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We study the existence of periodic solutions to a discrete 𝑝-Laplacian system. By using the Clark duality method and computing the
critical groups, we find a simple condition that is sufficient to ensure the existence of nonconstant periodic solutions to the system.

1. Introduction

LetN,Z, andR denote the respective sets of natural numbers,
integers, and real numbers. For 𝑚, 𝑛 ∈ Z with 𝑚 ≤ 𝑛, write
Z(𝑚, 𝑛) = Z ∩ [𝑚, 𝑛] = {𝑚,𝑚 + 1, . . . , 𝑛}. Let 𝑇 ∈ N. We
are concerned with the existence of nonconstant 𝑇-periodic
solutions to the following discrete 𝑝-Laplacian system:

Δ (𝜙𝑝 (Δ𝑥 (𝑛 − 1))) + ∇𝐹 (𝑛, 𝑥 (𝑛)) = 0, 𝑛 ∈ Z (1, 𝑇) ,

(1)

whereΔ is the forward difference operator defined byΔ𝑥(𝑛) =
𝑥(𝑛 + 1) − 𝑥(𝑛) and 𝜙𝑝 is the 𝑝-Laplace operator defined by
𝜙𝑝(𝑥) = |𝑥|

𝑝−2
𝑥 (𝑝 > 1). Consider 𝐹 ∈ 𝐶

2
(Z × R𝑁,R), and

∇𝐹(𝑛, 𝑥) denotes the gradient of 𝐹 with respect to 𝑥 ∈ R𝑁.
We assume that 𝐹 is 𝑇-periodic in the first variable 𝑛; that is,
𝐹(𝑛 + 𝑇, ⋅) = 𝐹(𝑛, ⋅).

When 𝑝 = 2, (1) reduces to the second order discrete 𝑇-
periodic Hamiltonian system:

Δ
2
𝑥 (𝑛 − 1) + ∇𝐹 (𝑛, 𝑥 (𝑛)) = 0, 𝑛 ∈ Z. (2)

In 2003, Guo and Yu [1] introduced the critical point theory
(see, e.g., [2]) to the study of the existence of 𝑇-periodic

solutions of (2). By using Rabinowitz’s saddle point theorem,
they proved existence of 𝑘𝑇-periodic solutions, 𝑘 ∈ N, when
either ∇𝐹 is bounded and 𝐹 is coercive with respect to 𝑥 or
𝐹 satisfies a subquadratic Ambrosetti-Rabinowitz condition
and a related coercivity condition. In the same year, they
also proved existence of at least two nontrivial 𝑇-periodic
solutions of (2) when ∇𝐹 satisfies a superlinear condition
near 𝑥 = 0 and 𝐹 satisfies a superquadratic Ambrosetti-
Rabinowitz condition [3]. The growth condition of ∇𝐹 was
later removed in Zhou et al. [4] by using the linking theorem.
For additional studies on the existence and multiplicity of
solutions to (2) subject to various boundary value conditions
through the use of critical point theory, we refer the reader to
[4–13].

There have been tremendous efforts devoted to the study
of the 𝑝-Laplacian system (1) and the systems involving the
𝑝-Laplace operator in recent years [14–20]. Many interesting
results have been proved on the existence and multiplicity of
solutions to (1) subject to the Dirichlet boundary condition
𝑥(0) = 𝑥(𝑇 + 1) = 0 by using the critical point theory
[16, 17, 19, 21]. However, we have seen a very limited success
in the application of this theory to the study of the existence
of periodic solutions for (1). For the general case 𝑝 > 1, He
and Chen [22] obtained a result on the existence of periodic
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solutions for (1) with a convex 𝐹 by using Clark duality and
the perturbation technique. For the case 𝑝 ≥ 2, Luo and
Zhang [23] proved the existence of nonconstant periodic
solutions for

Δ (𝜙𝑝 (Δ𝑥 (𝑛 − 1))) − 𝑎 (𝑛) |𝑥 (𝑛)|
𝑝−2

𝑥 (𝑛) + ∇𝐹 (𝑛, 𝑥 (𝑛))

= 0, 𝑛 ∈ Z,

(3)

by making use of the linking theorem.
Our major goal in this paper is to prove the following

theorem which gives a simple sufficient condition for the
existence of nonconstant 𝑇-periodic solutions to the 𝑝-
Laplacian system (1).

Theorem 1. Let 1 < 𝑝 < 2. Assume that 𝐹(𝑛, 𝑥) is strictly
convex in 𝑥 for every 𝑛 ∈ Z(1, 𝑇) and there exist 𝛼 > 0 and
𝛿 > 0 such that, for all 𝑥 ∈ R𝑁 and 𝑛 ∈ Z(1, 𝑇), one has

𝛿
|𝑥|
𝑞

𝑞
≤ 𝐹 (𝑛, 𝑥) ≤ 𝛼

|𝑥|
𝑞

𝑞
, (4)

where 𝑝−1 + 𝑞−1 = 1 with

2𝛿
𝑝−1

≥ 𝑝𝑞
𝑝−1

𝛼
𝑝/𝑞
. (5)

Then (1) has at least one nonconstant 𝑇-periodic solution.

Our assumptions differ from those in [22, 23] consider-
ably and can be verified easily. For instance, let 𝑛 ∈ Z(1, 𝑇),
and

𝐹 (𝑛, 𝑥) =
(2 − sin 𝑛) (𝑥2

1
+ 𝑥
2

2
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑁
)
9/2

9
. (6)

Then 𝐹(𝑛, 𝑥) is strictly convex in 𝑥 for every 𝑛 ∈ Z(1, 𝑇), and
(4) and (5) are satisfied with 𝑝 = 9/8, 𝑞 = 9, 𝛿 = 1, and 𝛼 = 3.
For this function 𝐹, Theorem 1 confirms the existence of at
least one nonconstant 𝑇-periodic solution of (1).

In the remainder of this section, we outline our approach
based on the Clark duality and computation of the critical
groups. Let 𝐻 be a real Hilbert space and 𝑓 ∈ 𝐶

1
(𝐻,R). In

Morse theory, the local behavior of 𝑓 near an isolated critical
point 𝑥0 at the level 𝑐 is described by the critical groups:

𝐶𝑞 (𝑓, 𝑥0) := 𝐻𝑞 (𝑓
𝑐
∩ 𝑈, 𝑓

𝑐
∩ 𝑈 \ {𝑥0}) , (7)

where 𝑓𝑐 = {𝑥 ∈ 𝐻 : 𝑓(𝑥) ≤ 𝑐}, 𝑈 is a neighbourhood of 𝑥0
containing no other critical points, and 𝐻 denotes singular
homology. The critical groups distinguish between different
types of critical points and are extremely useful for obtaining
the existence and multiplicity of solutions for variational
problems [24].

Nonzero 𝑇-periodic solutions of (1) are the nontrivial
critical points of the variational functional

𝜑 (𝑥) =

𝑇

∑

𝑛=1

1

𝑝
|Δ𝑥(𝑛)|

𝑝
− 𝐹 (𝑛, 𝑥 (𝑛)) (8)

defined on the finite dimensional space

Ω𝑇 = {𝑥 = {𝑥 (𝑛)} | 𝑥 (𝑛) ∈ R
𝑁
, 𝑥 (𝑛 + 𝑇) = 𝑥 (𝑛) , 𝑛 ∈ Z} ;

(9)

see [9, 23] for details. However, it is difficult to compute the
critical groups for the case 𝑝 ̸= 2 because there are few results
on the nonlinear eigenvalue problem:

Δ (𝜙𝑝 (Δ𝑥 (𝑛 − 1))) + 𝜆𝜙𝑝 (𝑥 (𝑛)) = 0, 𝑛 ∈ Z (1, 𝑇) ,

𝑥 (0) = 𝑥 (𝑇) , 𝑥 (1) = 𝑥 (𝑇 + 1) .

(10)

As a result, there are no known eigenspaces to work with. As
usual, if (10) has nonzero solutions, then we say that 𝜆 is an
eigenvalue of the discrete 𝑝-Laplacian with periodic bound-
ary condition. To overcome this difficulty, we introduce

𝑢1 (𝑛) = 𝑥 (𝑛) , 𝑢2 (𝑛) = 𝜙𝑝 (Δ𝑥 (𝑛 − 1)) (11)

to transform (1) into the following equivalent first order
nonautonomous system:

Δ𝑢1 (𝑛) = 𝜙𝑞 (𝑢2 (𝑛 + 1)) ,

Δ𝑢2 (𝑛) = −∇𝐹 (𝑛, 𝑢1 (𝑛)) .

(12)

Denote

𝑢 (𝑛) = (
𝑢1 (𝑛)

𝑢2 (𝑛)
) , 𝐽 = (

0 𝐼𝑁
−𝐼𝑁 0

) ,

𝐿𝑢 (𝑛) = (
𝑢1 (𝑛)

𝑢2 (𝑛 + 1)
) .

(13)

System (12) can be rewritten in the compact form

𝐽Δ𝑢 (𝑛) + ∇𝐻 (𝑛, 𝐿𝑢 (𝑛)) = 0, (14)

where𝐻(𝑛, 𝑢) = 𝐻1(𝑛, 𝑢1) + 𝐻2(𝑛, 𝑢2) with

𝐻1 (𝑛, 𝑢1) = 𝐹 (𝑛, 𝑢1) , 𝐻2 (𝑛, 𝑢2) =
|𝑢2|
𝑞

𝑞
. (15)

And nonzero solutions of (14) correspond to nontrivial
critical points of

𝐼 (𝑢) =
1

2

𝑇

∑

𝑛=1

(𝐽Δ𝐿𝑢 (𝑛 − 1) , 𝑢 (𝑛)) +

𝑇

∑

𝑛=1

𝐻(𝑛, 𝐿𝑢 (𝑛)) (16)

defined on

𝐸 = {𝑢 = {𝑢 (𝑛) = (
𝑢1 (𝑛)

𝑢2 (𝑛)
) ∈ R

2𝑁
} |

𝑢 (𝑛 + 𝑇) = 𝑢 (𝑛) , 𝑢𝑖 (𝑛) ∈ R
𝑁
, 𝑖 = 1, 2, 𝑛 ∈ Z} .

(17)

For 𝑢, V ∈ 𝐸, 𝐸 can be equipped with the inner product

⟨𝑢, V⟩ =
𝑇

∑

𝑛=1

(𝑢 (𝑛) , V (𝑛)) , (18)
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by which the norm ‖ ⋅ ‖ can be induced by

‖𝑢‖ := ‖𝑢‖2 = (

𝑇

∑

𝑛=1

|𝑢 (𝑛)|
2
)

1/2

, (19)

where |⋅| denotes the Euclidean norm inR2𝑁 and (⋅, ⋅) denotes
the usual inner product in R2𝑁. It is easy to know that 𝐸 is a
finite dimensional Hilbert space which can be identified with
R2𝑇𝑁. The variational functional 𝐼 can be rewritten as

𝐼 (𝑢) =
1

2
⟨𝐴1𝑢, 𝑢⟩ + 𝑄1 (𝑢) , (20)

where

⟨𝐴1𝑢, 𝑢⟩ =

𝑇

∑

𝑛=1

(𝐽Δ𝐿𝑢 (𝑛 − 1) , 𝑢 (𝑛)) ,

𝑄1 (𝑢) =

𝑇

∑

𝑛=1

𝐻(𝑛, 𝐿𝑢 (𝑛)) ;

(21)

see [11] for details. Very fortunately, the linear eigenvalue
problem

𝐽Δ𝑢 (𝑛) + 𝜆𝐿𝑢 (𝑛) = 0, 𝑛 ∈ Z (1, 𝑇) ,

𝑢 (0) = 𝑢 (𝑇) , 𝑢 (1) = 𝑢 (𝑇 + 1)
(22)

can be worked out with eigenvalues

𝜆 = 𝜆𝑘 = 2 sin
𝑘𝜋

𝑇
, 𝑘 ∈ Z (−𝑇 + 1, 𝑇 − 1) . (23)

So, 0 lies in the spectrum of 𝐴1 which brings another
difficulty in computing the critical groups of 𝐼 at infinity (e.g.,
to compute the critical groups of 𝐼 at infinity, the variational
functional 𝐼 may be required to satisfy the angle condition
proposed in [25]). To conquer this difficulty, motivated by
[2, 9, 22], we introduce a dual action functional 𝐽 in the form

𝐽 (V) =
1

2
⟨𝐴V, V⟩ + 𝑄 (V) (24)

and 0 is not in the spectrum of 𝐴. Furthermore, nontrivial
critical points of 𝐽 correspond to nonconstant 𝑇-periodic
solutions of (1). To show that the dual action functional
𝐽 has at least one nontrivial critical point, firstly, we show
that 𝐽 satisfies the condition (𝐶) which guarantees that the
critical groups 𝐶∗(𝐽,∞) make sense. Then we compute the
critical groups𝐶∗(𝐽,∞). And finally, we show that 0 is a local
minimum of 𝐽 and hence the critical groups at infinity of 𝐽
are different from the critical groups at zero of 𝐽 which is
sufficient for the existence of at least one nontrivial critical
point of 𝐽 and hence the existence of at least one nonconstant
𝑇-periodic solution of (1).

2. The Dual Action Functional and
Related Lemmas

In this section, we present several technical lemmas to
facilitate our proof of Theorem 1 in Section 3. In order

to decompose the space 𝐸 appropriately, we consider the
eigenvalue problem

𝐽Δ𝑢 (𝑛) + 𝜆𝐿𝑢 (𝑛) = 0, 𝑛 ∈ Z (1, 𝑇) ,

𝑢 (0) = 𝑢 (𝑇) , 𝑢 (1) = 𝑢 (𝑇 + 1)
(25)

with 𝜆 ∈ R. Apparently, 𝜆 = 0 is an eigenvalue of (25) with
the eigenfunction

𝜂0 (𝑛) = (𝑎1, 𝑎2, . . . , 𝑎2𝑁)
𝜏
, 𝑎𝑖 ∈ R, 𝑖 = 1, 2, . . . , 2𝑁,

𝑛 = 1, 2, . . . , 𝑇.
(26)

Through a simple calculation, we see that (25) is equivalent to

Δ𝑢1 (𝑛) = 𝜆𝑢2 (𝑛 + 1) , 𝑢1 (𝑛 + 𝑇) = 𝑢1 (𝑛) ,

Δ𝑢2 (𝑛) = −𝜆𝑢1 (𝑛) , 𝑢2 (𝑛 + 𝑇) = 𝑢2 (𝑛) .
(27)

If 𝜆 ̸= 0, then (27) is equivalent to

Δ
2
𝑢1 (𝑛 − 1) + 𝜆

2
𝑢1 (𝑛) = 0, 𝑢1 (𝑛 + 𝑇) = 𝑢1 (𝑛) ,

Δ
2
𝑢2 (𝑛 − 1) + 𝜆

2
𝑢2 (𝑛) = 0, 𝑢2 (𝑛 + 𝑇) = 𝑢2 (𝑛) .

(28)

It has been proved that (28) has a nontrivial solution if and
only if 𝜆2 = 𝜆2

𝑘
= 4sin2(𝑘𝜋/𝑇)with 𝑘 ∈ Z(1, 𝑇−1) [1, 3]. So in

this case (25) has a nontrivial solution if and only if 𝜆 = 𝜆𝑘 =
2 sin(𝑘𝜋/𝑇) with 𝑘 ∈ Z(−𝑇 + 1, 𝑇 − 1) \ {0}. The multiplicity
of 𝜆0 = 0 is 2𝑁 and themultiplicities of 𝜆𝑘 ̸= 0 are of the same
number𝑁. So, on the eigenvalue problem (25), the following
results hold.

Proposition 2. For the eigenvalue problem (25), the eigenval-
ues are

𝜆 = 𝜆𝑘 = 2 sin
𝑘𝜋

𝑇
, 𝑘 ∈ Z (−𝑇 + 1, 𝑇 − 1) (29)

which can be arranged as

𝜆−𝑟 < 𝜆−𝑟+1 < ⋅ ⋅ ⋅ < 𝜆−1 < 0 = 𝜆0 < 𝜆1 < 𝜆2 < ⋅ ⋅ ⋅ < 𝜆𝑟
(30)

with 𝑟 = (𝑇 − 1)/2 if 𝑇 is odd, and 𝑟 = 𝑇/2 if 𝑇 is even.

To make an explicit decomposition of the Hilbert space
𝐸, we also need to compute the eigenfunctions of (25)
corresponding to each 𝜆𝑘, 𝑘 ̸= 0.

For each fixed 𝑘 ∈ Z(−𝑟, −1) ∪ Z(1, 𝑟), a solution of (28)
can be written as

𝑢1 (𝑛) = 𝑐1 cos (𝑘𝑤𝑛) + 𝑐2 sin (𝑘𝑤𝑛) ,

𝑢2 (𝑛) = 𝑑1 cos (𝑘𝑤𝑛) + 𝑑2 sin (𝑘𝑤𝑛) ,
(31)

where 𝑤 = 2𝜋/𝑇 and 𝑐1, 𝑐2, 𝑑1, 𝑑2 are constant vectors inR𝑁.
By using the relation between 𝑢1 and 𝑢2, that is, (27) with 𝜆 =
𝜆𝑘, we obtain

𝑐1 sin(
𝑘𝑤

2
) + 𝑐2 cos(

𝑘𝑤

2
) = 𝑑1,

−𝑐1 cos(
𝑘𝑤

2
) + 𝑐2 sin(

𝑘𝑤

2
) = 𝑑2.

(32)
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Let 𝑒𝑗, 𝑗 = 1, 2, . . . , 𝑁, denote the canonical basis of R𝑁.
If we choose 𝑐1 = 𝑒𝑗 and 𝑐2 = 0, then 𝑑1 = sin(𝑘𝑤/2)𝑒𝑗,
and 𝑑2 = − cos(𝑘𝑤/2)𝑒𝑗; if we choose 𝑐1 = 0 and 𝑐2 = 𝑒𝑗,
then 𝑑1 = cos(𝑘𝑤/2)𝑒𝑗, and 𝑑2 = sin(𝑘𝑤/2)𝑒𝑗. Therefore, the
eigenfunctions of (25) corresponding to each 𝜆𝑘 (𝑘 ̸= 0) can
be given as

𝜂
(1)

𝑘,𝑗
(𝑛) = (

cos (𝑘𝑤𝑛) 𝑒𝑗

− sin(𝑘𝑤(
𝑛 − 1

2
)) 𝑒𝑗

), 𝑛 = 1, 2, . . . , 𝑇,

𝜂
(2)

𝑘,𝑗
(𝑛) = (

sin (𝑘𝑤𝑛) 𝑒𝑗

cos(𝑘𝑤(
𝑛 − 1

2
)) 𝑒𝑗

), 𝑛 = 1, 2, . . . , 𝑇.

(33)

Let

𝑊
0
= {𝑢 = {𝑢 (𝑛)} | 𝑢 (𝑛) = 𝑐1𝑒1 + 𝑐2𝑒2 + ⋅ ⋅ ⋅

+ 𝑐2𝑁𝑒2𝑁, 𝑐𝑖 ∈ R, 𝑖 = 1, 2, . . . , 2𝑁} ;

𝑊
+

=
{

{

{

𝑢={𝑢 (𝑛)} | 𝑢 (𝑛) =

𝑁

∑

𝑗=1

𝑟

∑

𝑘=1

[𝛼
(1)

𝑘,𝑗
𝜂
(1)

𝑘,𝑗
(𝑛) + 𝛼

(2)

𝑘,𝑗
𝜂
(2)

𝑘,𝑗
(𝑛)] ,

𝛼
(1)

𝑘,𝑗
, 𝛼
(2)

𝑘,𝑗
∈ R

}

}

}

;

𝑊
−

=
{

{

{

𝑢={𝑢 (𝑛)} | 𝑢 (𝑛) =

𝑁

∑

𝑗=1

−1

∑

𝑘=−𝑟

[𝛽
(1)

𝑘,𝑗
𝜂
(1)

𝑘,𝑗
(𝑛) + 𝛽

(2)

𝑘,𝑗
𝜂
(2)

𝑘,𝑗
(𝑛)] ,

𝛽
(1)

𝑘,𝑗
, 𝛽
(2)

𝑘,𝑗
∈ R

}

}

}

.

(34)

Note that if 𝑇 is even and 𝑘 = 𝑇/2, then

𝜂
(1)

𝑘,𝑗
(𝑛) = 𝜂

(1)

𝑘,𝑗
(𝑇 − 𝑛) , 𝜂

(2)

𝑘,𝑗
(𝑛) = 𝜂

(2)

𝑘,𝑗
(𝑇 − 𝑛) (35)

which shorten the dimension of the eigensubspace corre-
sponding to 𝜆𝑇/2 to𝑁. Hence

dim𝑊
0
= 2𝑁, dim𝑊

+
= dim𝑊

−
= (𝑇 − 1)𝑁, (36)

and 𝐸 has a eigensubspace decomposition as

𝐸 = 𝑊
0
⊕𝑊
−
⊕𝑊
+
. (37)

Thus, for any 𝑢 ∈ 𝐸, 𝑢 can be expressed in the form

𝑢 = 𝑢̃ + 𝑢, (38)

where 𝑢̃ = (𝑢̃1, 𝑢̃2)
𝜏
∈ 𝑊
−
⊕ 𝑊
+ and 𝑢 = (𝑢1, 𝑢2)

𝜏
∈ 𝑊
0.

Obviously, 𝑢𝑖 = 𝑢̃𝑖 + 𝑢𝑖, 𝑖 = 1, 2.

Denote

𝜇min = min{𝜆2
𝑘
= 4sin2 (𝑘𝜋

𝑇
) , 𝑘 ∈ Z (1, 𝑇 − 1)} = 4sin2 𝜋

𝑇
.

𝜇max = max{𝜆2
𝑘
= 4sin2 (𝑘𝜋

𝑇
) , 𝑘 ∈ Z (1, 𝑇 − 1)}

=
{

{

{

4, 𝑇 is even;

4sin2 (𝑇 − 1) 𝜋
2𝑇

, 𝑇 is odd.
(39)

Then we have the following Wirtinger type inequalities:

𝜇min
󵄩󵄩󵄩󵄩𝑢̃𝑖

󵄩󵄩󵄩󵄩
2
≤
󵄩󵄩󵄩󵄩Δ𝑢̃𝑖

󵄩󵄩󵄩󵄩
2
≤ 𝜇max

󵄩󵄩󵄩󵄩𝑢̃𝑖
󵄩󵄩󵄩󵄩
2
, 𝑖 = 1, 2. (40)

On the other hand, we can also define the norm ‖ ⋅ ‖𝑝 onR
2𝑁𝑇

as follows:

‖𝑢‖𝑝 = (

𝑇

∑

𝑛=1

|𝑢 (𝑛)|
𝑝
)

1/𝑝

(41)

with 𝑝 > 1. Since ‖𝑢‖𝑝 and ‖𝑢‖ are equivalent, there exist
constants 𝑐1, 𝑐2 such that 𝑐2 ≥ 𝑐1 > 0 and

𝑐1 ‖𝑢‖ ≤ ‖𝑢‖𝑝 ≤ 𝑐2 ‖𝑢‖ . (42)

Now, we introduce the Clark duality [2, 26].The Legendre
transform𝐿

∗
(𝑛, ⋅) of𝐿(𝑛, ⋅)with respect to the second variable

can be defined by

𝐿
∗
(𝑛, 𝑦) = sup

𝑥∈R𝑀
{(𝑥, 𝑦) − 𝐿 (𝑛, 𝑥)} , (43)

where (⋅, ⋅) denotes the usual inner product in R𝑀 with𝑀 a
given positive integer.

From [2, Theorem 2.2 and Proposition 2.4], we have the
following lemma.

Lemma 3. Let, for every 𝑛 ∈ Z(1, 𝑇), 𝐿(𝑛, 𝑥) be continuously
differentiable and strictly convex in 𝑥 ∈ R𝑀, and

𝐿 (𝑛, 𝑥)

|𝑥|
󳨀→ +∞ 𝑎𝑠 |𝑥| 󳨀→ ∞. (44)

Then for every 𝑛 ∈ Z(1, 𝑇), 𝐿∗(𝑛, 𝑦) is continuously differen-
tiable in 𝑦 ∈ R𝑀 and

𝐿
∗
(𝑛, 𝑦) = (𝑥, 𝑦) − 𝐿 (𝑛, 𝑥)

⇐⇒ 𝑦 = ∇𝐿 (𝑛, 𝑥)

⇐⇒ 𝑥 = ∇𝐿
∗
(𝑛, 𝑦) .

(45)

Remark 4. If, for 𝑥 = (𝑥1, 𝑥2)
𝜏, 𝑥1, 𝑥2 ∈ R𝑀, 𝐿(𝑛, 𝑥) can be

split into two parts 𝐿(𝑛, 𝑥) = 𝐿1(𝑛, 𝑥1) + 𝐿2(𝑛, 𝑥2), then by
(45), we have 𝐿∗(𝑛, 𝑦) = 𝐿

∗

1
(𝑛, 𝑦1) + 𝐿

∗

2
(𝑛, 𝑦2), 𝑦 = (𝑦1, 𝑦2)

𝜏,
and 𝑦1, 𝑦2 ∈ R𝑀.

From [2, Proposition 2.2], we have the following lemma.
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Lemma 5. Let convex lower semicontinuous function 𝐿(𝑛, 𝑥)
be such that, for some 𝜉 > 0, 𝑡 > 1, 𝛽 ≥ 0, and 𝛾 ≥ 0, one has

−𝛽 ≤ 𝐿 (𝑛, 𝑥) ≤ 𝜉𝑡
−1
|𝑥|
𝑡
+ 𝛾 (46)

whenever 𝑥 ∈ R𝑀. Then, if

𝑦 ∈ 𝜕𝐿 (𝑛, 𝑥) = {𝑤 ∈ R
𝑀
: 𝐿 (𝑛, 𝑧) ≥ 𝐿 (𝑛, 𝑥)

+ (𝑤, 𝑧 − 𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ R
𝑀
} ,

(47)

one has

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 ≤ {𝑠𝜉

𝑠/𝑡
[|𝑥| + 𝛽 + 𝛾] + 1}

𝑡−1

, (48)

where 𝑠−1 + 𝑡−1 = 1.

Remark 6. From assumption (4) and 𝑝 > 1,

𝐹 (𝑛, 𝑢1)
󵄨󵄨󵄨󵄨𝑢1

󵄨󵄨󵄨󵄨

󳨀→ +∞ as 󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨 󳨀→ ∞. (49)

And by Lemma 3, 𝐹∗(𝑛, V1) is continuously differentiable in
V1 for every 𝑛 ∈ Z(1, 𝑇).

Furthermore, on the 𝐹∗(𝑛, V1) we have the following.

Lemma 7. For all V1 ∈ R𝑁 and every 𝑛 ∈ Z(1, 𝑇), one has

𝛼
−𝑝/𝑞 |V1|

𝑝

𝑝
≤ 𝐹
∗
(𝑛, V1) ≤ 𝛿

−𝑝/𝑞

󵄨󵄨󵄨󵄨V1
󵄨󵄨󵄨󵄨
𝑝

𝑝
, (50)

󵄨󵄨󵄨󵄨∇𝐹
∗
(𝑛, V1)

󵄨󵄨󵄨󵄨 ≤ (
𝑞

𝛿

󵄨󵄨󵄨󵄨V1
󵄨󵄨󵄨󵄨 + 1)

𝑝−1

. (51)

Proof. By Lemma 3, 𝐹∗(𝑛, V1) = (𝑢1, V1) − 𝐹(𝑛, 𝑢1) ⇔ V1 =
∇𝐹(𝑛, 𝑢1). Let 𝐹1 : R

𝑁
→ R be defined by

𝐹1 (𝑢1) = 𝑐
|𝑢1|
𝑞

𝑞
, (52)

where 𝑐 > 0. Then

𝐹
∗

1
(V1) = sup

𝑢1∈R
𝑁

{(V1, 𝑢1) − 𝑐
󵄨󵄨󵄨󵄨𝑢1

󵄨󵄨󵄨󵄨
𝑞

𝑞
} = 𝑐
−𝑝/𝑞 |V1|

𝑝

𝑝
. (53)

Hence (4), (53), and the fact that 𝐹∗
1
≥ 𝐹
∗

2
if 𝐹1 ≤ 𝐹2 give (50).

To show that (51) holds, we can apply Lemma 5 to
𝐹
∗
(𝑛, V1) with 𝛽 = 𝛾 = 0, 𝜉 = 𝛿

−𝑝/𝑞, 𝑝 = 𝑡 and 𝑥 = V1,
and 𝑦 = ∇𝐹∗(𝑛, V1). Then (48) implies that (51) holds.

By Lemmas 3 and 7,𝐻∗
1
and𝐻∗

2
are well defined and

𝐻
∗

1
(𝑛, V1) = 𝐹

∗
(𝑛, V1) , 𝐻

∗

2
(𝑛, V1) =

|V1|
𝑝

𝑝
. (54)

The variational functional of (14) defined on 𝐸 is

𝐼 (𝑢) =
1

2

𝑇

∑

𝑛=1

(𝐽Δ𝐿𝑢 (𝑛 − 1) , 𝑢 (𝑛)) +

𝑇

∑

𝑛=1

𝐻(𝑛, 𝐿𝑢 (𝑛)) ; (55)

see [11] for details. If

𝑢 (𝑛) = 𝐽V (𝑛) or V (𝑛) = −𝐽𝑢 (𝑛) , (56)

then, by (45) and (54), we obtain

𝐼 (𝑢) =
1

2

𝑇

∑

𝑛=1

(𝐽Δ𝐿𝑢 (𝑛 − 1) , 𝑢 (𝑛)) +

𝑇

∑

𝑛=1

𝐻(𝑛, 𝐿𝑢 (𝑛))

=
1

2

𝑇

∑

𝑛=1

[(Δ𝑢2 (𝑛) , 𝑢1 (𝑛)) − (Δ𝑢1 (𝑛 − 1) , 𝑢2 (𝑛))]

+

𝑇

∑

𝑛=1

[𝐻1 (𝑛, 𝑢1 (𝑛)) + 𝐻2 (𝑢2 (𝑛 + 1))]

=

𝑇

∑

𝑛=1

[
1

2
(Δ𝑢2 (𝑛) , 𝑢1 (𝑛)) −

1

2
(Δ𝑢1 (𝑛 − 1) , 𝑢2 (𝑛))

+ (𝑢1 (𝑛) , ΔV1 (𝑛)) + (𝑢2 (𝑛 + 1) , ΔV2 (𝑛)) ]

+

𝑇

∑

𝑛=1

[− (𝑢1 (𝑛) , ΔV1 (𝑛)) + 𝐻1 (𝑛, 𝑢1 (𝑛))

− (𝑢2 (𝑛 + 1) , ΔV2 (𝑛)) + 𝐻2 (𝑢2 (𝑛 + 1))]

=
1

2

𝑇

∑

𝑛=1

[(ΔV1 (𝑛) , V2 (𝑛)) − (ΔV2 (𝑛 − 1) , V1 (𝑛))]

−

𝑇

∑

𝑛=1

[𝐹
∗
(𝑛, ΔV1 (𝑛)) +

|ΔV2(𝑛)|
𝑝

𝑝
]

= −
1

2

𝑇

∑

𝑛=1

(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

−

𝑇

∑

𝑛=1

[𝐹
∗
(𝑛, ΔV1 (𝑛)) +

|ΔV2(𝑛)|
𝑝

𝑝
] ,

(57)

where

𝐹
∗
(𝑛, ΔV1 (𝑛))

= (𝑢1 (𝑛) , ΔV1 (𝑛)) − 𝐹 (𝑛, 𝑢1 (𝑛))

⇐⇒ ΔV1 (𝑛) = ∇𝐹 (𝑛, 𝑢1 (𝑛))

⇐⇒ 𝑢1 (𝑛) = ∇𝐹
∗
(𝑛, ΔV1 (𝑛)) .

(58)

Now, we introduce a dual action functional

𝐽 (V) =
𝑇

∑

𝑛=1

1

2
(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

+ 𝐹
∗
(𝑛, ΔV1 (𝑛)) +

|ΔV2(𝑛)|
𝑝

𝑝
,

(59)

where V = (V1, V2)
𝜏
∈ 𝐸. Note that 𝐽(V) = 𝐽(Ṽ + V) = 𝐽(Ṽ) for

V = Ṽ + V ∈ 𝐸 with Ṽ ∈ 𝑌 := 𝑊+ ⊕𝑊− and V ∈ 𝑊0; hence it is
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sufficient to consider the functional 𝐽 on the subspace 𝑌 of 𝐸.
By Remark 6, the functional 𝐽 is continuously differentiable
on 𝑌. And, for any ℎ = (ℎ1, ℎ2) ∈ 𝑌, we have

⟨𝐽
󸀠
(V) , ℎ⟩

= lim
𝑠→0

𝐽 (V + 𝑠ℎ) − 𝐽 (V)
𝑠

=
1

2

𝑇

∑

𝑛=1

[(𝐿𝐽Δℎ (𝑛 − 1) , V (𝑛)) + (𝐿𝐽ΔV (𝑛 − 1) , ℎ (𝑛))]

+

𝑇

∑

𝑛=1

(∇𝐹
∗
(𝑛, ΔV1 (𝑛)) , Δℎ1 (𝑛))

+

𝑇

∑

𝑛=1

(𝜙𝑝 (ΔV2 (𝑛)) , Δℎ2 (𝑛))

=

𝑇

∑

𝑛=1

(−V2 (𝑛) + ∇𝐹
∗
(𝑛, ΔV1 (𝑛)) , Δℎ1 (𝑛))

+ (V1 (𝑛 + 1) + 𝜙𝑝 (ΔV2 (𝑛)) , Δℎ2 (𝑛))

=

𝑇

∑

𝑛=1

(Δ (V2 (𝑛 − 1) − ∇𝐹
∗
(𝑛 − 1, ΔV1 (𝑛 − 1))) , ℎ1 (𝑛))

− (Δ (V1 (𝑛) + 𝜙𝑝 (ΔV2 (𝑛 − 1))) , ℎ2 (𝑛)) .
(60)

If V is a critical point of 𝐽on the subspace𝑌, that is, ⟨𝐽󸀠(V), ℎ⟩ =
0 for any ℎ ∈ 𝑌, then

V2 (𝑛) = ∇𝐹
∗
(𝑛, ΔV1 (𝑛)) − 𝑐1,

−V1 (𝑛 + 1) = 𝜙𝑝 (ΔV2 (𝑛)) − 𝑐2.
(61)

That is,

𝐿𝐽V (𝑛) + 𝑐 = ∇𝐻∗ (𝑛, ΔV (𝑛)) , (62)

where 𝑐 = (𝑐1, 𝑐2) ∈ R2𝑁. Setting 𝑢(𝑛) = (𝑢1(𝑛), 𝑢2(𝑛))
𝜏
=

𝐽V(𝑛)+𝑐, we getΔ𝑢(𝑛) = 𝐽ΔV(𝑛), and by relation (45) and (62),
ΔV(𝑛) = ∇𝐻(𝑛, 𝐿𝑢(𝑛)).Therefore, 𝐽Δ𝑢(𝑛)+∇𝐻(𝑛, 𝐿𝑢(𝑛)) = 0.
And 𝑢(𝑛 + 𝑇) = 𝑢(𝑛) due to V(𝑛 + 𝑇) = V(𝑇). Hence, we have
the following.

Remark 8. If V ∈ 𝑌 is a critical point of the dual action
functional 𝐽, then there exists a constant 𝑐 ∈ R2𝑁 such that
𝑢 = (𝑢1, 𝑢2)

𝜏 with 𝑢1, 𝑢2 ∈ R𝑁,

𝑢 (𝑛) = 𝐽V (𝑛) + 𝑐 (63)

is a solution of (14), and 𝑢1 is a solution of (1). If V is a
nontrivial critical point, then 𝑢 is a nonconstant 𝑇-periodic
solution of (14), and 𝑢1 is a nonconstant 𝑇-periodic solution
of (1).

3. Proof of the Main Result

As our proof of Theorem 1 is mainly based on the computa-
tion of the critical groups in Morse theory, we recall several

basic concepts about critical groups [2, 24]. Let 𝐻 be a real
Hilbert space, and 𝑓 ∈ 𝐶

1
(𝐻,R). Denote

𝑓
𝑐
= {𝑥 ∈ 𝐻 : 𝑓 (𝑥) ≤ 𝑐} ,

K𝑐 = {𝑥 ∈ 𝐻 : 𝑓
󸀠
(𝑥) = 0, 𝑓 (𝑥) = 𝑐}

(64)

for 𝑐 ∈ R.

Definition 9. The functional 𝑓 satisfies the Palais-Smale (PS)
condition if any sequence {𝑥𝑚} ⊂ 𝐻 such that {𝑓(𝑥𝑚)} is
bounded and 𝑓

󸀠
(𝑥𝑚) → 0 as 𝑚 → ∞ has a convergent

subsequence.

In [27], Cerami introduced a weak version of the (PS)
condition as follows.

Definition 10. The functional𝑓 satisfies the Cerami condition
(the (𝐶) condition for short) if any sequence {𝑥𝑚} ⊂ 𝐻 such
that {𝑓(𝑥𝑚)} is bounded and (1 + ‖𝑥𝑚‖)‖𝑓

󸀠
(𝑥𝑚)‖ → 0 as

𝑚 → ∞ has a convergent subsequence.

If 𝑓 satisfies the (PS) condition or the (𝐶) condition, then
𝑓 also satisfies the following deformation condition which is
essential in Morse theory [28, 29].

Definition 11 (deformation condition). The functional 𝑓 sat-
isfies the (𝐷𝑐) condition at the level 𝑐 ∈ R if, for any 𝜖 > 0 and
any neighborhoodN ofK𝑐, there are 𝜖 > 0 and a continuous
deformation 𝜂 : [0, 1] × 𝐻 → 𝐻 such that

(1) 𝜂(0, 𝑥) = 𝑥 for all 𝑥 ∈ 𝐻;
(2) 𝜂(𝑡, 𝑥) = 𝑥 for all 𝑥 ∉ 𝑓−1([𝑐 − 𝜖, 𝑐 + 𝜖]);
(3) 𝑓(𝜂(𝑡, 𝑥)) is nonincreasing in 𝑡 for any 𝑥 ∈ 𝐻;
(4) 𝜂(1, 𝑓𝑐+𝜖 \N) ⊂ 𝑓

𝑐−𝜖.
𝑓 satisfies the (𝐷) condition if 𝑓 satisfies the (𝐷𝑐) condition
for all 𝑐 ∈ R.

Let 𝑥0 be an isolated critical point of 𝑓 with 𝑓(𝑥0) = 𝑐 ∈

R, and let 𝑈 be a neighborhood of 𝑥0; the group
𝐶𝑞 (𝑓, 𝑥0) := 𝐻𝑞 (𝑓

𝑐
∩ 𝑈, 𝑓

𝑐
∩ 𝑈 \ {𝑥0}) , 𝑞 ∈ Z (65)

is called the 𝑞th critical group of 𝑓 at 𝑥0, where 𝐻𝑞(𝐴, 𝐵)
denotes the 𝑞th singular relative homology group of the
pair (𝐴, 𝐵) over a field F, which is defined to be quotient
𝐻𝑞(𝐴, 𝐵) = 𝑍𝑞(𝐴, 𝐵)/𝐵𝑞(𝐴, 𝐵), where 𝑍𝑞(𝐴, 𝐵) is the 𝑞th
singular relative closed chain group and 𝐵𝑞(𝐴, 𝐵) is the 𝑞th
singular relative boundary chain group [30].

Bartsch and Li [25] defined the 𝑞th critical group of 𝑓 at
infinity as

𝐶𝑞 (𝑓,∞) := 𝐻𝑞 (𝐻, 𝑓
𝑎
) , 𝑞 ∈ Z, (66)

provided that 𝑓(K) is bounded from below by 𝑎 ∈ R with
K = {𝑥 ∈ 𝐸 : 𝑓

󸀠
(𝑥) = 0} and 𝑓 satisfies the (𝐷𝑐) condition

for all 𝑐 ≤ 𝑎.
Assume ♯K < ∞ and 𝑓 satisfies the (𝐷) condition. The

Morse-type numbers of the pair (𝐻, 𝑓𝑎) are defined by

𝑀𝑞 = 𝑀𝑞 (𝐻, 𝑓
𝑎
) = ∑

𝑥∈K

dim𝐶𝑞 (𝑓, 𝑥) , (67)
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and the Betti numbers of the pair (𝐻, 𝑓𝑎) are

𝛽𝑞 := dim𝐶𝑞 (𝑓,∞) ; (68)

see [2, 24]. Furthermore, the following relations hold:

𝑞

∑

𝑗=0

(−1)
𝑞−𝑗
𝑀𝑗 ≥

𝑞

∑

𝑗=0

(−1)
𝑞−𝑗
𝛽𝑗, 𝑞 ∈ Z,

∞

∑

𝑞=0

𝑀𝑞 =

∞

∑

𝑞=0

𝛽𝑞.

(69)

Thus, if 𝐶𝑞(𝑓,∞) ≇ 0, that is, 𝛽𝑞 ̸= 0 for some 𝑞 ∈ Z, then
there must exist a critical point 𝑥 of 𝑓 with 𝐶𝑞(𝑓, 𝑥) ≇ 0.
Furthermore, the following results hold.

Proposition 12 (see [24]). Let 𝐻 be a real Hilbert space and
𝑓 ∈ 𝐶

2
(𝐻,R). Assume that ♯K < ∞ and that 𝑓 satisfies the

(𝐷) condition. If there exists some 𝑞 ∈ Z such that

(i) 𝐶𝑞(𝑓,∞) ≇ 0, then 𝑓must have a critical point 𝑥 with
𝐶𝑞(𝑓, 𝑥) ≇ 0,

(ii) 𝐶𝑞(𝑓, 0) ≇ 𝐶𝑞(𝑓,∞), then 𝑓 must have a nontrivial
critical point.

We will use the following result to compute the critical
groups of 𝐽 at infinity.

Proposition 13 (see [24]). Let the functional 𝑓 : 𝐻 → R be
of the form

𝑓 (𝑥) =
1

2
⟨𝐴𝑥, 𝑥⟩ + 𝑄 (𝑥) , (70)

where 𝐴 : 𝐻 → 𝐻 is a self-adjoint linear operator such that 0
is not in the spectrum of 𝐴, 𝑉± are invariant subspaces corres-
ponding to the positive/negative of spectrum of 𝐴, respectively,
𝐴
±
:= 𝐴|𝑉± has a bounded inverse on 𝑉±, and 𝑄 ∈ 𝐶

1
(𝐻,R)

has a compact differential 𝑄󸀠(𝑥) with

lim
‖𝑥‖→∞

󵄩󵄩󵄩󵄩󵄩
𝑄
󸀠
(𝑥)

󵄩󵄩󵄩󵄩󵄩

‖𝑥‖
= 0. (71)

Assume that𝑚 = dim𝑉
− is finite and 𝑓 satisfies the deforma-

tion condition. Then

𝐶𝑞 (𝑓,∞) = 𝛿𝑞,𝑚F, 𝑞 ∈ Z. (72)

For the proof of Theorem 1, in what follows we may
assume that 𝐽 has only finitely many critical points. Firstly,
we show that 𝐽 satisfies the condition (𝐶) which guarantees
that the critical groups 𝐶∗(𝐽,∞) of 𝐽 at infinity make sense.
Then, via computations of critical groups of 𝐽 at infinity and
at zero, we complete the proof of Theorem 1.

Lemma 14. Under the conditions of Theorem 1, the functional
𝐽 defined by (59) satisfies (𝐶) condition.

Proof. Let {V(𝑙)} ⊂ 𝑌 be a Cerami sequence of 𝐽. Since dim𝑌

is finite, we only need to show that {V(𝑙)} is bounded.

If {V(𝑙)} is unbounded, up to a subsequence, still denoted
by {V(𝑙)}, we may assume that, for some 𝑐 ∈ R,

𝐽 (V(𝑙)) 󳨀→ 𝑐,
󵄩󵄩󵄩󵄩󵄩
V(𝑙)

󵄩󵄩󵄩󵄩󵄩
󳨀→ ∞,

󵄩󵄩󵄩󵄩󵄩
𝐽
󸀠
(V(𝑙))

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
V(𝑙)

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0.

(73)

In particular,

lim
𝑙→∞

(𝐽 (V(𝑙)) −
1

2
⟨𝐽
󸀠
(V(𝑙)) , V(𝑙)⟩) = 𝑐. (74)

However, by (50) and (51), we have

𝐽 (V(𝑙)) −
1

2
⟨𝐽
󸀠
(V(𝑙)) , V(𝑙)⟩

=

𝑇

∑

𝑛=1

𝐹
∗
(𝑛, ΔV(𝑙)

1
(𝑛)) −

1

2
(∇𝐹
∗
(𝑛, ΔV(𝑙)

1
(𝑛)) , ΔV(𝑙)

1
(𝑛))

+ (
1

𝑝
−
1

2
)
󵄨󵄨󵄨󵄨󵄨
ΔV(𝑙)
2
(𝑛)

󵄨󵄨󵄨󵄨󵄨

𝑝

≥

𝑇

∑

𝑛=1

[
𝛼
−𝑝/𝑞

𝑝
−
1

2
(
𝑞

𝛿
)

𝑝−1

]
󵄨󵄨󵄨󵄨󵄨
ΔV(𝑙)
1
(𝑛)

󵄨󵄨󵄨󵄨󵄨

𝑝

+ (
1

𝑝
−
1

2
)
󵄨󵄨󵄨󵄨󵄨
ΔV(𝑙)
2
(𝑛)

󵄨󵄨󵄨󵄨󵄨

𝑝

.

(75)

By relation (11) and 𝑢(𝑙)(𝑛) = 𝐽V(𝑙)(𝑛), one has

V(𝑙)
1
(𝑛) = −𝜙𝑝 (Δ (𝑥 (𝑛 − 1))) , V(𝑙)

2
(𝑛) = 𝑥 (𝑛) , (76)

which implies that V(𝑙)
1
(𝑛) = −𝜙𝑝(Δ(V

(𝑙)

2
(𝑛 − 1))), and hence

󵄩󵄩󵄩󵄩󵄩
V(𝑙)
2

󵄩󵄩󵄩󵄩󵄩
󳨀→ ∞ as 󵄩󵄩󵄩󵄩󵄩

V(𝑙)
󵄩󵄩󵄩󵄩󵄩
󳨀→ ∞. (77)

At the same time, note that

𝑇

∑

𝑛=1

|ΔV(𝑙)
2
(𝑛)|
𝑝

=
󵄩󵄩󵄩󵄩󵄩
ΔV(𝑙)
2

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
≥ 𝑐
𝑝

1

󵄩󵄩󵄩󵄩󵄩
ΔV(𝑙)
2

󵄩󵄩󵄩󵄩󵄩

𝑝

≥ 𝑐
𝑝

1
𝜇
𝑝/2

min
󵄩󵄩󵄩󵄩󵄩
V(𝑙)
2

󵄩󵄩󵄩󵄩󵄩

𝑝

,

(78)

so,

𝑇

∑

𝑛=1

1

𝑞
|ΔV(𝑙)
2
(𝑛)|
𝑝

󳨀→ ∞ as 󵄩󵄩󵄩󵄩󵄩
V(𝑙)

󵄩󵄩󵄩󵄩󵄩
󳨀→ ∞. (79)

And assumption (5) implies that

𝛼
−𝑝/𝑞

𝑝
−
1

2
(
𝑞

𝛿
)

𝑝−1

≥ 0, (80)

so

lim
𝑙→∞

(𝐽 (V(𝑙)) −
1

2
⟨𝐽
󸀠
(V(𝑙)) , V(𝑙)⟩) = +∞ (81)

holds which gives a contradiction to (74). This completes the
proof.
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Lemma 15. Under the conditions of Theorem 1, 𝐶𝑞(𝐽,∞) ≅

𝛿𝑞,𝑙F with 𝑙 = (𝑇 − 1)𝑁, 𝑞 ∈ Z.

Proof. Recall the dual action functional 𝐽 : 𝑌 → R being of
the form

𝐽 (V) =
𝑇

∑

𝑛=1

1

2
(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

+ 𝐹
∗
(𝑛, ΔV1 (𝑛)) +

|ΔV2(𝑛)|
𝑝

𝑝
.

(82)

For any 𝑢̃, V ∈ 𝑌, if we define a bilinear function as 𝑎(𝑢̃, V) =
∑
𝑇

𝑛=1
(𝐿𝐽Δ𝑢̃(𝑛 − 1), V(𝑛)), then by (40) one has

|𝑎 (𝑢̃, V)| ≤ (
𝑇

∑

𝑛=1

|𝐿𝐽Δ𝑢̃ (𝑛 − 1)|
2
)

1/2

(

𝑇

∑

𝑛=1

|V (𝑛)|2)
1/2

= (

𝑇

∑

𝑛=1

|Δ𝑢̃ (𝑛)|
2
)

1/2

(

𝑇

∑

𝑛=1

|V (𝑛)|2)
1/2

≤ √𝜇max ‖𝑢̃‖ ‖V‖ .

(83)

By Riese representation theorem [31], we can define the
unique continuous self-adjoint linear operator 𝐴 on 𝑌 by
⟨𝐴V, V⟩ = ∑

𝑇

𝑛=1
(𝐿𝐽ΔV(𝑛 − 1), V(𝑛)). If 𝜆 is in the spectrum

of 𝐴, then the equation 𝐿𝐽ΔV(𝑛 − 1) = 𝜆V(𝑛) yields nontrivial
solutions in 𝐸 which turns out to be the same as (28) with
𝑢 being replaced by V and the same invariant subspaces 𝑊+
and 𝑊− which can be given by eigensubspace. It is obvious
that 0 is not in the spectrum of 𝐴 from the definition of the
subspaces of𝑊+ and𝑊−. Hence, by Proposition 13, we only
need to prove that

󵄩󵄩󵄩󵄩󵄩
𝑄
󸀠
(V)
󵄩󵄩󵄩󵄩󵄩
= 𝑜 (‖V‖) as ‖V‖ 󳨀→ ∞, (84)

where

𝑄 (V) =
𝑇

∑

𝑛=1

𝐹
∗
(𝑛, ΔV1 (𝑛)) +

1

𝑝
|ΔV2(𝑛)|

𝑝
. (85)

Note that

⟨𝑄
󸀠
(V) , ℎ⟩ =

𝑇

∑

𝑛=1

(∇𝐹
∗
(𝑛, ΔV1 (𝑛)) , Δℎ1 (𝑛))

+ (|ΔV2 (𝑛) |
𝑝−2

ΔV2 (𝑛) , Δℎ2 (𝑛))
(86)

with ℎ(𝑛) = (ℎ1(𝑛), ℎ2(𝑛))
𝜏
∈ 𝑌. And

lim
‖V‖→∞

⟨𝑄
󸀠
(V) , V⟩

‖V‖2

= lim
‖V‖→∞

𝑇

∑

𝑛=1

(∇𝐹
∗
(𝑛, ΔV1 (𝑛)) , ΔV1 (𝑛))

‖V‖2

+
(|ΔV2(𝑛)|

𝑝−2
ΔV2 (𝑛) , ΔV2 (𝑛))

‖V‖2

= lim
‖V‖→∞

𝑇

∑

𝑛=1

(∇𝐹
∗
(𝑛, ΔV1 (𝑛)) , ΔV1 (𝑛))

󵄩󵄩󵄩󵄩ΔV1
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩ΔV1
󵄩󵄩󵄩󵄩
2

‖V‖2

+
(|ΔV2(𝑛)|

𝑝−2
ΔV2 (𝑛) , ΔV2 (𝑛))
󵄩󵄩󵄩󵄩ΔV2

󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩ΔV2
󵄩󵄩󵄩󵄩
2

‖V‖2
.

(87)

By (51), 1 < 𝑝 < 2, and the equivalence of ‖V‖ and ‖ΔV‖, we see
that (84) holds. Hence 𝐶𝑞(𝐽,∞) = 𝛿𝑞,(𝑇−1)𝑁F by Proposition
13 and (36).

Proof of Theorem 1. First, we prove that 0 is a local minimum
of 𝐽 and, hence,

𝐶𝑞 (𝐽, 0) ≅ 𝛿𝑞,0F. (88)

Firstly, by (40), for all V ∈ 𝑌, we have

𝑇

∑

𝑛=1

(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

≥ −(

𝑇

∑

𝑛=1

|𝐿𝐽ΔV (𝑛 − 1)|2)
1/2

(

𝑇

∑

𝑛=1

|V (𝑛)|2)
1/2

= −(

𝑇

∑

𝑛=1

|ΔV (𝑛)|2)
1/2

(

𝑇

∑

𝑛=1

|V (𝑛)|2)
1/2

≥ −𝜇
1/2

max

𝑇

∑

𝑛=1

|V(𝑛)|2 ≥ −2‖V‖2.

(89)

Hence, by (40), (42), and (50), for V ∈ 𝑌, we have

𝐽 (V) =
𝑇

∑

𝑛=1

1

2
(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

+ 𝐹
∗
(𝑛, ΔV1 (𝑛)) +

|ΔV2(𝑛)|
𝑝

𝑝

≥ −

𝑇

∑

𝑛=1

|V(𝑛)|2 + 𝛼−𝑝/𝑞
𝑇

∑

𝑛=1

|ΔV1(𝑛)|
𝑝

𝑝
+

𝑇

∑

𝑛=1

|ΔV2(𝑛)|
𝑝

𝑝

≥ −‖V‖2 +
𝛼
−𝑝/𝑞

𝑐
𝑝

1

𝑝

󵄩󵄩󵄩󵄩ΔV1
󵄩󵄩󵄩󵄩
𝑝
+
𝑐
𝑝

1

𝑝

󵄩󵄩󵄩󵄩ΔV2
󵄩󵄩󵄩󵄩
𝑝
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≥ −‖V‖2 +
𝛼
−𝑝/𝑞

𝑐
𝑝

1
𝜇
𝑝/2

min
𝑝

󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩
𝑝
+
𝑐
𝑝

1
𝜇
𝑝/2

min
𝑝

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩
𝑝

= −
󵄩󵄩󵄩󵄩V1

󵄩󵄩󵄩󵄩
2
−
󵄩󵄩󵄩󵄩V2

󵄩󵄩󵄩󵄩
2
+
𝛼
−𝑝/𝑞

𝑐
𝑝

1
𝜇
𝑝/2

min
𝑝

󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩
𝑝
+
𝑐
𝑝

1
𝜇
𝑝/2

min
𝑝

󵄩󵄩󵄩󵄩V2
󵄩󵄩󵄩󵄩
𝑝

=
󵄩󵄩󵄩󵄩V1

󵄩󵄩󵄩󵄩
𝑝
(
𝛼
−𝑝/𝑞

𝑐
𝑝

1
𝜇
𝑝/2

min
𝑝

−
󵄩󵄩󵄩󵄩V1

󵄩󵄩󵄩󵄩
2−𝑝

)

+
󵄩󵄩󵄩󵄩V2

󵄩󵄩󵄩󵄩
𝑝
(
𝑐
𝑝

1
𝜇
𝑝/2

min
𝑝

−
󵄩󵄩󵄩󵄩V2

󵄩󵄩󵄩󵄩
2−𝑝

) .

(90)

Take

𝛿 = min
{

{

{

(
𝛼
−𝑝/𝑞

𝑐
𝑝

1
𝜇
𝑝/2

min
2𝑝

)

1/(2−𝑝)

, (
𝑐
𝑝

1
𝜇
𝑝/2

min
2𝑝

)

1/(2−𝑝)

, 1
}

}

}

.

(91)

Then, for ‖V‖ ≤ 𝛿, one has

𝐽 (V) ≥ 𝛿 (󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩
𝑝
+
󵄩󵄩󵄩󵄩V2

󵄩󵄩󵄩󵄩
𝑝
) ≥ 𝛿 (

󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩V2

󵄩󵄩󵄩󵄩
2
)

= 𝛿‖V‖2 ≥ 0 = 𝐽 (0) .
(92)

Hence 0 is a local minimum of 𝐽, and (88) must hold. By
Lemma 15, (88), and Proposition 12, 𝐽 must have at least one
nontrivial critical point. The proof is completed.
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