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Some Gronwall-Bellman-Gamidov type integral inequalities with power nonlinearity and their weakly singular analogues are
established, which can give the explicit bound on solution of a class of nonlinear fractional integral equations. An example is
presented to show the application for the qualitative study of solutions of a fractional integral equation with the Riemann-Liouville
fractional operator.

1. Introduction

Integral inequalities, which provide explicit bounds on
unknown functions, play a fundamental role in the devel-
opment of the theory of linear and nonlinear differential
equation and integral equation. One of the best known and
widely used inequalities is the so-called Gronwall-Bellman
integral inequality. In view of the important applications
of the Gronwall-Bellman inequality, in the past few years,
Pachpatte [1–3] established a number of new generalizations
of such inequality which can be used as powerful tools in
the study of certain new classes of differential and integral
equations. Meanwhile, many authors have researched vari-
ous generalizations of the Gronwall-Bellman inequality; for
example, we refer the reader to [4–12].

In [6], Bǎınov and Simeonov discussed the following
useful integral inequality:

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

0

𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠, (1)

which came from the study of the boundary value problem
for higher order differential equations by Gamidov [13] and
was extended by Pachpatte [2] as follows:

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

0

𝑓 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫

𝑇

0

𝑔 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠. (2)

Remark 1. It should be noted that the derived result in [2] is
not right. In the proof, it involves the definition of 𝑧(𝛼), which
was treated as a constant by mistake. For example, consider
the following integral equation:

𝑢 (𝑡) = 1 + ∫

1

0

𝑡𝑠𝑢 (𝑠) 𝑑𝑠, (3)

in which 𝑐 = 1, 𝑓(𝑡, 𝑠) = 0, 𝑔(𝑡, 𝑠) = 𝑡𝑠, and 𝑇 = 1.
We can obtain the solution of the equation above; that is,
𝑢(𝑡) = (3/4)𝑡+1. According to the formula of its upper bound
reported in [2], one gets that 𝑢(𝑡) = (3/4)𝑡+1 ≤ 1/(1−(1/2)𝑡)
for 𝑡 ∈ [0, 1]. Clearly, the result does not hold for 𝑡 ∈ [0, 1].
Hence, a revised one will be provided in later section.

On the other hand, Zheng [14] also established a weakly
singular version of the Gronwall-Bellman-Gamidov inequal-
ity as follows:

𝑢 (𝑡) ≤ 𝐶 +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1
𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

(4)

and discussed its application in a fractional integral equa-
tion with the modified Riemann-Liouville derivative. As for
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weakly singular inequalities and their applications, more
results can be found (e.g., see [15–23] and the references
therein).

In this paper, motivated by the work in [2, 6, 14], we con-
sider a Gronwall-Bellman-Gamidov integral inequality with
power nonlinearity,

𝑢
𝑚
(𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

𝑓 (𝑠) 𝑢
𝑛
(𝑠) 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠) 𝑢
𝑟
(𝑠) 𝑑𝑠,

(5)

and its weakly singular analogue

𝑢
𝑚
(𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

(𝑡
𝛼
1
− 𝑠
𝛼
1
)
𝛽
1
−1

𝑠
𝛾
1
−1
𝑓 (𝑠) 𝑢

𝑛
(𝑠) 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

(𝑇
𝛼
2
− 𝑠
𝛼
2
)
𝛽
2
−1

𝑠
𝛾
2
−1
𝑔 (𝑠) 𝑢

𝑟
(𝑠) 𝑑𝑠,

(6)

where 𝑚 ≥ 𝑛 ≥ 0, 𝑚 ≥ 𝑟 ≥ 0, and [𝛼
𝑖
, 𝛽
𝑖
, 𝛾
𝑖
] (𝑖 = 1, 2) is

the ordered parameter group. The presented inequalities can
be used as a handy tool in the qualitative as well as quan-
titative analysis of solutions of certain fractional differential
equation and integral equation. Furthermore, an application
of our result to certain fractional integral equation with the
Riemann-Liouville (R-L) fractional operator is also involved.

2. Nonlinear Gronwall-Bellman-Gamidov
Inequalities

Throughout this paper, 𝑅 denotes the set of real numbers,
𝑅
+
= [0, +∞), 𝑅

0
= (0, +∞), and 𝐼 = [0, 𝑇] (𝑇 ≥ 0 is

a constant). 𝐶(𝑋, 𝑌) denotes the collection of continuous
functions from𝑋 to 𝑌.

We firstly give some lemmas, which will be used in the
proof of the main results.

Lemma 2 (see [10]). Let 𝑎 ≥ 0,𝑚 ≥ 𝑛 ≥ 0, and𝑚 ̸= 0. Then

𝑎
𝑛/𝑚

≤

𝑛

𝑚

𝐾
(𝑛−𝑚)/𝑚

𝑎 +

𝑚 − 𝑛

𝑚

𝐾
𝑛/𝑚 (7)

for any 𝐾 > 0.

Lemma 3. Suppose 𝑢(𝑡),𝑚(𝑡), 𝑛(𝑡), and 𝑙(𝑡) ∈ 𝐶(𝐼, 𝑅
+
). If

𝑢 (𝑡) ≤ 𝑚 (𝑡) + 𝑛 (𝑡) ∫

𝑇

0

𝑙 (𝑠) 𝑢 (𝑠) 𝑑𝑠, (8)

then

𝑢 (𝑡) ≤ 𝑚 (𝑡) +

𝑛 (𝑡) ∫

𝑇

0
𝑚(𝑠) 𝑙 (𝑠) 𝑑𝑠

1 − ∫

𝑇

0
𝑛 (𝑠) 𝑙 (𝑠) 𝑑𝑠

, (9)

for 𝑡 ∈ 𝐼, provided that ∫𝑇
0
𝑛(𝑠)𝑙(𝑠)𝑑𝑠 < 1.

Proof. Let 𝑘 = ∫

𝑇

0
𝑙(𝑠)𝑢(𝑠)𝑑𝑠. Obviously, 𝑘 is a constant. It

follows from (8) that

𝑢 (𝑡) ≤ 𝑚 (𝑡) + 𝑛 (𝑡) 𝑘, (10)

which yields

𝑙 (𝑡) 𝑢 (𝑡) ≤ 𝑚 (𝑡) 𝑙 (𝑡) + 𝑛 (𝑡) 𝑙 (𝑡) 𝑘. (11)

Integrating (11) with respect to 𝑡 from 0 to 𝑇, we have

𝑘 = ∫

𝑇

0

𝑙 (𝑠) 𝑢 (𝑠) 𝑑𝑠 ≤ ∫

𝑇

0

𝑚(𝑠) 𝑙 (𝑠) 𝑑𝑠 + 𝑘∫

𝑇

0

𝑛 (𝑠) 𝑙 (𝑠) 𝑑𝑠.

(12)

It is easy to observe that

𝑘 ≤

∫

𝑇

0
𝑚(𝑠) 𝑙 (𝑠) 𝑑𝑠

1 − ∫

𝑇

0
𝑛 (𝑠) 𝑙 (𝑠) 𝑑𝑠

, (13)

provided that ∫𝑇
0
𝑛(𝑠)𝑙(𝑠)𝑑𝑠 < 1. Substituting the inequality

above into (10), we get (9).

Lemma 4. Suppose 𝑢(𝑡), 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑓(𝑡), and 𝑔(𝑡) ∈

𝐶(𝐼, 𝑅
+
). If 𝑎(𝑡), 𝑏(𝑡), and 𝑐(𝑡) are nondecreasing and 𝑢(𝑡)

satisfies

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠 + 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

(14)

then

𝑢 (𝑡)

≤
[

[

𝑎 (𝑡) +𝑐 (𝑡)

×

∫

𝑇

0
𝑎 (𝑠) 𝑔 (𝑠) exp {𝑏 (𝑠) ∫𝑠

0
𝑓 (𝜎) 𝑑𝜎} 𝑑𝑠

1 − ∫

𝑇

0
𝑐 (𝑠) 𝑔 (𝑠) exp {𝑏 (𝑠) ∫𝑠

0
𝑓 (𝜎) 𝑑𝜎} 𝑑𝑠

]

]

× exp{𝑏 (𝑡) ∫
𝑡

0

𝑓 (𝜎) 𝑑𝜎} ,

(15)

for 𝑡 ∈ 𝐼, provided that

∫

𝑇

0

𝑐 (𝑠) 𝑔 (𝑠) exp{𝑏 (𝑠) ∫
𝑠

0

𝑓 (𝜎) 𝑑𝜎}𝑑𝑠 < 1. (16)

Proof. Fix any 𝑇∗, 0 < 𝑇∗ < 𝑇; then for 0 ≤ 𝑡 ≤ 𝑇∗, we have

𝑢 (𝑡) ≤ 𝑎 (𝑇
∗
) + 𝑏 (𝑇

∗
) ∫

𝑡

0

𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+ 𝑐 (𝑇
∗
) ∫

𝑇

0

𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

(17)

since 𝑎(𝑡), 𝑏(𝑡), and 𝑐(𝑡) are nondecreasing. Define 𝑧(𝑡) by the
right side of (17); then 𝑢(𝑡) ≤ 𝑧(𝑡),

𝑧 (0) = 𝑎 (𝑇
∗
) + 𝑐 (𝑇

∗
) ∫

𝑇

0

𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠 :=Z (0, 𝑇
∗
) , (18)

𝑧
󸀠
(𝑡) = 𝑏 (𝑇

∗
) 𝑓 (𝑡) 𝑢 (𝑡) ≤ 𝑏 (𝑇

∗
) 𝑓 (𝑡) 𝑧 (𝑡) (19)



Abstract and Applied Analysis 3

for 0 ≤ 𝑡 ≤ 𝑇∗. From (19), we have

𝑧
󸀠
(𝑡)

𝑧 (𝑡)

≤ 𝑏 (𝑇
∗
) 𝑓 (𝑡) . (20)

Letting 𝑡 = 𝜎 in (20) and integrating it with respect to 𝜎 from
0 to 𝑇∗, we get

𝑧 (𝑇
∗
) ≤ 𝑧 (0) exp{𝑏 (𝑇∗) ∫

𝑇
∗

0

𝑓 (𝜎) 𝑑𝜎}

=Z (0, 𝑇
∗
) exp{𝑏 (𝑇∗) ∫

𝑇
∗

0

𝑓 (𝜎) 𝑑𝜎} .

(21)

Since 𝑇∗ is arbitrary, from (21) with 𝑇∗ replaced by 𝑡 and
𝑢(𝑡) ≤ 𝑧(𝑡), we have

𝑢 (𝑡) ≤ 𝑧 (𝑡) ≤ 𝑧 (0) exp{𝑏 (𝑡) ∫
𝑡

0

𝑓 (𝜎) 𝑑𝜎}

=Z (0, 𝑡) exp{𝑏 (𝑡) ∫
𝑡

0

𝑓 (𝜎) 𝑑𝜎} ,

(22)

where

𝑧 (0) =Z (0, 𝑡) = 𝑎 (𝑡) + 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠. (23)

According to (22), it follows from (23) that

Z (0, 𝑡) = 𝑎 (𝑡) + 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠

≤ 𝑎 (𝑡) + 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠)Z (0, 𝑠)

× exp{𝑏 (𝑠) ∫
𝑠

0

𝑓 (𝜎) 𝑑𝜎}𝑑𝑠.

(24)

Applying Lemma 3, we have

Z (0, 𝑡) ≤ 𝑎 (𝑡)

+ 𝑐 (𝑡)

∫

𝑇

0
𝑎 (𝑠) 𝑔 (𝑠) exp {𝑏 (𝑠) ∫𝑠

0
𝑓 (𝜎) 𝑑𝜎} 𝑑𝑠

1 − ∫

𝑇

0
𝑐 (𝑠) 𝑔 (𝑠) exp {𝑏 (𝑠) ∫𝑠

0
𝑓 (𝜎) 𝑑𝜎} 𝑑𝑠

.

(25)

Substituting the inequality above into (20), we can get (13).
The proof is complete.

Remark 5. Even if 𝑎(𝑡), 𝑏(𝑡), and 𝑐(𝑡) are not nondecreasing,
the result also holds, since we can replace it by 𝑎(𝑡) =

max
0≤𝑠≤𝑡

𝑎(𝑠), 𝑏(𝑡) = max
0≤𝑠≤𝑡

𝑏(𝑠), and 𝑐(𝑡) = max
0≤𝑠≤𝑡

𝑐(𝑠).

Remark 6. Pachpatte [24] also discussed inequality (14) and
derived a slightly complicated bound, but the formula of
bound of 𝑢(𝑡) in our lemma is quite simple and can be
extended easily.

Theorem 7. Let 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑓(𝑡), and 𝑔(𝑡) be defined as in
Lemma 4. Suppose that 𝑢(𝑡) ∈ 𝐶(𝐼, 𝑅

+
) satisfies (5). If

∫

𝑇

0

C (𝑠)G (𝑠) exp{B (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠 < 1, (26)

then

𝑢 (𝑡)

≤ {𝑎 (𝑡) + [A (𝑡) +C (𝑡)

× (∫

𝑇

0

A (𝑠)G (𝑠)

× exp{B (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)

× (1 − ∫

𝑇

0

C (𝑠)G (𝑠)

× exp{B (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)

−1

]

× exp{B (𝑡) ∫

𝑡

0

F (𝜎) 𝑑𝜎}}

1/𝑚

,

(27)

for 𝑡 ∈ 𝐼, where 𝑚 ≥ 𝑛 ≥ 0, 𝑚 ≥ 𝑟 ≥ 0, 𝑚, 𝑛, and 𝑟 are con-
stants, and

A (𝑡) = 𝑏 (𝑡) ∫

𝑡

0

𝑓 (𝑠) [

𝑛

𝑚

𝐾
(𝑛−𝑚)/𝑚

1
(𝑠) 𝑎 (𝑠)

+

𝑚 − 𝑛

𝑚

𝐾
𝑛/𝑚

1
(𝑠)] 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠) [

𝑟

𝑚

𝐾
(𝑟−𝑚)/𝑚

2
(𝑠) 𝑎 (𝑠)

+

𝑚 − 𝑟

𝑚

𝐾
𝑟/𝑚

2
(𝑠)] 𝑑𝑠,

B (𝑡) =

𝑛

𝑚

𝑏 (𝑡) , C (𝑡) =

𝑟

𝑚

𝑐 (𝑡) ,

F (𝑡) = 𝑓 (𝑡)𝐾
(𝑛−𝑚)/𝑚

1
(𝑡) , G (𝑡) = 𝑔 (𝑡)𝐾

(𝑟−𝑚)/𝑚

2
(𝑡) ,

(28)

for any 𝐾
𝑖
(𝑡) ∈ 𝐶(𝐼, 𝑅

0
) (𝑖 = 1, 2).

Proof. Letting

V (𝑡) = 𝑏 (𝑡) ∫
𝑡

0

𝑓 (𝑠) 𝑢
𝑛
(𝑠) 𝑑𝑠 + 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠) 𝑢
𝑟
(𝑠) 𝑑𝑠, (29)

from (5), we have

𝑢
𝑚
(𝑡) ≤ 𝑎 (𝑡) + V (𝑡) , (30)

or

𝑢 (𝑡) ≤ (𝑎 (𝑡) + V (𝑡))1/𝑚. (31)
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Applying Lemma 2, for any𝐾
𝑖
(𝑡) ∈ 𝐶(𝐼, 𝑅

0
) (𝑖 = 1, 2), we

get

𝑢
𝑛
(𝑡) ≤ (𝑎 (𝑡) + V (𝑡))𝑛/𝑚

≤

𝑛

𝑚

𝐾
(𝑛−𝑚)/𝑚

1
(𝑡) (𝑎 (𝑡) + V (𝑡)) +

𝑚 − 𝑛

𝑚

𝐾
𝑛/𝑚

1
(𝑡) ,

𝑢
𝑟
(𝑡) ≤ (𝑎 (𝑡) + V (𝑡))𝑟/𝑚

≤

𝑟

𝑚

𝐾
(𝑟−𝑚)/𝑚

2
(𝑡) (𝑎 (𝑡) + V (𝑡)) +

𝑚 − 𝑟

𝑚

𝐾
𝑟/𝑚

2
(𝑡) .

(32)

Substituting (32) into (29), we get

V (𝑡) ≤ 𝑏 (𝑡) ∫
𝑡

0

𝑓 (𝑠) [

𝑛

𝑚

𝐾
(𝑛−𝑚)/𝑚

1
(𝑠) (𝑎 (𝑠) + V (𝑠))

+

𝑚 − 𝑛

𝑚

𝐾
𝑛/𝑚

1
(𝑠)] 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠) [

𝑟

𝑚

𝐾
(𝑟−𝑚)/𝑚

2
(𝑠) (𝑎 (𝑠) + V (𝑠))

+

𝑚 − 𝑟

𝑚

𝐾
𝑟/𝑚

2
(𝑠)] 𝑑𝑠

= 𝑏 (𝑡) ∫

𝑡

0

𝑓 (𝑠) [

𝑛

𝑚

𝐾
(𝑛−𝑚)/𝑚

1
(𝑠) 𝑎 (𝑠)

+

𝑚 − 𝑛

𝑚

𝐾
𝑛/𝑚

1
(𝑠)] 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠) [

𝑟

𝑚

𝐾
(𝑟−𝑚)/𝑚

2
(𝑠) 𝑎 (𝑠)

+

𝑚 − 𝑟

𝑚

𝐾
𝑟/𝑚

2
(𝑠)] 𝑑𝑠

+

𝑛

𝑚

𝑏 (𝑡) ∫

𝑡

0

𝑓 (𝑠)𝐾
(𝑛−𝑚)/𝑚

1
(𝑠) V (𝑠) 𝑑𝑠

+

𝑟

𝑚

𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠)𝐾
(𝑟−𝑚)/𝑚

2
(𝑠) V (𝑠) 𝑑𝑠

=A (𝑡) +B (𝑡) ∫

𝑡

0

F (𝑠) V (𝑠) 𝑑𝑠

+C (𝑡) ∫

𝑇

0

G (𝑠) V (𝑠) 𝑑𝑠,

(33)

which is similar to (14), where A(𝑡), B(𝑡), C(𝑡), F(𝑡), and
G(𝑡) are defined as in (28). Clearly,A(𝑡), B(𝑡),C(𝑡),F(𝑡),
G(𝑡) ∈ 𝐶(𝐼, 𝑅

+
) and A(𝑡), B(𝑡), C(𝑡) are nondecreasing

since 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) are nondecreasing, respectively.

Applying Lemma 4 to (33), we have

V (𝑡)

≤
[

[

A (𝑡)+C (𝑡)

×

∫

𝑇

0
A (𝑠)G (𝑠) exp {B (𝑠)∫

𝑠

0
F (𝜎) 𝑑𝜎} 𝑑𝑠

1−∫

𝑇

0
C (𝑠)G (𝑠) exp {B (𝑠)∫

𝑠

0
F (𝜎) 𝑑𝜎} 𝑑𝑠

]

]

× exp{B (𝑡) ∫

𝑡

0

F (𝜎) 𝑑𝜎} .

(34)

From (31) and (34), we get (27).

When 𝑚 = 2, 𝑛 = 𝑟 = 1 in Theorem 7, a Gronwall-
Bellman-Pachpatte-Ou-Iang type inequality is obtained as
follows.

Corollary 8. Let 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑓(𝑡), and 𝑔(𝑡) be defined as
in Lemma 4. Suppose that 𝑢(𝑡) ∈ 𝐶(𝐼, 𝑅

+
) satisfies

𝑢
2
(𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠 + 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠.

(35)

If

∫

𝑇

0

1

2

𝑐 (𝑠) 𝐺 (𝑠) exp{1
2

𝑏 (𝑠) ∫

𝑠

0

𝐹 (𝜎) 𝑑𝜎}𝑑𝑠 < 1, (36)

then

𝑢 (𝑡)

≤ {𝑎 (𝑡) + [𝐴 (𝑡)+

1

2

𝑐 (𝑡)

× (∫

𝑇

0

𝐴 (𝑠) 𝐺 (𝑠)

× exp{1
2

𝑏 (𝑠) ∫

𝑠

0

𝐹 (𝜎) 𝑑𝜎}𝑑𝑠)

× (1 − ∫

𝑇

0

1

2

𝑐 (𝑠) 𝐺 (𝑠)

× exp{1
2

𝑏 (𝑠) ∫

𝑠

0

𝐹 (𝜎) 𝑑𝜎} 𝑑𝑠)

−1

]

× exp {1
2

𝑏 (𝑡) ∫

𝑡

0

𝐹 (𝜎) 𝑑𝜎}}

1/2

,

(37)
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for 𝑡 ∈ 𝐼, where

𝐴 (𝑡) = 𝑏 (𝑡) ∫

𝑡

0

1

2

𝑓 (𝑠) [𝐾
−1/2

1
(𝑠) 𝑎 (𝑠) + 𝐾

1/2

1
(𝑠)] 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

1

2

𝑔 (𝑠) [𝐾
−1/2

2
(𝑠) 𝑎 (𝑠) + 𝐾

1/2

2
(𝑠)] 𝑑𝑠,

𝐹 (𝑡) = 𝑓 (𝑡)𝐾
−1/2

1
(𝑡) , 𝐺 (𝑡) = 𝑔 (𝑡)𝐾

−1/2

2
(𝑡) ,

(38)

for any 𝐾
𝑖
(𝑡) ∈ 𝐶(𝐼, 𝑅

0
) (𝑖 = 1, 2).

When𝑚 = 𝑛 = 1, 0 ≤ 𝑟 ≤ 1 in Theorem 7, we can also get an
interesting result as follows.

Corollary 9. Let 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑓(𝑡), and 𝑔(𝑡) be defined as
in Lemma 4. Suppose that 𝑢(𝑡) ∈ 𝐶(𝐼, 𝑅

+
) satisfies

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠 + 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠) 𝑢
𝑟
(𝑠) 𝑑𝑠.

(39)

If

∫

𝑇

0

𝑟𝑐 (𝑠) 𝐺 (𝑠) exp{𝑏 (𝑠) ∫
𝑠

0

𝑓 (𝜎) 𝑑𝜎}𝑑𝑠 < 1, (40)

then

𝑢 (𝑡)

≤ 𝑎 (𝑡) + [𝐴 (𝑡) + 𝑟𝑐 (𝑡)

× (∫

𝑇

0

𝐴 (𝑠) 𝐺 (𝑠) exp{𝑏 (𝑠) ∫
𝑠

0

𝑓 (𝜎) 𝑑𝜎}𝑑𝑠)

× (1 − ∫

𝑇

0

𝑟𝑐 (𝑠) 𝐺 (𝑠)

× exp{𝑏 (𝑠) ∫
𝑠

0

𝑓 (𝜎) 𝑑𝜎}𝑑𝑠)

−1

]

× exp{𝑏 (𝑡) ∫
𝑡

0

𝑓 (𝜎) 𝑑𝜎} ,

(41)

for 𝑡 ∈ 𝐼, where 0 ≤ 𝑟 ≤ 1 and

𝐴 (𝑡) = 𝑏 (𝑡) ∫

𝑡

0

𝑓 (𝑠) 𝑎 (𝑠) 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

𝑔 (𝑠) [𝑟𝐾
𝑟−1
(𝑠) 𝑎 (𝑠) + (1 − 𝑟)𝐾

𝑟
(𝑠)] 𝑑𝑠,

𝐺 (𝑡) = 𝑔 (𝑡)𝐾
𝑟−1
(𝑡) ,

(42)

for any 𝐾(𝑡) ∈ 𝐶(𝐼, 𝑅
0
).

3. Nonlinear Weakly Singular
Integral Inequalities

Lemma 10 (discrete Jensen inequality). Let𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
be

nonnegative real numbers and 𝑟 > 1 a real number. Then

(𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑛
)
𝑟
≤ 𝑛
𝑟−1
(𝐴
𝑟

1
+ 𝐴
𝑟

2
+ ⋅ ⋅ ⋅ + 𝐴

𝑟

𝑛
) .

(43)

Lemma 11 (see [16]). Let 𝛼, 𝛽, 𝛾, and 𝑝 be positive constants.
Then

∫

𝑡

0

(𝑡
𝛼
− 𝑠
𝛼
)
𝑝(𝛽−1)

𝑠
𝑝(𝛾−1)

𝑑𝑠

=

𝑡
𝜃

𝛼

𝐵[

𝑝 (𝛾 − 1) + 1

𝛼

, 𝑝 (𝛽 − 1) + 1] ,

𝑡 ∈ 𝑅
+
,

(44)

where 𝐵[𝜉, 𝜂] = ∫1
0
𝑠
𝜉−1
(1 − 𝑠)

𝜂−1
𝑑𝑠 (Re 𝜉 > 0, Re 𝜂 > 0) is the

well-known 𝐵-function and 𝜃 = 𝑝[𝛼(𝛽 − 1) + 𝛾 − 1] + 1.

Assume that

(𝐻) for the parameter group [𝛼
𝑖
, 𝛽
𝑖
, 𝛾
𝑖
], 𝛼
𝑖
∈ (0, 1], 𝛽

𝑖
∈

(0, 1) and 𝛾
𝑖
> 1−1/𝑝 such that 1/𝑝+𝛼

𝑖
(𝛽
𝑖
−1)+𝛾

𝑖
−1 ≥

0, (𝑝 > 1, 𝑖 = 1, 2).

Theorem 12. Under assumption (𝐻), let 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑓(𝑡),
and 𝑔(𝑡) be defined as in Lemma 4. Suppose that 𝑢(𝑡) ∈

𝐶(𝐼, 𝑅
+
) satisfies (6). If

∫

𝑇

0

C (𝑠)G (𝑠) exp{B (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠 < 1, (45)

then

𝑤 (𝑡)

≤ {𝑎 (𝑡) + [A (𝑡) +C (𝑡)

× (∫

𝑡

0

A (𝑠)G (𝑠)exp{B (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎}𝑑𝑠)

× (1 − ∫

𝑡

0

C (𝑠)G (𝑠)

×exp{B (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)

−1

]

× exp {B (𝑡) ∫

𝑡

0

F (𝜎) 𝑑𝜎}}

1/𝑞𝑚

,

(46)
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for 𝑡 ∈ 𝐼, where 𝑚 ≥ 𝑛 ≥ 0, 𝑚 ≥ 𝑟 ≥ 0, 𝑚, 𝑛, 𝑝, 𝑞, and 𝑟 are
constants, 1/𝑝 + 1/𝑞 = 1, and

𝑀
𝑖
=

1

𝛼
𝑖

𝐵[

𝑝 (𝛾
𝑖
− 1) + 1

𝛼
𝑖

, 𝑝 (𝛽
𝑖
− 1) + 1] ,

𝜃
𝑖
= 𝑝 [𝛼

𝑖
(𝛽
𝑖
− 1) + 𝛾

𝑖
− 1] + 1, 𝑖 = 1, 2,

𝑎 (𝑡) = 3
𝑞−1
𝑎
𝑞
(𝑡) ,

̃
𝑏 (𝑡) = 3

𝑞−1
𝑏
𝑞
(𝑡) (𝑀

1
𝑡
𝜃
1
)

𝑞/𝑝

,

𝑐 (𝑡) = 3
𝑞−1
𝑐
𝑞
(𝑡) (𝑀

2
𝑇
𝜃
2
)

𝑞/𝑝

,

A (𝑡) =
̃
𝑏 (𝑡) ∫

𝑡

0

𝑓
𝑞
(𝑠)

× [

𝑛

𝑚

𝐾
(𝑛−𝑚)/𝑚

1
(𝑠) 𝑎 (𝑠) +

𝑚 − 𝑛

𝑚

𝐾
𝑛/𝑚

1
(𝑠)] 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

𝑔
𝑞
(𝑠)

× [

𝑟

𝑚

𝐾
(𝑟−𝑚)/𝑚

2
(𝑠) 𝑎 (𝑠) +

𝑚 − 𝑟

𝑚

𝐾
𝑟/𝑚

2
(𝑠)] 𝑑𝑠,

B (𝑡) =

𝑛

𝑚

̃
𝑏 (𝑡) ,C (𝑡) =

𝑟

𝑚

𝑐 (𝑡) ,

F (𝑡) = 𝑓
𝑞
(𝑡) 𝐾
(𝑛−𝑚)/𝑚

1
(𝑡) ,G (𝑡) = 𝑔

𝑞
(𝑡) 𝐾
(𝑟−𝑚)/𝑚

2
(𝑡) ,

(47)

for any 𝐾
𝑖
(𝑡) ∈ 𝐶(𝐼, 𝑅

0
) (𝑖 = 1, 2).

Remark 13. When 𝑔(𝑡) = 0, inequality (6) can be reduced to
the case discussed by Ma and Pečarić [12]. But their result is
based on the assumption that the ordered parameter group
[𝛼
𝑖
, 𝛽
𝑖
, 𝛾
𝑖
] (𝑖 = 1, 2) obeys distribution I or II (for details,

see [16]), which leads up to slightly complicated formula of
bound on solutions.

Proof. From assumption (𝐻), using the Hölder inequality
with indices 𝑝, 𝑞 to (6), we get

𝑢
𝑚
(𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) (∫

𝑡

0

(𝑡
𝛼
1
− 𝑠
𝛼
1
)
𝑝(𝛽
1
−1)

𝑠
𝑝(𝛾
1
−1)
𝑑𝑠)

1/𝑝

× (∫

𝑡

0

𝑓
𝑞
(𝑠) 𝑢
𝑞𝑛
(𝑠) 𝑑𝑠)

1/𝑞

+ 𝑐 (𝑡) (∫

𝑇

0

(𝑇
𝛼
2
− 𝑠
𝛼
2
)
𝑝(𝛽
2
−1)

𝑠
𝑝(𝛾
2
−1)
𝑑𝑠)

1/𝑝

× (∫

𝑇

0

𝑔
𝑞
(𝑠) 𝑢
𝑞𝑟
(𝑠) 𝑑𝑠)

1/𝑞

.

(48)

Applying Lemma 10 to (48), we have

𝑢
𝑞𝑚
(𝑡) ≤ 3

𝑞−1
𝑎
𝑞
(𝑡) + 3

𝑞−1
𝑏
𝑞
(𝑡)

× (∫

𝑡

0

(𝑡
𝛼
1
− 𝑠
𝛼
1
)
𝑝(𝛽
1
−1)

𝑠
𝑝(𝛾
1
−1)
𝑑𝑠)

𝑞/𝑝

× (∫

𝑡

0

𝑓
𝑞
(𝑠) 𝑢
𝑞𝑛
(𝑠) 𝑑𝑠)

+ 3
𝑞−1
𝑐
𝑞
(𝑡) (∫

𝑇

0

(𝑇
𝛼
2
− 𝑠
𝛼
2
)
𝑝(𝛽
2
−1)

𝑠
𝑝(𝛾
2
−1)
𝑑𝑠)

𝑞/𝑝

× (∫

𝑇

0

𝑔
𝑞
(𝑠) 𝑢
𝑞𝑟
(𝑠) 𝑑𝑠)

= 3
𝑞−1
𝑎
𝑞
(𝑡) + 3

𝑞−1
𝑏
𝑞
(𝑡) (𝑀

1
𝑡
𝜃
1
)

𝑞/𝑝

× (∫

𝑡

0

𝑓
𝑞
(𝑠) 𝑢
𝑞𝑛
(𝑠) 𝑑𝑠)

+ 3
𝑞−1
𝑐
𝑞
(𝑡) (𝑀

2
𝑇
𝜃
2
)

𝑞/𝑝

(∫

𝑇

0

𝑔
𝑞
(𝑠) 𝑢
𝑞𝑟
(𝑠) 𝑑𝑠) ,

(49)

where𝑀
𝑖
, 𝜃
𝑖
(𝑖 = 1, 2) are given in (47).

Letting 𝑢𝑞(𝑡) = 𝑤(𝑡), we have

𝑤
𝑚
(𝑡) ≤ 𝑎 (𝑡) +

̃
𝑏 (𝑡) ∫

𝑡

0

𝑓
𝑞
(𝑠) 𝑤
𝑛
(𝑠) 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

𝑔
𝑞
(𝑠) 𝑤
𝑟
(𝑠) 𝑑𝑠,

(50)

which is similar to inequality (5), where 𝑎(𝑡), ̃𝑏(𝑡), and 𝑐(𝑡) are
also given in (47).

An application ofTheorem 7 to the inequality above gives
that

𝑤 (𝑡)

≤ {𝑎 (𝑡) + [A (𝑡) +C (𝑡)

× (∫

𝑇

0

A (𝑠)G (𝑠)

× exp{B (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)

× (1 − ∫

𝑇

0

C (𝑠)G (𝑠)

× exp{B (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)

−1

]

× exp {B (𝑡) ∫

𝑡

0

F (𝜎) 𝑑𝜎}}

1/𝑚

(51)

holds for 𝑡 ∈ 𝐼, where A(𝑡), B(𝑡), C(𝑡), F(𝑡), and G(𝑡) are
also given in (47). Since 𝑢(𝑡) = 𝑤1/𝑞(𝑡), we can get (46).
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Similarly, if we take 𝑚 = 𝑛 = 1, 0 ≤ 𝑟 ≤ 1 in (5), the
following result is obtained.

Corollary 14. Under assumption (𝐻), let 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑓(𝑡),
and 𝑔(𝑡) be defined as in Lemma 4. Suppose that 𝑢(𝑡) ∈

𝐶(𝐼, 𝑅
+
) satisfies

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

(𝑡
𝛼
1
− 𝑠
𝛼
1
)
𝛽
1
−1

𝑠
𝛾
1
−1
𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

(𝑇
𝛼
2
− 𝑠
𝛼
2
)
𝛽
2
−1

𝑠
𝛾
2
−1
𝑔 (𝑠) 𝑢

𝑟
(𝑠) 𝑑𝑠.

(52)

If

∫

𝑇

0

𝑟𝑐 (𝑠)G (𝑠) exp{̃𝑏 (𝑠) ∫
𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠 < 1, (53)

then

𝑢 (𝑡)

≤ {𝑎 (𝑡) + [A (𝑡) + 𝑟𝑐 (𝑡)

× (∫

𝑇

0

A (𝑠)G (𝑠) exp{̃𝑏 (𝑠) ∫
𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)

× (1 − ∫

𝑇

0

𝑟𝑐 (𝑠)G (𝑠)

× exp{̃𝑏 (𝑠) ∫
𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)

−1

]

× exp{̃𝑏 (𝑡) ∫
𝑡

0

F (𝜎) 𝑑𝜎}}

1/𝑞

,

(54)

for 𝑡 ∈ 𝐼, where 0 ≤ 𝑟 ≤ 1, 𝑝 and 𝑞 are constants, 1/𝑝 + 1/𝑞 =

1, 𝑎(𝑡), ̃𝑏(𝑡), 𝑐(𝑡) are defined as in Theorem 12, and

A (𝑡) = ̃𝑏 (𝑡) ∫
𝑡

0

𝑓
𝑞
(𝑠) 𝑎 (𝑠) 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

𝑔
𝑞
(𝑠) [𝑟𝐾

𝑟−1
(𝑠) 𝑎 (𝑠) + (1 − 𝑟)𝐾

𝑟
(𝑠)] 𝑑𝑠,

F (𝑡) = 𝑓
𝑞
(𝑡) , G (𝑡) = 𝑔

𝑞
(𝑡) 𝐾
𝑟−1
(𝑡) ,

(55)

for any 𝐾(𝑡) ∈ 𝐶(𝐼, 𝑅
0
).

Remark 15. If we take𝑚 = 2, 𝑛 = 𝑟 = 1, similar toCorollary 8,
we can get a general Ou-Iang type singular inequality of (6).
Here we leave the details to the reader.

When we take 𝛼
1
= 𝛼
2
= 1, 𝛾
1
= 𝛾
2
= 1 in (6), we also get

the following result.

Corollary 16. Let 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑓(𝑡), and 𝑔(𝑡) be defined as
in Lemma 4. Suppose that 𝑢(𝑡) ∈ 𝐶(𝐼, 𝑅

+
) satisfies

𝑢
𝑚
(𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽
1
−1
𝑓 (𝑠) 𝑢

𝑛
(𝑠) 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

(𝑇 − 𝑠)
𝛽
2
−1
𝑔 (𝑠) 𝑢

𝑟
(𝑠) 𝑑𝑠.

(56)

If

∫

𝑇

0

C (𝑠)G (𝑠) exp{B (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠 < 1, (57)

then

𝑤 (𝑡)

≤ {𝑎 (𝑡) + [A (𝑡) +C (𝑡)

× (∫

𝑇

0

A (𝑠)G (𝑠)

× exp{B (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)

× (1− ∫

𝑇

0

C (𝑠)G (𝑠)

× exp{B (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)

−1

]

× exp {B (𝑡) ∫

𝑡

0

F (𝜎) 𝑑𝜎}}

1/𝑞𝑚

,

(58)

for 𝑡 ∈ 𝐼, where𝑚, 𝑛, 𝑟, 𝑝, 𝑞, 𝑎(𝑡), ̃𝑏(𝑡), 𝑐(𝑡),A(𝑡),B(𝑡),C(𝑡),
F(𝑡), G(𝑡) are defined as in Theorem 12, 0 ≤ 𝛽

𝑖
≤ 1 (𝑖 = 1, 2),

the choice of 𝑝 satisfies that 𝑝 > 1 and 1/𝑝 + (𝛽
𝑖
− 1) > 0, and

𝑀
𝑖
, 𝜃
𝑖
are replaced by

𝑀
𝑖
= 𝐵 [1, 𝑝 (𝛽

𝑖
− 1) + 1] , 𝜃

𝑖
= 𝑝 (𝛽

𝑖
− 1) + 1,

𝑖 = 1, 2.

(59)

Remark 17. If we take 𝑚 = 𝑛 = 𝑟 = 1, 𝛽
1
= 𝛽
2
= 𝛽, 𝑎(𝑡) = 𝐶,

𝑏(𝑡) = 𝑐(𝑡) = 1/Γ(𝛽), and 𝑓(𝑡) = 𝑔(𝑡), inequality (6) becomes
inequality (4). So, Zheng’s result [14] is the special case of our
result.

Furthermore, if we take 𝑚 = 2, 𝑛 = 1, and 𝑟 = 1, the
weakly singular case of the Gronwall-Bellman-Gamidov-Ou-
Iang type inequality also can be obtained.

Corollary 18. Let 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑓(𝑡), and 𝑔(𝑡) be defined as
in Lemma 4. Suppose that 𝑢(𝑡) ∈ 𝐶(𝐼, 𝑅

+
) satisfies

𝑢
2
(𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛽
1
−1
𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

(𝑇 − 𝑠)
𝛽
2
−1
𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠.

(60)
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If

∫

𝑇

0

1

2

𝑐 (𝑠)G (𝑠) exp{1
2

̃
𝑏 (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠 < 1, (61)

then

𝑢 (𝑡)

≤ {𝑎 (𝑡) + [A (𝑡) + 1
2

𝑐 (𝑡)

× (∫

𝑇

0

A (𝑠)G (𝑠)

× exp{1
2

̃
𝑏 (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)

× (1 − ∫

𝑇

0

1

2

𝑐 (𝑠)G (𝑠)

× exp{1
2

̃
𝑏 (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)
−1

]

× exp{1
2

̃
𝑏 (𝑠) ∫

𝑇

0

F (𝜎) 𝑑𝜎}}
1/2𝑞

,

(62)

for 𝑡 ∈ 𝐼, where 𝑎(𝑡),̃𝑏(𝑡), and 𝑐(𝑡) are defined as inTheorem 12,
𝛽
𝑖
,𝑀
𝑖
, 𝜃
𝑖
, 𝑝, 𝑞 are defined as in Corollary 16, and

A (𝑡) = ̃𝑏 (𝑡) ∫
𝑡

0

1

2

𝑓
𝑞
(𝑠) [𝐾

−1/2

1
(𝑠) 𝑎 (𝑠) + 𝐾

1/2

1
(𝑠)] 𝑑𝑠

+ 𝑐 (𝑡) ∫

𝑇

0

1

2

𝑔
𝑞
(𝑠) [𝐾

−1/2

2
(𝑠) 𝑎 (𝑠) + 𝐾

1/2

2
(𝑠)] 𝑑𝑠,

F (𝑡) = 𝑓𝑞 (𝑡) 𝐾−1/2
1

(𝑡) , G (𝑡) = 𝑔𝑞 (𝑡) 𝐾−1/2
2

(𝑡) ,

(63)

for any 𝐾
𝑖
(𝑡) ∈ 𝐶(𝐼, 𝑅

0
) (𝑖 = 1, 2).

4. Applications

In this section, we give some applications of our result in
the study of the boundedness of solutions of a fractional
integral equationwith theRiemann-Liouville (R-L) fractional
operator.

Definition 19 (see [25]). The R-L fractional integral of order
𝛼 is defined by the following expression:

𝐼
𝛼
𝑓 (𝑡) =

1

Γ (1 + 𝛼)

∫

𝑡

0

𝑓 (𝑠) (𝑑𝑠)
𝛼

=

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑓 (𝑠) 𝑑𝑠.

(64)

Consider the following fractional integral equation:

𝑢
2
(𝑡) = 𝑎 (𝑡) + 𝐼

𝛼
(𝐹 (𝑡, 𝑢 (𝑡)))

+

1

Γ (𝛼)

∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1
𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑡 ∈ 𝐼,

(65)

where 0 < 𝛼 < 1 and 𝐹, 𝐺 ∈ 𝐶(𝑅 × 𝑅, 𝑅).

Theorem 20. If 𝑎(𝑡) ∈ 𝐶(𝐼, 𝑅
+
) is nondecreasing, |𝐹(𝑡, 𝑢)| ≤

𝑓(𝑠)|𝑢| and𝐺(𝑡, 𝑢) ≤ 𝑔(𝑠)|𝑢|, where𝑓, 𝑔 ∈ 𝐶(𝐼, 𝑅
+
). Under the

condition ∫𝑇
0
(1/2)𝑐(𝑠)G(𝑠) exp{(1/2)̃𝑏(𝑠) ∫𝑠

0
F(𝜎)𝑑𝜎}𝑑𝑠 < 1,

the following estimate

𝑢 (𝑡)

≤ {𝑎 (𝑡) + [A (𝑡) + 1
2

𝑐 (𝑡)

× (∫

𝑇

0

A (𝑠)G (𝑠)

× exp{1
2

̃
𝑏 (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)

× (1 − ∫

𝑇

0

1

2

𝑐 (𝑠)G (𝑠)

× exp{1
2

̃
𝑏 (𝑠) ∫

𝑠

0

F (𝜎) 𝑑𝜎} 𝑑𝑠)
−1

]

× exp{1
2

̃
𝑏 (𝑠) ∫

𝑡

0

F (𝜎) 𝑑𝜎}}
1/2𝑞

(66)

holds, where 𝑎(𝑡) = 3
𝑞−1
𝑎
𝑞
(𝑡), 𝜃 = 𝑝(𝛼 − 1) + 1, 𝑀 =

𝐵[1, 𝑝(𝛼 − 1) + 1], ̃𝑏(𝑡) = 3𝑞−1(1/Γ𝑞(𝛼))(𝑀𝑡
𝜃
)
𝑞/𝑝, and 𝑐(𝑡) =

3
𝑞−1
(1/Γ
𝑞
(𝛼))(𝑀𝑇

𝜃
)
𝑞/𝑝 andA(𝑡), F(𝑡), andG(𝑡) are defined as

in Corollary 18.

Proof. According to Definition 19, from (65), we have

𝑢
2
(𝑡) = 𝑎 (𝑡) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1
𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(67)

for 𝑡 ∈ 𝐼. Hence
󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
2
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑎 (𝑡) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

|𝐹 (𝑠, 𝑢 (𝑠))| 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

|𝐺 (𝑠, 𝑢 (𝑠))| 𝑑𝑠

≤ 𝑎 (𝑡) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑓 (𝑠) |𝑢 (𝑠)| 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1
𝑔 (𝑠) |𝑢 (𝑠)| 𝑑𝑠.

(68)
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Letting 𝛽
1
= 𝛽
2
= 𝛼, 𝑏(𝑡) = 1/Γ(𝛼), and 𝑐(𝑡) = 1/Γ(𝛼), and

applying Corollary 18, we have

𝑎 (𝑡) = 3
𝑞−1
𝑎
𝑞
(𝑡) ,

𝜃
1
= 𝜃
2
= 𝑝 (𝛼 − 1) + 1 := 𝜃,

𝑀
1
= 𝑀
2
= 𝐵 [1, 𝑝 (𝛼 − 1) + 1] := 𝑀,

̃
𝑏 (𝑡) = 3

𝑞−1 1

Γ
𝑞
(𝛼)

(𝑀𝑡
𝜃
)

𝑞/𝑝

,

𝑐 (𝑡) = 3
𝑞−1 1

Γ
𝑞
(𝛼)

(𝑀𝑇
𝜃
)

𝑞/𝑝

.

(69)

From (62), we get the desired estimate (66) which implies that
𝑢(𝑡) in (65) is bounded.
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