1, then 𝑠(𝐽) > 0. Since 𝐷𝑓(0) = 𝐽,

we have 𝑠(𝐷𝑓(0)) = 𝑠(𝐽) > 0. By Corollary 3.2 in [34],
one can conclude that system (54) admits a unique posi-
tive equilibrium (𝐼

∗

𝐷1
, 𝐼
∗

𝐿1
, 𝑥
∗

1
, 𝐼
∗

𝐷2
, 𝐼
∗

𝐿2
, 𝑥
∗

2
), which is globally

asymptotically stable. According to the theory of asymptotic
autonomous systems [31], we further obtain that endemic
equilibrium 𝐸

∗
(𝑆
∗

𝐷1
, 𝐼
∗

𝐷1
, 𝑆
∗

𝐿1
, 𝐼
∗

𝐿1
, 𝑥
∗

1
, 𝑆
∗

𝐷2
, 𝐼
∗

𝐷2
, 𝑆
∗

𝐿2
, 𝐼
∗

𝐿2
, 𝑥
∗

2
) is

globally attractive for model (2).

7. Simulations

To complement the mathematical analysis carried out in the
previous section, we now investigate some of the numerical
properties of the two-patch model (2).

Example 8. Take parameters in model (2) as follows:
𝐴
11

= 15, 𝛽
11

= 0.00065, 𝑑
11

= 0.3, 𝜎
1
= 0.2, 𝐴

21
= 80,

𝛽
21

= 0.004, 𝑑
21

= 0.4, 𝑎
1
= 150, 𝑑

1
= 33, 𝐴

12
= 15, 𝛽

12
=

0.0015, 𝑑
12

= 0.3, 𝜎
2
= 0.2, 𝐴

22
= 80, 𝛽

22
= 0.004, 𝑑

22
= 0.4,

𝑎
2
= 150, and 𝑑

2
= 33. If the two patches are isolated, by

simple calculations we have 𝑅
01
= 0.8392, 𝑅

02
= 1.1089.

From Lemma 1 we have that the disease will die out in
the first patch and will be endemic in the second patch
(see Figure 2). From Figure 3 we can easily see that 𝑅

0
will

be larger than 1 under the condition of a larger 𝐷
1
and

a smaller 𝐷
2
. This means that the larger diffusion of dogs

from the lower epidemic areas to the higher prevalence areas
can intensify the spread of echinococcosis (see Figure 4).
However, when𝐷

1
is small and𝐷

2
is large, 𝑅

0
will be smaller

than 1. This indicates that the larger diffusion of dogs from
the higher prevalence areas to the lower epidemic areas can
reduce the spread and is beneficial for disease control (see
Figure 5).

Example 9. Weuse the parameters given in Example 8 except
that 𝐴

11
= 10, 𝛽

11
= 0.0015, 𝐴

21
= 70, 𝐴

12
= 20, and 𝛽

12
=

0.0005. If the two patches are isolated, by simple calculations
we have 𝑅

01
= 0.9266, 𝑅

02
= 0.8463.
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Figure 8: Time series of echinococcosis disease 𝐼
𝐿𝑖
, 𝑖 = 1, 2, when

the two patches are connected with𝐷
1
= 0.2,𝐷

2
= 0.6.

It follows from Lemma 1 that the disease will die out
in both two patches when they are isolated (see Figure 6).
However, from Figure 7 we can see that 𝑅

0
is not always less

than 1. This suggests that dogs diffusion can cause the spread
of echinococcosis in two patches (see Figure 8).

8. Discussion

In this paper, in order to model the transmission dynamics
of echinococcosis spread between two patches due to dogs
migration a patch model for echinococcosis is proposed.
We define the basic reproduction number 𝑅

0
. The math-

ematical results show that the dynamics of the model is
completely determined by 𝑅

0
. If 𝑅
0

< 1, the disease-free
equilibrium is globally asymptotically stable. When 𝑅

0
>

1, the model is permanence and endemic equilibrium is
globally asymptotically stable. According to the simulation
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we have that the larger diffusion of dogs from a low epidemic
area to the high prevalence area can intensify the disease
spread. However, the larger diffusion of dogs from the high
prevalence area to a low epidemic area can reduce the disease
spread and is beneficial to disease control. Additionally, the
model presented in this paper can be extended to describe
the dynamical transmission of echinococcosis with dogs
migration among more than two patches. We leave these in
our future work.
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